\documentclass[reqno]{amsart} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2004(2004), No. 34, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2004 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE--2004/34\hfil An estimate for solutions] {An estimate for solutions to the Schr\"{o}dinger equation} \author[Alexander Makin \& Bevan Thompson\hfil EJDE--2004/34\hfilneg] {Alexander Makin \& Bevan Thompson} % in alphabetical order \address{Alexander Makin \hfill\break Moscow State Academy of Instrument-Making and Informatics\\ Stromynka 20, 107846, Moscow, Russia} \email{alexmakin@yandex.ru} \address{Bevan Thompson \hfill\break Department of Mathematics\\ The University of Queensland\\ Brisbane Qld 4072 Australia} \email{hbt@maths.uq.edu.au} \date{} \thanks{Submitted May 29, 2003. Published March 10, 2004.} \subjclass[2000]{35B45, 35J10} \keywords{Schr\"{o}dinger operator, spectral parameter, eigenfunction} \begin{abstract} In this note, we find a priori estimates in the $L_2$-norm for solutions to the Schr\"{o}dinger equation with a parameter. It is shown that a constant occuring in the inequality does not depend on the value of the parameter. In particular, the estimate is valid for eigenfunctions associated with the Schr\"{o}dinger operator with arbitrary boundary conditions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \section{Introduction} Asymptotic properties of solutions to the Schr\"{o}dinger equation of second order elliptic equation with a parameter have been investigated in many papers; see for instance \cite{i2,l3,m2,m3,t1}. In particular, eigenfunctions and functions associated with the Schr\"{o}dinger operator have been considered with various boundary conditions. The authors of these papers have studied the general elliptic operator of second order $$ \mathbb{L}u=\sum_{i,j=1}^n\frac{\partial}{\partial x_i}[a_{ij}(x)\frac{\partial u}{\partial x_j}]+\sum_{i=1}^nb_i(x)\frac{\partial u}{\partial x_i}+c(x)u $$ (or the Schr\"{o}dinger operator) in an arbitrary domain $G$ of $\mathbb{R}^n$. Let $u^0(x)$ be a regular solution of the equation $\mathbb{L}u^0+\lambda u^0=0$, and let $u^m(x)$ be a regular solution of the equation $\mathbb{L}u^m+\lambda u^m=u^{m-1}$ (m=1,2,\dots). Under some smoothness conditions on the coefficients and restrictions on the range of the spectral parameter $\lambda$, the following estimated has been established: \begin{equation} \label{*} \|u^m\|_{L_p(K)}\le C|\lambda|^{\delta(m,n,p,q)}\|u^m\|_{L_q(K')} \end{equation} where $1\le q\le p\le\infty$, the constant $C$ depends on the coefficients of the operator and on compact sets $K$ and $K'$ (with $K,K'\subset G$). When $n>1$, $K$ must lie strictly inside $K'$. However, when $n=1$ this condition is omitted \cite{l3,t1}; i.e. $K'$ can coincide with $K$ and even $K'$ can lie inside $K$. As done in \cite{i1}, estimates of the type \eqref{*} can be applied to study the convergence of the spectral expansions corresponding to nonselfadjoint differential operators. The main objective of the present paper is obtaining an estimate of the type \eqref{*} in the multidimensional case when the condition $K\subset K'$ is not satisfied. The methods used here are different from those used previously. To estimate a solution of an elliptic equation, we investigate a corresponding hyperbolic equation. This approach gives the possibility of using energy estimates for solutions of hyperbolic equations, the theorem on domain of dependence, and the generalized Kirchoff formula for the solution of the Cauchy problem. As is well known, the Kirchoff formula has a different form for $n$ odd and for $n$ even. When $n$ is odd, the domain of dependence is a sphere, and not a ball. Since, we use this fact in our proof, the assumption that $n$ is odd cannot be omitted. This leaves open the question of finding similar estimates for $n$ even. \section{The main result} We consider the Schr\"{o}dinger operator $$ Lu= \Delta u- q(x)u $$ defined on a bounded domain $\Omega\subset \mathbb R^n$ for odd $n>1$. Here $q$ is a complex-valued function continuous on the closure of $\Omega$, $\bar\Omega$. Let $d$ be the diameter of $\Omega$, let $\lambda$ be a complex number, and let $$ q_0=\max_{x\in\bar\Omega}|q(x)|. $$ For $m=0,1,\dots$, let $u^m$ be twice continuously differentiable functions on $\Omega$ satisfying \begin{gather} Lu^0+\lambda u^0=0, \label{e1}\\ Lu^m+\lambda u^m=u^{m-1}. \label{e2} \end{gather} Let $B(x,R)$ be the ball of radius $R$ and centered at $x$ in $\mathbb{R}^n$, and let $\partial\Omega$ denote the boundary of $\Omega$. For $x$ in $\Omega$ with $3R<\mathop{\rm dist}(x,\partial\Omega)$, we have the following an a priori estimate. \begin{theorem} \label{thm1} For any complex number $\lambda$, and any positive real numbers $R,\varepsilon$ such that $3R+\varepsilon<\mathop{\rm dist}(x,\partial\Omega)$, we have \begin{equation} \|u^m\|_{L_2(B(x,R))}\le C\|u^m\|_{L_2(B(x,3R+\varepsilon)\setminus B(x,R))} \label{e3} \end{equation} for $m=0,1,\dots$ where $C=C(n, q_0, d, \varepsilon, m)$. \end{theorem} \begin{proof} We proceed by induction. Consider $m=0$ and set $K=B(x,R)$, $K_0=B(x, R+\varepsilon/8)$, $K_0'=B(x, R+3\varepsilon/8)$, $K'=B(x, 3R+5\varepsilon/8)$, $K''=B(x, 3R+7\varepsilon/8)$ and $\hat K=B(x, 3R+\varepsilon)$. Let $\eta$ and $\eta_0$ be cut off functions satisfying $$ \eta (x)=\begin{cases} 1, & \mbox{if }x\in K'\\ 0, & \mbox{if }x\notin K'', \end{cases}\quad \eta_0(x)=\begin{cases} 1, & \mbox{if }x\in K'\setminus K_0'\\ 0, & \mbox{if }x\notin K''\mbox{ or }x\in K_0\,,\end{cases} $$ $\eta(x)=\eta_0(x)$ if $x\in K''\setminus K'$, $\eta, \eta_0\in C^{\infty}(\mathbb R^n)$, $0\le\eta, \eta_0\le1$. Let $\mu=\sqrt\lambda$ where $-\pi/2<\arg\mu\le\pi/2$ and consider the function $$ \omega(t)=\begin{cases} e^{-i\mu t}, & \mbox{if }\mathop{\rm Im}\mu\ge0\\ e^{i\mu t}, & \mbox{if }\mathop{\rm Im}\mu<0\,.\end{cases} $$ Clearly $\omega(0)=1$, $|\omega'(0)|=|\mu|$ and $|\omega(t)|=e^{|Im\mu|t}$. Define the operator $ \hat L$ by \begin{equation} \hat L\phi=\frac{\partial^2\phi}{\partial t^2}-\Delta\phi \label{e4} \end{equation} for $(x,t)\in \mathbb R^{n+1}$. From \eqref{e4} it follows that for all $(x,t)\in\Omega\times\mathbb R$, \begin{equation} \hat L(\omega(t)u^0(x))=-q(x)u^0(x)\omega(t)\,. \label{e5} \end{equation} Consider the following three Cauchy problems: \begin{equation} \label{e6} \begin{gathered} \hat L\phi=\hat L(\omega\eta u^0)\\ \phi(x,0)=\eta(x)u^0(x),\quad \phi_t(x,0)=\omega'(0)\eta(x)u^0(x)\,, \end{gathered} \end{equation} \begin{equation} \label{e7} \begin{gathered} \hat L\phi=-q\eta u^0\omega\\ \phi(x,0)=\eta_0(x)u^0(x),\quad \phi_t(x,0)=\omega'(0)\eta_0(x)u^0(x)\,, \end{gathered} \end{equation} \begin{equation} \label{e8} \begin{gathered} \hat L\phi=-q\eta u^0\omega\\ \phi(x,0)=\eta(x)u^0(x),\quad \phi_t(x,0)=\omega'(0)\eta(x)u^0(x)\,. \end{gathered} \end{equation} Since $\hat L$ is the wave operator, from a results in \cite{l1}, solutions to problems \eqref{e6}, \eqref{e7}, and \eqref{e8} exist and are unique. Moreover the solution $\phi_2$ of problem \eqref{e7} satisfies the estimate \begin{align*} &\max_{0\le t\le T}(\|\phi_2(x,t)\|_{W_2^1(\mathbb R^n)} +\|\frac{\partial}{\partial t} \phi_2(x,t)\|_{L_2(\mathbb R^n)})\\ &\le e^{c_1T}(\|\phi_2(x,0)\|_{W_2^1(\mathbb R^n)}+ \|\frac{\partial}{\partial t}\phi_2(x,0)\|_{L_2(\mathbb R^n)}+ \int_0^T|\omega(t)|dt\|q\eta u^0\|_{L_2(\mathbb R^n)}). \end{align*} This inequality and the definition of the cut off functions imply that \begin{equation} \label{e9} \begin{aligned} \max_{0\le t\le T}(\|\phi_2(x,t)\|_{W_2^1(\mathbb R^n)}& +\|\frac{\partial}{\partial t}\phi_2(x,t)\|_{L_2(\mathbb R^n)})\\ &\le e^{c_1T}(\|\eta_0 u^0\|_{W_2^1(K''\setminus K_0)}+ |\mu\||u^0\|_{L_2(K''\setminus K_0)}\\&+Tq_0e^{|Im\mu|T}\|u^0\|_{L_2(K'')}) \end{aligned} \end{equation} where $T>0$ is arbitrary. Let $\phi_1$ and $\phi_3$ be the solutions of \eqref{e6} and \eqref{e8}, respectively. From \eqref{e5} and the theorem on domain of dependance (see \cite{l1}) we have \begin{equation} \phi_1(x,t)=\phi_3(x,t) \label{e10} \end{equation} for all $(x,t)\in K_0\times[0, \mathop{\rm dist}(K_0, \partial K')]$. Since $\omega(t)\eta(x)u^0(x)$ is the solution of problem \eqref{e6} for $(x,t)\in\mathbb R^n\times[0,\infty)$, it follows that \begin{equation} \phi_3(x,t)=\omega(t)\eta(x)u^0(x) \label{e11} \end{equation} for all $(x,t)\in K_0\times[0, \mathop{\rm dist}(K_0,\partial K')]$. It is easy to see that $\phi_3(x,t)-\phi_2(x,t)$ is a generalized solution of the Cauchy problem \begin{equation} \label{e12} \begin{gathered} \hat L\phi=0\\ \phi(x,0)=(\eta(x)-\eta_0(x))u^0(x),\quad\phi_t(x,0) =\omega'(0)(\eta(x)-\eta_0(x))u^0(x) \end{gathered} \end{equation} in $\mathbb R^n\times[0, \infty)$. Note that the function $\eta-\eta_0$ is non zero only on $K_0'$. Let $u_h^0=h^{-n}\int_{\mathbb R^n}u^0(y)\gamma(\frac{x-y}{h})dy$ where $\gamma\in C^\infty(\mathbb R^n)$, $0\le\gamma\le1$, $\gamma(y)=0$ for $|y|\ge1$, $\int_{\mathbb R^n}\gamma(y)dy=1$, and we set $u^0(y)=0$ for all $y\not\in \hat K$. Let $\tilde\phi_h$ be the solution of the Cauchy problem \begin{equation} \begin{gathered} \hat L\phi=0\\ \phi(x,0)=(\eta(x)-\eta_0)u_h^0(x),\quad \phi_t(x,0)=\omega'(0)(\eta(x)-\eta_0(x))u_h^0(x) \end{gathered}\label{e13} \end{equation} Since $(\eta-\eta_0)u_h^0\in C^\infty(\mathbb R^n)$ it follows (see \cite{m4}) that $\tilde\phi_h$ is the classical solution of problem (13) and satisfies the generalized Kirchoff formula (see \cite{m4}) $$ \tilde\phi_h(x,t)=\frac{\partial}{\partial t}Q_{\psi_0,h}(x,t)+Q_{\psi_1,h}(x,t) $$ where \begin{gather*} \psi_{0,h}(x)=(\eta(x)-\eta_0(x))u_h^0(x),\quad \psi_{1,h}(x)=\omega'(0)(\eta(x)-\eta_0(x))u_h^0(x), \\ Q_\psi(x,t)=\frac{1}{2(2\pi)^{l+1}}\sum_{j=0}^l\frac{\partial^j}{\partial t^j} \frac{P_l^{(l-j)}(1)}{t^{2l+1-j}}\int_{S_t}\psi(y)dS_y \end{gather*} where $S_t$ is the surface of the $n$--dimensional hypersphere of radius $t$ and centre $x$, $l=(n-3)/2$, and $P_l$ is the Legendre polynomial of degree $l$. Hence $\tilde\phi_h(x,t)=0$ for all $(x,t)\in K_0\times[2R+\varepsilon/2, \infty)$. It follows from \cite[Ch. 3, \S 18]{s1} that the solution $\phi_3-\phi_2$ of problem \eqref{e12} is the limit of $\tilde\phi_h$ as $h\to0$ and thus $\phi_3(x,t)=\phi_2(x,t)$ for all $(x,t)\in K_0\times[2R+\varepsilon/2, \infty)$. From this, \eqref{e10}, and since $\mathop{\rm dist}(K_0, \partial K')=2R+\varepsilon/2$ it follows that $\phi_2(x,t_0)=\phi_1(x,t_0)$ for all $x\in K_0$ and $t_0=2R+\varepsilon/2$. From this, \eqref{e9} and \eqref{e11} it follows that \begin{equation} \label{e14} \begin{aligned} |\mu|e^{|Im\mu|t_0}\|u^0\|_{L_2(K_0)}\\ &\le e^{c_1t_0}(\|\eta_0 u^0\|_{W_2^1(K''\setminus K_0)} +|\mu\||u^0\|_{L_2(K''\setminus K_0)}\\&+ q_0t_0e^{|Im\mu|t_0}\|u^0\|_{L_2(K'')}). \end{aligned} \end{equation} Since the compact set $K''\setminus(K_0\setminus\partial K_0)$ lies strictly inside the compact set $\hat K\setminus(K\setminus\partial K)$ it follows from \cite[page 95]{m1} that \begin{equation} \|\eta_0 u^0\|_{W_2^1(K''\setminus K_0)}\le \|\eta_0\|_{C^1(K''\setminus K_0)}\|u^0\|_{W_2^1(K''\setminus K_0)}\le c_2|\mu\||u^0\|_{L_2(\hat K\setminus K)}. \label{e15} \end{equation} Moreover, from \eqref{e14} and \eqref{e15} we obtain \begin{align*} \|u^0\|_{L_2(K)} &\le e^{c_1d}(c_3\|u^0\|_{L_2(\hat K\setminus K)} +\frac{dq_0}{|\mu|}\|u^0\|_{L_2(\hat K)})\\ &\le e^{c_1d}(c_3\|u^0\|_{L_2(\hat K\setminus K)}+\frac{dq_0}{|\mu|}\|u^0\|_{L_2(K)} +\frac{dq_0}{|\mu|}\|u^0\|_{L_2(\hat K\setminus K)}). \end{align*} If $|\mu|>2dq_0e^{c_1d}$ then \eqref{e3} follows. Now assume that the conclusion of Theorem \ref{thm1} holds for $0\le k\le m-1$, $|\mu|> M$ where $M$ is a constant. We show that it holds if $k=m$, $|\mu|>\tilde M$ where $\tilde M$ is sufficiently large. Consider the case $\mathop{\rm Im}\mu<0$. We define the function $$ \omega^m(x,t)=\sum_{j=0}^me^{i\mu t}P_j(t,\mu)u^{m-j}(x), $$ where $$ P_j(t,\mu)=\frac{1}{2^{j+1}j!\mu^j}\sum_{k=0}^{j-1} \frac{i^{k-j}(j+k-1)!t^{j-k}}{2^kk!(j-k-1)!\mu^k}, $$ for $1\le j\le m$, and $P_0(t,\mu)=1/2$. It is easy to show that $\omega^m(x,0)=u^m(x)/2$, $\omega_t^m(x,0)=\mu F(x)$, where $$ F(x)=\sum_{j=0}^m\frac{(2j-2)!u^{m-j}(x)}{i4^jj!(j-1)!\mu^{2j}}; $$ here we formally set $(-1)!=-1$, and $(-2)!=1/2$. An easy calculation gives $$ \hat L(\omega^m)=-q\omega^m, $$ for all $x\in\Omega$ and $t>0$. An argument similar to that used in the derivation of \eqref{e14} gives the estimate \begin{equation} \label{e16} \begin{aligned} \|\omega_t^m(x,t_0)\|_{L_2(K_0)} &\le e^{c_1t_0}(\|\eta_0 u^m\|_{W_2^1(K''\setminus K_0)} +|\mu\||F\|_{L_2(K''\setminus K_0)}\\ &\quad +q_0\int_0^{t_0}\|\omega^m(x,t)\|_{L_2(K'')}dt) \end{aligned} \end{equation} where $t_0=2R+\varepsilon/2$. It follows from \cite[Th. 1]{k1} that \begin{equation}\label{e17} \begin{aligned} q_0\int_0^{t_0}\|\omega^m(x,t)\|_{L_2(K'')}dt &\le q_0t_0e^{|Im\mu|t_0}\max_{0\le t\le t_0}\|\sum_{j=0}^m P_j(t,\mu)u^{m-j}(x)\|_{L_2(K'')}\\ &\le c_2q_0t_0e^{|Im\mu|t_0}\|u^m\|_{L_2(\hat K)}. \end{aligned} \end{equation} Moreover, as in \cite{k1}, we obtain \begin{equation} \|F\|_{L_2(K''\setminus K_0)}\le c_3\|u^m\|_{L_2(\hat K\setminus K)}.\label{e18} \end{equation} Since the compact set $K''\setminus(K_0\setminus\partial K_0)$ lies strictly inside the compact set $\hat K\setminus(K\setminus\partial K)$ it follows as in \cite{m1} that \begin{equation} \label{e19} \|\eta_0 u^m\|_{W_2^1(K''\setminus K_0)}\le \|\eta_0\|_{C^1(K''\setminus K_0)}\|u^m\|_{W_2^1(K''\setminus K_0)}\le c_4|\mu\||u^m\|_{L_2(\hat K\setminus K)}. \end{equation} Using \eqref{e16}--\eqref{e19}, we obtain \begin{equation} \label{e20} \|\omega_t^m(x,t_0)\|_{L_2(K_0)}\le e^{c_1t_0}(c_5|\mu\||u^m\|_{L_2(\hat K\setminus K)}+c_6q_0t_0e^{|Im\mu|t_0}\|u^m\|_{L_2(\hat K)}). \end{equation} An easy calculation gives \begin{equation} \omega_t^m(x,t)=\sum_{j=0}^me^{i\mu t}R_j(t)u^{m-j}(x)\label{e21} \end{equation} where $$ R_j(t)=\frac{1}{2^{j+1}j!\mu^j}\sum_{k=0}^j\frac{i^{k-j-1}(j+k-2)!(k+j-(j-k)^2)t^{t-k}} {2^kk!(j-k)!\mu^{k-1}} $$ for $1\le j\le m$, and $R_0(t)=i\mu/2$. From \eqref{e20} and \eqref{e21} it follows that \begin{equation} \label{e22} \begin{aligned} \|u^m\|_{L_2(K_0)} &\le c_6\sum_{j=1}^m|\mu|^{-j}\|u^{m-j}\|_{L_2(K_0)}\\ &+e^{c_1t_0}(c_8\|u^m\|_{L_2(\hat K\setminus K)} +c_8q_0t_0|\mu|^{-j}\|u^m\|_{L_2(\hat K)}). \end{aligned} \end{equation} From the induction hypothesis and the a posteriori estimates in \cite{k1} we obtain \begin{equation} \sum_{j=1}^m|\mu|^{-j}\|u^{m-j}\|_{L_2(K_0)} \le c_9\sum_{j=1}^m|\mu|^{-j}\|u^{m-j}\|_{L_2(K''\setminus K_0)} \le c_{10}\|u^m\|_{L_2(\hat K\setminus K)}. \label{e23} \end{equation} Clearly \begin{equation} \|u^m\|_{L_2(\hat K)}\le \|u^m\|_{L_2(K)}+\|u^m\|_{L_2(\hat K\setminus K)}.\label{e24} \end{equation} From \eqref{e22}--\eqref{e24}, it follows that $$ \|u^m\|_{L_2(K)}\le e^{c_{11}d}(\|u^m\|_{L_2(\hat K\setminus K)} +|\mu|^{-1}\|u^m\|_{L_2(K)}+|\mu|^{-1}\|u^m\|_{L_2(\hat K\setminus K)}). $$ If $|\mu|>\max(2e^{c_{11}d},M)$ then \eqref{e3} follows. The case $\mathop{\rm Im}\mu\ge0$ follows by a similar argument, provided we replace the function $\omega^m(x,t)$ by $$ \psi^m(x,t)=\sum_{j=0}^me^{-i\mu t}Q_j(t,\mu)u^{m-j}(x), $$ where $$ Q_j(t,\mu)=\frac{1}{2^{j+1}j!\mu^j}\sum_{k=0}^{j-1}\frac{(-i)^{k-j}(j+k-1)!t^{j-k}} {2^kk!(j-k-1)!\mu^k} $$ for $1\le j\le m$; here $Q_0(t,\mu)=1/2$. We now prove Theorem \ref{thm1} for $|\lambda|\le\lambda_0$ for arbitrary positive $\lambda_0$. Assume the conclusion of Theorem \ref{thm1} fails for some $m$. Then there exists $\varepsilon>0$ such that there exist sequences $C_k>0$, $x_k\in\Omega$ and $R_k>0$ with the following properties: $\lim_{k\to\infty}C_k=\infty$; $3R_k+\varepsilon<\mathop{\rm dist}(x_k,\partial\Omega)$; for each $k$ there exist functions $u_k^l(x)$, $0\le l\le m$, satisfying \eqref{e1} and \eqref{e2} and for which there exists $\lambda_k$ with $|\lambda_k|\le\lambda_0$ and \begin{equation} \|u_k^m\|_{L_2(B(x,R_k)}>C_k\|u_k^m\|_{L_2(B(x_k,3R_k+\varepsilon) \setminus B(x_k,R_k))}.\label{e25} \end{equation} Since the domain $\Omega$ is bounded and $0C_{k_p}\|u_{k_p}^m\|_{L_2(B(\tilde x,3(\tilde R+\sigma) +\varepsilon/2)\setminus B(\tilde x,\tilde R+\sigma))} $$ for $p\ge p_0$. Set $\tilde K=B(\tilde x,\tilde R+\sigma)$ and $\hat K=B(\tilde x,3(\tilde R+\sigma)+\varepsilon/2)$. Thus there is a sequence of functions $u_i^m$, $i=1,2,\dots$ such that \begin{equation} \|u_i^m\|_{L_2(\tilde K)}^2>\hat C_i^2\|u_i^m\|_{L_2(\hat K \setminus \tilde K)}^2,\label{e27} \end{equation} where $\lim_{i\to\infty}\hat C_i=\infty$. Without loss of generality we may assume that \begin{equation} \|u_i^m\|_{L_2(\hat K)}=1\label{e28} \end{equation} for $i=1,2,\dots$. Set $K_j=B(\tilde x,\tilde R+\sigma+j\varepsilon/20)$ for $j=1,\dots,5$. Since $|\lambda_i|\le\lambda_0$, it follows from \eqref{e28} and \cite[page 95]{m1} that $$ \|u_i^l\|_{W^1_2(K_5)}\le c_1 $$ for all $i$ and $0\le l\le m$. In view of this and \cite[Ch. 3, \S7]{l2} it follows that \begin{equation} \|u_i^l\|_{W^2_2(K_4)}\le c_2.\label{e29} \end{equation} It follows from this, \cite[Th. 2.5.1]{m4}, and Rellich's Lemma \cite{r1}, that there exists a subsequence of $u_i^0$, $u_{i_j}^0$, $j=1,2,\dots$, such that $\lim_{j\to\infty}\lambda_{i_j}=\tilde \lambda$ and $$ \lim_{j\to\infty}\|u_{i_j}^0-\tilde u^0\|_{W^1_2(K_3)}=0 $$ for some $\tilde u^0\in W_2^1(K_3)$. It follows from this that $\tilde u^0$ is a generalized solution of $$ L\tilde u^0+\tilde\lambda\tilde u^0=0 $$ in $K_3\setminus\partial K_3$. From this and \cite[Ch. 3, \S10]{l2} it follows that $\tilde u^0\in W_2^2(K_2)$. Similarly we find a further subsequence of $i_j$ denoted $p_j$, such that $\lim_{j\to\infty}\lambda_{p_j}=\tilde \lambda$ and $$ \lim_{j\to\infty}\|u_{p_j}^1-\tilde u^1\|_{W^1_2(K_3)}=0 $$ for some $\tilde u^1\in W_2^1(K_3)$. By a similar argument to that above it follows that $\tilde u^1$ is a generalized solution of $$ L\tilde u^1+\tilde\lambda\tilde u^1=\tilde u^0 $$ in $K_3\setminus\partial K_3$ and that $\tilde u^1\in W_2^2(K_2)$. Repeating this argument we obtain $\tilde u^l\in W_2^2(K_2)$, $0\le l\le m$ which are generalized solutions of \begin{equation} \label{e30} \begin{gathered} L\tilde u^{m-l}+\tilde\lambda\tilde u^{m-l}=\tilde u^{m-l-1},\quad 0\le l\le m-1,\\ L\tilde u^0+\tilde\lambda\tilde u^0=0 \end{gathered} \end{equation} in $K_3\setminus\partial K_3$. From \eqref{e27} and \eqref{e28}, it follows that $$ \lim_{i\to\infty}\|u_i^m\|_{L_2(\hat K\setminus\tilde K)}=0. $$ It follows that $$ \lim_{i\to\infty}\|u_i^m\|_{L_2(K_1\setminus\tilde K)}=0 $$ and therefore $\|\tilde u^m\|_{L_2(K_1\setminus\tilde K)}=0$. From this and \eqref{e30} it follows that \begin{equation} \|\tilde u^{m-l}\|_{L_2(K_1\setminus\tilde K)}=0,\label{e31} \end{equation} for $1\le l\le m$. Setting $l=m$ in \eqref{e31} and using results from \cite[pages 235-236]{a1} we obtain $\|\tilde u^0\|_{L_2(K_1)}=0$. Setting $l=m-1$ in \eqref{e31}, from a results of \cite[pages 235-236]{a1}, it follows that $\|\tilde u^1\|_{L_2(K_1)}=0$. Repeating this argument we obtain \begin{equation} \|\tilde u^m\|_{L_2(K_1)}=0.\label{e32} \end{equation} From \eqref{e27} and \eqref{e28}, it follows that $\lim_{i\to\infty}\|u_i^m\|_{L_2(\tilde K)}=1$ and thus $$ \|\tilde u^m\|_{L_2(\tilde K)}=1. $$ This contradicts \eqref{e32}. The proof is complete. \end{proof}. \subsection*{Remark} From \eqref{e3} it follows that \begin{equation} \|u^m\|_{L_2(B(x,3R+\varepsilon))} \le\tilde C\|u^m\|_{L_2(B(x,3R+\varepsilon)\setminus B(x,R))}\label{e33} \end{equation} where $\tilde C=\sqrt{C^2+1}$; i.e. the $L_2$-norm of any solution to the Schr\"{o}dinger equation with a parameter on a ball can be estimated by the $L_2$-norm of the same solution on some compact subset of the ball. Furthermore, the constant $\tilde C$ in \eqref{e33} does not depend on the value of the parameter $\lambda$. \subsection*{Acknowledgements} This work was carried out while the first author was visiting the University of Queensland. The first author was supported by a Raybould Fellowship. \begin{thebibliography}{00} \bibitem{a1} N. Aronszain, \emph{A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order}, J. Math. Pure Appl. 36 (1957), 235--249. \bibitem{i1} V. A. Il'in, \emph{On the absolute and uniform convergence of the expansions in eigen- and associated functions of a nonselfadjoint elliptic operator}, Dokl. Akad. Nauk SSSR 274, No. 1, 19--22 (Russian) (1984); English summary MR0730157(86a:35108). \bibitem{i2} V. A. Il'in and E. I. Moiseev, \emph{Estimates that are sharp with respect to order of maximum moduli of eigen- and associated functions of an elliptic operator}, Math. Notes 34, No. 5--6, 833--838 (1983); translation from Mat. Zametki 34, No. 5, 683--692 (Russian) (1983). \bibitem{k1} N. Yu. Kapustin, \emph{Sharp anti-a priori estimates for eigen- and associated functions of an elliptic operator}, Soviet Math. Dokl. 30, No. 1, 165-168 (1984); translation from Dokl. Akad. Nauk. SSSR 274, No. 4, 791-794 (Russian) (1984). \bibitem{l1} O. A. Ladyzhenskaya, \emph{The boundary value problems of mathematical physics}, Springer-Verlag, New York, 1985. \bibitem{l2} O. A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968. \bibitem{l3} I. S. Lomov, \emph{Some properties of eigen- and associated functions of the Sturm-Liouville operator}, Differ. Equations 18, No. 10, 1206--1213 (1982); translation from Differ. Uravn. 18, No. 10, 1684--1694, (Russian) (1982). \bibitem{m1} A. S. Makin, \emph{Properties of eigenfunctions and associated functions of a second order elliptic operator}, Differ. Equations 24, No. 1, 92--97 (1988); translation from Differ. Uravn. 24, No. 1, 116--123 (Russian) (1988). \bibitem{m2} A. S. Makin, \emph{On sharp estimates for the eigenfunctions and associated functions of a second order elliptic operator}, Soviet Math. Dokl. 30, No. 3, 812--815 (1984); translation from Dokl. Akad. Nauk SSSR 279, No. 6, 1314--1318 (Russian) (1984). \bibitem{m3} A. S. Makin, \emph{Order exact estimates of the maxima of absolute values of the adjoint eigenfunctions of the Schr\"{o}dinger operator}, Differ. Eqations 33, No. 1, 121--131 (1997); translation from Differ. Uravn., 33, No. 1, 120--129 (Russian) (1997). \bibitem{m4} S. G. Mikhlin, \emph{Mathematical Physics, an advanced course}, Amsterdam-London, 1970. \bibitem{r1} R. D. Richtmyer, \emph{Principles of advanced Mathematical Physics, Springer-Verlag}, 1978. \bibitem{s1} S. L. Sobolev, \emph{Some Applications of Functional Analysis in Mathematical Physics}, Providence, Rhode Island, AMS, 1991. \bibitem{t1} V. V. Tikhomirov, \emph{Sharp estimates of regular solutions of the one-dimensional Schr\"{o}dinger equation with a spectral parameter}, Soviet Math. Dokl. 28, No. 3, 722-725 (1983); translation from Dokl. Akad. Nauk SSSR 273, No. 4, 807--810, (Russian) (1983). \end{thebibliography} \end{document}