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HOMOGENIZATION IN CHEMICAL REACTIVE FLOWS

CARLOS CONCA, JESUS ILDEFONSO DÍAZ,

AMABLE LIÑÁN, CLAUDIA TIMOFTE

Abstract. This paper concerns the homogenization of two nonlinear models

for chemical reactive flows through the exterior of a domain containing peri-
odically distributed reactive solid grains (or reactive obstacles). In the first
model, the chemical reactions take place on the walls of the grains, while in

the second one the fluid penetrates the grains and the reactions take place
therein. The effective behavior of these reactive flows is described by a new
elliptic boundary-value problem containing an extra zero-order term which

captures the effect of the chemical reactions.

1. Introduction

The general question which will be subject of this paper is the homogenization
of chemical reactive flows through the exterior of a domain containing periodically
distributed reactive solid grains (or reactive obstacles). We will focus our attention
on two nonlinear problems which describe the motion of a reactive fluid having
different chemical features. For a nice presentation of the chemical aspects involved
in our first model (and also for some mathematical and historical backgrounds) we
refer to Antontsev et al. [1], Bear [4], Dı́az [16, 17, 18] and Norman [24]. For the
second model, the interested reader can consult the books by Hornung [19] and
Norman [24] and the references therein.

Let Ω be an open bounded set in Rn and let us introduce a set of periodically
distributed reactive obstacles. As a result, we obtain an open set Ωε which will be
referred to as being the exterior domain; ε represents a small parameter related to
the characteristic size of the reactive obstacles.

The first nonlinear problem studied in this paper concerns the stationary reactive
flow of a fluid confined in Ωε, of concentration uε, reacting on the boundary of the
obstacles. A simplified version of this problem can be written as follows:

−Df∆uε = f in Ωε,

−Df
∂uε

∂ν
= aεg(uε) on Sε,

uε = 0 on ∂Ω.

(1.1)
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Here, ν is the exterior unit normal to Ωε, a > 0, f ∈ L2(Ω) and Sε is the boundary
of our exterior medium Ω \Ωε. Moreover, the fluid is assumed to be homogeneous
and isotropic, with a constant diffusion coefficient Df > 0.

The semilinear boundary condition on Sε in problem (1.1) describes the chemical
reactions which take place locally at the interface between the reactive fluid and the
grains. From strictly chemical point of view, this situation represents, equivalently,
the effective reaction on the walls of the chemical reactor between the fluid filling
Ωε and a chemical reactant located in the rigid solid grains.

The function g in (1.1) is assumed to be given. Two model situations will
be considered; the case in which g is a monotone smooth function satisfying the
condition g(0) = 0 and the case of a maximal monotone graph with g(0) = 0, i.e.
the case in which g is the subdifferential of a convex lower semicontinuous function
G. These two general situations are well illustrated by the following important
practical examples

(a) g(v) = αv
1+βv , α, β > 0 (Langmuir kinetics)

(b) g(v) = |v|p−1v, 0 < p < 1 (Freundlich kinetics).
The exponent p is called the order of the reaction. In some applications the limit
case (p = 0) is of great relevance (see Remark 2.8). It is worth remarking that if we
assume f ≥ 0, one can prove (see, e.g. [18]) that uε ≥ 0 in Ω\Ωε and uε > 0 in Ωε,
although uε is not uniformly positive, except in the case in which g is a monotone
smooth function satisfying the condition g(0) = 0, as, for instance, in example (a).

The existence and uniqueness of a weak solution of (1.1) can be settled by using
the classical theory of semilinear monotone problems (see, for instance, [8], [16]
and [22]). As a result, we know that there exists a unique weak solution uε ∈
V ε

⋂
H2(Ωε), where

V ε = {v ∈ H1(Ωε) : v = 0 on ∂Ω}.
Moreover, if in the second model situation, which is in fact the most general case
we treat here, with Ωε we associate the following nonempty convex subset of V ε:

Kε = {v ∈ V ε : G(v)
∣∣
Sε ∈ L1(Sε)}, (1.2)

then uε is also known to be characterized as being the unique solution of the
following variational problem:

Find uε ∈ Kε such that

Df

∫
Ωε

DuεD(vε − uε)dx−
∫

Ωε

f(vε − uε)dx+ a〈µε, G(vε)−G(uε)〉 ≥ 0 (1.3)

for all vε ∈ Kε, where µε is the linear form on W 1,1
0 (Ω) defined by

〈µε, ϕ〉 = ε

∫
Sε

ϕdσ ∀ϕ ∈W 1,1
0 (Ω).

From a geometrical point of view, we shall just consider periodic structures ob-
tained by removing periodically from Ω, with period εY (where Y is a given hyper-
rectangle in Rn), an elementary reactive obstacle T which has been appropriated
rescaled and which is strictly included in Y , i.e. T ⊂ Y .

As usual in homogenization, we shall be interested in obtaining a suitable de-
scription of the asymptotic behavior, as ε tends to zero, of the solution uε in such
domains. We will wonder, for example, whether the solution uε converges to a limit
u as ε→ 0. And if this limit exists, can it be characterized?
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In the second model situation (in absence of any additional regularity on g), the
solution uε, properly extended to the whole of Ω, converges to the unique solution
of the variational inequality: u ∈ H1

0 (Ω),∫
Ω

QDuD(v − u)dx ≥
∫

Ω

f(v − u)dx− a
|∂T |
|Y \ T |

∫
Ω

(G(v)−G(u))dx, (1.4)

for all v ∈ H1
0 (Ω).

Here, Q = ((qij)) is the classical homogenized matrix, whose entries are

qij = Df

(
δij +

1
|Y \ T |

∫
Y \T

∂χj

∂yi
dy

)
(1.5)

in terms of the functions χi, i = 1, . . . , n, solutions of the so-called cell problems

−∆χi = 0 in Y \ T,
∂(χi + yi)

∂ν
= 0 on ∂T,

χi is Y -periodic.

(1.6)

We remark that if g is smooth, then g is the classical derivative of G.
The chemical situation behind the second nonlinear problem that we will treat

in this paper is slightly different from the previous one; it also involves a chemical
reactor containing reactive grains, but we assume that now there is an internal
reaction inside the grains, instead just on their boundaries. In fact, it is therefore
a transmission problem with an unknown flux on the boundary of each grain.

To simplify matters, we shall just focus on the case of a function g which is
continuous, monotone increasing and such that g(0) = 0; examples (a) and (b) are
both covered by this class of functions g′s and, of course, both are still our main
practical examples.

A simplified setting of this kind of models is as follows:

−Df∆uε = f in Ωε,

−Dp∆vε + ag(vε) = 0, in Ω \ Ωε

−Df
∂uε

∂ν
= Dp

∂vε

∂ν
on Sε,

uε = vε on Sε,

uε = 0 on ∂Ω,

(1.7)

where Dp is a second diffusion coefficient characterizing the granular material filling
the reactive obstacles. As in the previous case, the classical semilinear theory
guarantees the well-posedness of this problem.

When we define θε as

θε(x) =

{
uε(x) x ∈ Ωε,

vε(x) x ∈ Ω \ Ωε,

and we introduce

A =

{
DfId in Y \ T
DpId in T,
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then our main result of convergence for this model shows that θε converges weakly
in H1

0 (Ω) to the unique solution of the homogenized problem

−
n∑

i,j=1

a0
ij

∂2u

∂xi∂xj
+ a

|T |
|Y \ T |

g(u) = f in Ω,

u = 0 on ∂Ω.

(1.8)

Here, A0 = ((a0
ij)) is the homogenized matrix, whose entries are

a0
ij =

1
|Y |

∫
Y

(
aij + aik

∂χj

∂yk

)
dy, (1.9)

in terms of the functions χj , j = 1, . . . , n, solutions of the so-called cell problems

−div(AD(yj + χj)) = 0 in Y,
χj is Y -periodic.

(1.10)

Note that the two reactive flows studied in this paper, namely (1.1) and (1.7),
lead to completely different effective behavior. The macroscopic problem (1.4)
arises from the homogenization of a boundary-value problem in the exterior of
some periodically distributed obstacles and the zero-order term occurring in (1.4)
has its origin in this particular structure of the model. The influence of the chemical
reactions taking place on the boundaries of the reactive obstacles is reflected in the
appearance of this zero-order extra-term. On the other hand, the second model
is again a boundary-value problem, but this time in the whole domain Ω, with
discontinuous coefficients. Its macroscopic behavior (see (1.8)) also involves a zero-
order term, but of a completely different nature; it is originated in the chemical
reactions occurring inside the grains.

The approach we used is the so-called energy method introduced by Tartar [25],
[26] for studying homogenization problems. It consists of constructing suitable test
functions that are used in our variational problems. However, it is worth mentioning
that the Γ-convergence of integral functionals involving oscillating obstacles could
be a successful alternative. Extensive references on this topic can be found in the
monographs of Dal Maso [15] and of Braides and Defranceschi [7]. For example,
our main result in Chapter 2 (cf. Theorem 2.6) can also be interpreted as a Γ-
convergence-type result for the functionals

v 7→ 1
2
Df

∫
Ωε

DvDvdx+ a〈µε, G(v)〉 −
∫

Ωε

fvdx+ IKε(v)

(where IKε is the indicator function of the set Kε, i.e. IKε is equal to zero if v
belongs to Kε and +∞ otherwise) to the limit functional

v 7→ 1
2

∫
Ω

QDvDvdx+ a
|∂T |
|Y \ T |

∫
Ω

G(v)dx−
∫

Ω

fvdx,

which is the energy functional associated to (1.3).
Also, let us mention that another possible way to get the limit problem (1.8)

could be to use the two-scale convergence technique, coupled with periodic modu-
lation, as in [6].

Regarding our second problem, i.e. chemical reactive flows through periodic ar-
ray of cells, a related work was completed by Hornung et al. [21] using nonlinearities
which are essentially different from the ones we consider in the present paper. The
proof of these authors is also different, since it is mainly based on the technique
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of two-scale convergence, which, as already mentioned, proves to be a successful
alternative for this kind of problems. However, we have decided to use the energy
method, coupled with monotonicity methods and results from the theory of semi-
linear problems, because it offered us the possibility to cover the nonlinear cases of
practical importance mentioned above.

The structure of our paper is as follows: first, let us mention that we shall just
focus on the case n ≥ 3, which will be treated explicitly. The case n = 2 is much
more simpler and we shall omit to treat it. In Section 2 we start by analyzing the
first nonlinear problem, namely (1.1). We begin with the case of a monotone smooth
function g and we prove the convergence result using the energy method. Next, we
treat the case of a maximal monotone graph, by writing our microscopic problem
in the form of a variational inequality. The case of a reactive flow penetrating a
periodical structure of grains is addressed in Section 3.

Finally, notice that throughout the paper, by C we shall denote a generic fixed
strictly positive constant, whose value can change from line to line.

2. Chemical reactions on the walls of a chemical reactor

In this section, we will be concerned with the stationary reactive flow of a fluid
confined in the exterior of some periodically distributed obstacles, reacting on the
boundaries of the obstacles. We will treat separately the situation in which the
nonlinear function g in (1.1) is a monotone smooth function satisfying the condition
g(0) = 0 and the situation in which g is a maximal monotone graph with g(0) = 0.

Let Ω be a smooth bounded connected open subset of Rn (n ≥ 3) and let Y
= [0, l1[× . . . [0, ln[ be the representative cell in Rn. Denote by T an open subset of
Y with smooth boundary ∂T such that T ⊂ Y . We shall refer to T as being the
elementary obstacle.

Let ε be a real parameter taking values in a sequence of positive numbers con-
verging to zero. For each ε and for any integer vector k ∈ Zn, set T ε

k the translated
image of εT by the vector kl = (k1l1, . . . , knln) :

T ε
k = ε(kl + T ).

The set T ε
k represents the obstacles in Rn. Also, let us denote by T ε the set of all

the obstacles contained in Ω, i.e.

T ε =
⋃ {

T ε
k : T ε

k⊂Ω, k ∈ Zn
}
.

Set
Ωε = Ω \ T ε.

Hence, Ωε is a periodical domain with periodically distributed obstacles of size
of the same order as the period. Remark that the obstacles do not intersect the
boundary ∂Ω. Let

Sε = ∪{∂T ε
k | T ε

k⊂Ω, k ∈ Zn}.
So

∂Ωε = ∂Ω ∪ Sε.

We shall also use the following notation: |ω| is the Lebesgue measure of any mea-
surable subset ω of Rn, χω is the characteristic function of the set ω, Y ∗ = Y \ T ,
and

ρ =
|Y ∗|
|Y |

. (2.1)
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Moreover, for an arbitrary function ψ ∈ L2(Ωε), we shall denote by ψ̃ its extension
by zero inside the obstacles:

ψ̃ =

{
ψ in Ωε,

0 in Ω \ Ωε.

Also, for any open subset D ⊂ Rn and any function g ∈ L1(D), we set

MD(g) =
1
|D|

∫
D

gdx. (2.2)

In the sequel we reserve the symbol # to denote periodicity properties.

2.1. Setting of the problem. As already mentioned, we are interested in studying
the behavior of the solution, in such a periodical domain, of the problem

−Df∆uε = f in Ωε,

−Df
∂uε

∂ν
= aεg(uε) on Sε,

uε = 0 on ∂Ω.

(2.3)

Here, ν is the exterior unit normal to Ωε, a > 0, f ∈ L2(Ω) and g is assumed to be
given. Two model situations will be considered; the case in which g is a monotone
smooth function satisfying the condition g(0) = 0 and the case of a maximal mono-
tone graph with g(0) = 0, i.e. the case in which g is the subdifferential of a convex
lower semicontinuous function G. These two general situations are well illustrated
by the following important practical examples:

(a) g(v) =
αv

1 + βv
, α, β > 0 (Langmuir kinetics)

(b) g(v) = |v|p−1v, 0 < p < 1 (Freundlich kinetics).
The exponent p is called the order of the reaction. It is worth remarking that if we
assume f ≥ 0, one can prove (see, e.g. [18]) that uε ≥ 0 in Ω\Ωε and uε > 0 in Ωε,
although uε is not uniformly positive except in the case in which g is a monotone
smooth function satisfying the condition g(0) = 0, as, for instance, in example a).
Moreover, since u represents a concentration, it could be natural to assume that
f ≤ 1, and again one can prove that, in this case, u ≤ 1. Without loss of generality,
in what follows we shall assume that Df = 1.

2.2. First model situation: g smooth. Let g be a continuously differentiable
function, monotonously non-decreasing and such that g(v) = 0 if and only if v = 0.
We shall suppose that there exist a positive constant C and an exponent q, with
0 ≤ q < n/(n− 2), such that

|∂g
∂v
| ≤ C(1 + |v|q). (2.4)

Let us introduce the functional space

V ε =
{
v ∈ H1(Ωε) : v = 0on ∂Ω

}
,

with ‖v‖V ε = ‖∇v‖L2(Ωε). The weak formulation of problem (2.3) (written for
Df = 1) is:
Find uε ∈ V ε such that∫

Ωε

∇uε · ∇ϕdx+ aε

∫
Sε

g(uε)ϕdσ =
∫

Ωε

fϕdx ∀ϕ ∈ V ε. (2.5)
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By classical existence results (see [8]), there exists a unique weak solution uε ∈
V ε ∩H2(Ωε) of problem (2.3).

The solution uε of problem (2.3) being defined only on Ωε, we need to extend it
to the whole of Ω to be able to state the convergence result. In order to do that,
let us recall the following well-known extension result (see [10]).

Lemma 2.1. There exists a linear continuous extension operator

P ε ∈ L(L2(Ωε);L2(Ω)) ∩ L(V ε;H1
0 (Ω))

and a positive constant C, independent of ε, such that for any v ∈ V ε,

‖P εv‖L2(Ω) ≤ C‖v‖L2(Ωε),

‖∇P εv‖L2(Ω) ≤ C‖∇v‖L2(Ωε) .

An immediate consequence of the previous lemma is the following Poincaré’s
inequality in V ε.

Lemma 2.2. There exists a positive constant C, independent of ε, such that for
any v ∈ V ε,

‖v‖L2(Ωε) ≤ C‖∇v‖L2(Ωε) .

The main result of this section is as follows.

Theorem 2.3. One can construct an extension P εuε of the solution uε of the
variational problem (2.5) such that P εuε ⇀ u weakly in H1

0 (Ω), where u is the
unique solution of

−
n∑

i,j=1

qij
∂2u

∂xi∂xj
+ a

|∂T |
|Y ∗|

g(u) = f in Ω,

u = 0 on ∂Ω .

(2.6)

Here, Q = ((qij)) is the classical homogenized matrix, whose entries are

qij = δij +
1
|Y ∗|

∫
Y ∗

∂χj

∂yi
dy (2.7)

in terms of the functions χi, i = 1, . . . , n, solutions of the so-called cell problems
−∆χi = 0 in Y ∗,

∂(χi + yi)
∂ν

= 0 on ∂T,

χi is Y -periodic.

(2.8)

The constant matrix Q is symmetric and positive-definite.

Proof. We divide the proof into four steps.
First step. Let uε ∈ V ε be the solution of the variational problem (2.5) and let P εuε

be the extension of uε inside the obstacles given by Lemma 2.1. Taking ϕ = uε as
a test function in (2.5), using Schwartz and Poincaré’s inequalities, we easily get

‖P εuε‖H1
0 (Ω) ≤ C.

Consequently, by passing to a subsequence, still denoted by P εuε, we can assume
that there exists u ∈ H1

0 (Ω) such that

P εuε ⇀ u weakly in H1
0 (Ω). (2.9)

It remains to identify the limit equation satisfied by u.
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Second step. In order to get the limit equation satisfied by u we have to pass to the
limit in (2.5). For getting the limit of the second term in the left hand side of (2.5),
let us introduce, for any h ∈ Ls′(∂T ), 1 ≤ s′ ≤ ∞, the linear form µε

h on W 1,s
0 (Ω)

defined by

〈µε
h, ϕ〉 = ε

∫
Sε

h(
x

ε
)ϕdσ ∀ϕ ∈W 1,s

0 (Ω),

with 1/s+ 1/s′ = 1. It is proved in [9] that

µε
h → µh strongly in (W 1,s

0 (Ω))′, (2.10)

where 〈µh, ϕ〉 = µh

∫
Ω
ϕdx, with

µh =
1
|Y |

∫
∂T

h(y)dσ.

In the particular case in which h ∈ L∞(∂T ) or even when h is constant, we have

µε
h → µh strongly in W−1,∞(Ω).

In what follows, we shall denote by µε the above introduced measure in the partic-
ular case in which h = 1. Notice that in this case µh becomes µ1 = |∂T |/|Y |. Let
us prove now that for any ϕ ∈ D(Ω) and for any vε ⇀ v weakly in H1

0 (Ω), we get

ϕg(vε) ⇀ ϕg(v) weakly in W 1,q
0 (Ω), (2.11)

where
q =

2n
q(n− 2) + n

.

To prove (2.11), let us first note that

sup ‖∇g(vε)‖Lq(Ω) <∞. (2.12)

Indeed, from the growth condition (2.4) imposed to g, we get∫
Ω

∣∣ ∂g
∂xi

(vε)
∣∣qdx ≤ C

∫
Ω

(
1 + |vε|qq

)
|∂v

ε

∂xi
|qdx

≤ C(1 + (
∫

Ω

|vε|qqγdx)1/γ)(
∫

Ω

|∇vε|qδdx)1/δ,

where we took γ and δ such that qδ = 2, 1/γ + 1/δ = 1 and qqγ = 2n/(n − 2).
Note that from here we get q = 2n

q(n−2)+n . Also, since 0 ≤ q < n/(n − 2), we have
q > 1. Now, since

sup ‖vε‖
L

2n
n−2 (Ω)

<∞,

we get immediately (2.12). Hence, to get (2.11), it remains only to prove that

g(vε) → g(v) strongly in Lq(Ω). (2.13)

But this is just a consequence of the following well-known result (see [15] and [22]).

Theorem 2.4. Let G : Ω× R → R be a Carathéodory function, i.e.
(a) For every v the function G(·, v) is measurable with respect to x ∈ Ω.
(b) For every (a.e.) x ∈ Ω, the function G(x, ·) is continuous with respect to v.

Moreover, if we assume that there exists a positive constant C such that

|G(x, v)| ≤ C
(
1 + |v|r/t

)
,

with r ≥ 1 and t <∞, then the map v ∈ Lr(Ω) 7→ G(x, v(x)) ∈ Lt(Ω) is continuous
in the strong topologies.
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Indeed, since
|g(v)| ≤ C(1 + |v|q+1),

applying the above theorem for G(x, v) = g(v), t = q and r = (2n/(n − 2)) − r′,
with r′ > 0 such that q+ 1 < r/t and using the compact injection H1(Ω) ↪→ Lr(Ω)
we easily get (2.13).

Finally, from (2.10) (with h = 1) and (2.11) written for vε = P εuε, we conclude

〈µε, ϕg(P εuε)〉 → |∂T |
|Y |

∫
Ω

ϕg(u)dx ∀ϕ ∈ D(Ω) (2.14)

and this ends this step of the proof.
Third step. Let ξε be the gradient of uε in Ωε and let us denote by ξ̃ε its extension
with zero to the whole of Ω, i.e.

ξ̃ε =

{
ξε in Ωε,

0 in Ω \ Ωε.

Obviously, ξ̃ε is bounded in (L2(Ω))n and hence there exists ξ ∈ (L2(Ω))n such
that

ξ̃ε ⇀ ξ weakly in (L2(Ω))n. (2.15)
Let us see now which is the equation satisfied by ξ. Take ϕ ∈ D(Ω). From (2.5) we
get ∫

Ω

ξ̃ε · ∇ϕdx+ aε

∫
Sε

g(uε)ϕdσ =
∫

Ω

χΩεfϕdx. (2.16)

Now, we can pass to the limit, with ε→ 0, in all the terms of (2.16). For the first
one, we have

lim
ε→0

∫
Ω

ξ̃ε · ∇ϕdx =
∫

Ω

ξ · ∇ϕdx. (2.17)

For the second term, using (2.14), we get

lim
ε→0

aε

∫
Sε

g(uε)ϕdσ = a
|∂T |
|Y |

∫
Ω

g(u)ϕdx. (2.18)

It is not difficult to pass to the limit in the right-hand side of (2.16). Since

χΩεf ⇀
|Y ∗|
|Y |

f weakly in L2(Ω),

we obtain

lim
ε→0

∫
Ω

χΩεfϕdx =
|Y ∗|
|Y |

∫
Ω

fϕdx. (2.19)

Putting together (2.17)-(2.19), we have∫
Ω

ξ · ∇ϕdx+ a
|∂T |
|Y |

∫
Ω

g(u)ϕdx =
|Y ∗|
|Y |

∫
Ω

fϕdx ∀ϕ ∈ D(Ω).

Hence ξ verifies

−div ξ + a
|∂T |
|Y |

g(u) =
|Y ∗|
|Y |

f in Ω. (2.20)

It remains now to identify ξ.
Fourth step. In order to identify ξ, we shall make use of the solutions of the cell-
problems (2.8). For any fixed i = 1, . . . , n, let us define

Φiε(x) = ε
(
χi(

x

ε
) + yi

)
∀x ∈ Ωε, (2.21)
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where y = x/ε. By periodicity

P εΦiε ⇀ xi weakly in H1(Ω). (2.22)

Let ηε
i be the gradient of Φiε in Ωε. Denote by η̃ε

i the extension by zero of ηε
i inside

the obstacles. From (2.21), for the j-component of η̃ε
i we get(

η̃ε
i

)
j

=
( ∂̃Φiε

∂xj

)
=

( ∂̃χi

∂yj
(y)

)
+ δijχY ∗

and hence(
η̃ε

i

)
j
⇀

1
|Y |

( ∫
Y ∗

∂χi

∂yj
dy + |Y ∗|δij

)
=
|Y ∗|
|Y |

qij weakly in L2(Ω). (2.23)

On the other hand, it is not difficult to see that ηε
i satisfies

−div ηε
i = 0 in Ωε,

ηε
i · ν = 0 on Sε.

(2.24)

Now, let ϕ ∈ D(Ω). Multiplying the first equation in (2.24) by ϕuε and integrating
by parts over Ωε we get∫

Ωε

ηε
i · ∇ϕuεdx+

∫
Ωε

ηε
i · ∇uεϕdx = 0.

So ∫
Ω

η̃ε
i · ∇ϕP

εuεdx+
∫

Ωε

ηε
i · ∇uεϕdx = 0. (2.25)

On the other hand, taking ϕΦiε as a test function in (2.5) we obtain∫
Ωε

(∇uε · ∇ϕ)Φiεdx+
∫

Ωε

(∇uε · ∇Φiε)ϕdx+ aε

∫
Sε

g(uε)ϕΦiεdσ =
∫

Ωε

fϕΦiεdx

which, using the definitions of ξ̃ε and η̃ε
i , gives∫

Ω

ξ̃ε · ∇ϕP εΦiεdx+
∫

Ωε

∇uε · ηε
iϕdx+ aε

∫
Sε

g(uε)ϕΦiεdσ =
∫

Ω

fχΩεϕP εΦiεdx.

Now, using (2.25), we get∫
Ω

ξ̃ε ·∇ϕP εΦiεdx−
∫

Ω

η̃ε
i ·∇ϕP

εΦiεdx+aε

∫
Sε

g(uε)ϕΦiεdσ =
∫

Ω

fχΩεϕP εΦiεdx.

(2.26)
Let us pass to the limit in (2.26). Firstly, using (2.15) and (2.22), we have

lim
ε→0

∫
Ω

ξ̃ε · ∇ϕP εΦiεdx =
∫

Ω

ξ · ∇ϕxidx. (2.27)

On the other hand, (2.9) and (2.23) imply that

lim
ε→0

∫
Ω

η̃ε
i · ∇ϕP

εuεdx =
|Y ∗|
|Y |

∫
Ω

qi · ∇ϕudx, (2.28)

where qi is the vector having the j-component equal to qij .
Because the boundary of T is smooth, of class C2, P εΦiε ∈ W 1,∞(Ω) and

P εΦiε → xi strongly in L∞(Ω). Then, since g(P εuε)P εΦiε → g(u)xi strongly in
Lq(Ω) and g(P εuε)P εΦiε is bounded in W 1,q(Ω), we have g(P εuε)P εΦiε ⇀ g(u)xi

weakly in W 1,q(Ω). So

lim
ε→0

aε

∫
Sε

g(uε)ϕΦiεdσ = a
|∂T |
|Y |

∫
Ω

g(u)ϕxidx. (2.29)
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Finally, for the limit of the right-hand side of (2.26), since χΩεf ⇀ |Y ∗|
|Y | f weakly

in L2(Ω), using again (2.22) we have

lim
ε→0

∫
Ω

fχΩεϕP εΦiεdx =
|Y ∗|
|Y |

∫
Ω

fϕxidx. (2.30)

Hence we get∫
Ω

ξ ·∇ϕxidx−
|Y ∗|
|Y |

∫
Ω

qi ·∇ϕudx+a
|∂T |
|Y |

∫
Ω

g(u)ϕxidx =
|Y ∗|
|Y |

∫
Ω

fϕxidx. (2.31)

Using Green’s formula and equation (2.20), we have

−
∫

Ω

ξ · ∇xiϕdx+
|Y ∗|
|Y |

∫
Ω

qi · ∇uϕdx = 0 in Ω.

The above equality holds true for any ϕ ∈ D(Ω). This implies that

−ξ · ∇xi +
|Y ∗|
|Y |

qi · ∇u = 0 in Ω. (2.32)

Writing (2.30) by components, differentiating with respect to xi, summing after i
and using (2.19), we conclude that

|Y ∗|
|Y |

n∑
i,j=1

qij
∂2u

∂xi∂xj
= div ξ = −|Y

∗|
|Y |

f + a
|∂T |
|Y |

g(u),

which implies that u satisfies

−
n∑

i,j=1

qij
∂2u

∂xi∂xj
+ a

|∂T |
|Y ∗|

g(u) = f in Ω.

Since u ∈ H1
0 (Ω) (i.e. u = 0 on ∂Ω) and u is uniquely determined, the whole

sequence P εuε converges to u and Theorem 2.3 is proved. �

Remark 2.5. As already mentioned, it is worth remarking that if we assume
f ≥ 0, the function g in example a) is indeed a particular example of our first
model situation. Moreover, the growth condition (2.4) for g holds with q = 0,
hence we get q = 2 and convergence (2.11) holds in H1

0 (Ω). Since g is Lipschitz
continuous, one can prove (see J.I. Dı́az [18]) that the solution of the homogenized
problem is also strictly positive on Ω. This will not be the case when g is not
necessarily regular.

2.3. Second model situation: The case of a monotone graph. In this sub-
section we shall treat the case in which the function g appearing in (1.1) is a
single-valued maximal monotone graph in R× R, satisfying the condition g(0) = 0.
Also, if we denote by D(g) the domain of g, i.e. D(g) = {ξ ∈ R : g(ξ) 6= ∅}, then
we suppose that D(g) = R. Moreover, we assume that g is continuous and there
exist C ≥ 0 and an exponent q, with 0 ≤ q < n/(n− 2), such that

|g(v)| ≤ C(1 + |v|q). (2.33)

Note that the second important practical example (b) mentioned in the Intro-
duction is a particular example of such a single-valued maximal monotone graph.

We know that in this case there exists a lower semicontinuous convex function
G from R to ]−∞,+∞], G proper, i.e. G 6≡ +∞ such that g is the subdifferential
of G, g = ∂G (G is an indefinite ”integral“ of g). Let G(v) =

∫ v

0
g(s)ds.
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Define the convex set

Kε =
{
v ∈ V ε : G(v)|Sε ∈ L1(Sε)

}
. (2.34)

For a given function f ∈ L2(Ω) the weak solution of the problem (2.3) is also the
unique solution of the variational inequality:

Find uε ∈ Kε such that∫
Ωε

DuεD(vε − uε)dx−
∫

Ωε

f(vε − uε)dx+ a〈µε, G(vε)−G(uε)〉 ≥ 0 (2.35)

for all vε ∈ Kε.
First, let us notice that there exists a unique weak solution uε ∈ V ε ∩ H2(Ωε) of
the above variational inequality (see [8]). Also, notice that it is well-known that
the solution uε of the variational inequality (2.35) is also the unique solution of the
minimization problem:

uε ∈ Kε,

Jε(uε) = inf
v∈Kε

Jε(v),

where

Jε(v) =
1
2

∫
Ωε

|Dv|2dx+ a〈µε, G(v)〉 −
∫

Ωε

fvdx.

Introduce the following functional defined on H1
0 (Ω):

J0(v) =
1
2

∫
Ω

QDvDvdx+ a
|∂T |
|Y ∗|

∫
Ω

G(v)dx−
∫

Ω

fvdx.

The main result of this subsection is as follows.

Theorem 2.6. One can construct an extension P εuε of the solution uε of the
variational inequality (2.35) such that P εuε ⇀ u weakly in H1

0 (Ω), where u is the
unique solution of the minimization problem: Find u ∈ H1

0 (Ω) such that

J0(u) = inf
v∈H1

0 (Ω)
J0(v). (2.36)

Moreover, G(u) ∈ L1(Ω). Here, Q = ((qij)) is the classical homogenized matrix,
whose entries were defined by (2.7)-(2.8).

Note that u also satisfies

−
n∑

i,j=1

qij
∂2u

∂xi∂xj
+ a

|∂T |
|Y ∗|

g(u) = f in Ω,

u = 0 on ∂Ω.

Proof of Theorem 2.6. Let uε be the solution of the variational inequality (2.35).
We shall use the same extension P εuε as in the previous case (given by Lemma
2.1). It is not difficult to see that P εuε is bounded in H1

0 (Ω). So by extracting a
subsequence, one has

P εuε ⇀ u weakly in H1
0 (Ω). (2.37)

Let ϕ ∈ D(Ω). By classical regularity results χi ∈ L∞. Using the boundedness of
χi and ϕ, there exists M ≥ 0 such that

‖ ∂ϕ
∂xi

‖L∞‖χi‖L∞ < M.
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Let

vε = ϕ+
∑

i

ε
∂ϕ

∂xi
(x)χi(

x

ε
). (2.38)

Then vε ∈ Kε which will allow us to take it as a test function in (2.35). Moreover,
vε → ϕ strongly in L2(Ω). Let us compute Dvε:

Dvε = Dϕ+
∑

i

∂ϕ

∂xi
(x)Dχi(

x

ε
) + ε

∑
i

D
∂ϕ

∂xi
(x)χi(

x

ε
).

So

Dvε =
∑

i

∂ϕ

∂xi
(x)(ei +Dχi(

x

ε
)) + ε

∑
i

D
∂ϕ

∂xi
(x)χi(

x

ε
),

where ei, 1 ≤ i ≤ n, are the elements of the canonical basis in Rn.
Using vε as a test function in (2.35), we can write∫

Ωε

DuεDvεdx ≥
∫

Ωε

f(vε − uε)dx+
∫

Ωε

DuεDuεdx− a〈µε, G(vε)−G(uε)〉.

In fact, we have∫
Ω

DP εuε(̃Dvε)dx ≥
∫

Ωε

f(vε − uε)dx+
∫

Ωε

DuεDuεdx− a〈µε, G(vε)−G(uε)〉.

(2.39)
Denote

ρQej =
1
|Y ∗|

∫
Y ∗

(Dχj + ej)dy, (2.40)

where ρ = |Y ∗|/|Y |. Neglecting the term ε
∑

iD
∂ϕ
∂xi

(x)χi(x
ε ) which actually tends

strongly to zero, we can pass immediately to the limit in the left-hand side of (2.39).
Hence ∫

Ω

DP εuεD̃vεdx→
∫

Ω

ρQDuDϕdx. (2.41)

It is not difficult to pass to the limit in the first term of the right-hand side of
(2.39). Indeed, since vε → ϕ strongly in L2(Ω), we get∫

Ωε

f(vε − uε)dx =
∫

Ω

fχΩε (vε − P εuε)dx→
∫

Ω

fρ(ϕ− u)dx. (2.42)

For the third term of the right-hand side of (2.39), assuming the growth condition
(2.33) for the single-valued maximal monotone graph g and reasoning exactly like
in the previous subsection, we get

G(P εuε) ⇀ G(u) weakly in W 1,q
0 (Ω)

and then

〈µε, G(P εuε)〉 → |∂T |
|Y |

∫
Ω

G(u)dx.

In a similar manner, we obtain

〈µε, G(vε)〉 → |∂T |
|Y |

∫
Ω

G(ϕ)dx

and hence we get

a〈µε, G(vε)−G(P εuε)〉 → a
|∂T |
|Y |

∫
Ω

(G(ϕ)−G(u))dx. (2.43)
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So, it remains to pass to the limit only in the second term of the right-hand side of
(2.39). For doing this, we can write down the subdifferential inequality∫

Ωε

DuεDuεdx ≥
∫

Ωε

DwεDwεdx+ 2
∫

Ωε

Dwε(Duε −Dwε)dx, (2.44)

for any wε ∈ H1
0 (Ω). Reasoning as before and choosing

wε = ϕ+
∑

i

ε
∂ϕ

∂xi
(x)χi(

x

ε
),

where ϕ enjoys similar properties as the corresponding ϕ, the right-hand side of
the inequality (2.44) passes to the limit and one has

lim inf
ε→0

∫
Ωε

DuεDuεdx ≥
∫

Ω

ρQDϕDϕdx+ 2
∫

Ω

ρQDϕ(Du−Dϕ)dx,

for any ϕ ∈ D(Ω). But since u ∈ H1
0 (Ω), taking ϕ → u strongly in H1

0 (Ω), we
conclude

lim inf
ε→0

∫
Ωε

DuεDuεdx ≥
∫

Ω

ρQDuDudx. (2.45)

Putting together (2.41)-(2.43) and (2.45), we get∫
Ω

ρQDuDϕdx ≥
∫

Ω

fρ(ϕ− u)dx+
∫

Ω

ρQDuDudx− a
|∂T |
|Y |

∫
Ω

(G(ϕ)−G(u))dx,

for any ϕ ∈ D(Ω) and hence by density for any v ∈ H1
0 (Ω).

So, finally, we obtain∫
Ω

QDuD(v − u)dx ≥
∫

Ω

f(v − u)dx− a
|∂T |
|Y ∗|

∫
Ω

(G(ϕ)−G(u))dx,

which gives exactly the limit problem (2.36). This completes the proof of Theorem
2.6. �

Remark 2.7. The choice of the test function (2.38) gives, in fact, a first-corrector
term for the weak convergence of P εuε to u.

Remark 2.8. We can treat in a similar manner the case of a multi-valued max-
imal monotone graph, which includes various semilinear classical boundary-value
problems, such as Dirichlet or Neumann problems, Robin boundary conditions,
Signorini’s unilateral conditions, climatization problems (see, for instance, [8], [9],
[13] and [14]). We could also include here the case of the so-called zeroth-order
reactions, in which, formally, g is given by the discontinuous function g(v) = 0,
if v ≤ 0 and g(v) = 1 if v > 0 (see, for instance, [3]). The correct mathematical
treatment needs the problem to be reformulated by using the maximal monotone
graph of R2 associated to the Heaviside function β(v) = {0} if v < 0, β(0) = [0, 1]
and β(v) = 1 if v > 0. The existence and uniqueness of a solution can be found,
for instance, in Brézis [8] and Dı́az [16]. The solution is obtained by passing to
the limit in a sequence of problems associated to a monotone sequence of Lipschitz
functions approximating β and the results of this section remain true. Notice that
now the homogenized problem becomes

−
n∑

i,j=1

qij
∂2u

∂xi∂xj
+ a

|∂T |
|Y ∗|

β(u) 3 f in Ω,

u = 0 on ∂Ω.
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A curious fact is that this type of problems arises in very different contexts (see,
for instance, [27]).

Remark 2.9. Under the assumptions of this section, g does not need to be Lipschitz
continuous (as, for instance, in the second example or in the multivalued example
of the previous remark) and so the solution of the homogenized problem may give
rise to a “dead zone” (where u(x) = 0) when a suitable balance between the “size”
of some norm of f and the “size” of the greatest ball included in Ω holds (see Dı́az
[18]).

Remark 2.10. The case of a spherically symmetric isolated particle under singular
reaction kinetics was considered by Vega and Liñán [28].

3. Chemical reactive flow through grains

As already mentioned in Introduction, the chemical situation behind the second
nonlinear problem we will treat here involves a chemical reactor with the grains
constituted by solid catalyst particles. We assume that now the chemical reactions
take place inside the grains, instead just on their boundaries. In fact, the prob-
lem corresponds to a transmission problem between the solutions of two separated
equations. A simplified version of this kind of models can be formulated as follows:

−Df∆uε = f in Ωε,

−Dp∆vε + ag(vε) = 0, in Πε,

−Df
∂uε

∂ν
= Dp

∂vε

∂ν
on Sε,

uε = vε on Sε,

uε = 0 on ∂Ω.

(3.1)

Here, Πε = Ω\Ωε, ν is the exterior unit normal to Ωε, a, Df , Dp > 0, f ∈ L2(Ω) and
g is a continuous function, monotonously non-decreasing and such that g(v) = 0 if
and only if v = 0. Moreover, we shall suppose that there exist a positive constant
C and an exponent q, with 0 ≤ q < n/(n− 2), such that

|g(v)| ≤ C(1 + |v|q+1).

Note that examples a) and b) are both covered by this class of functions g′s and,
of course, both are still our main practical examples.

Let us consider again the functional space

V ε =
{
v ∈ H1(Ωε) : v = 0on ∂Ω

}
and introduce the space

Hε =
{
wε = (uε, vε) : uε ∈ V ε, vε ∈ H1(Πε), uε = vεon Sε

}
,

with the norm
‖wε‖2Hε = ‖∇uε‖2L2(Ωε) + ‖∇vε‖2L2(Πε).

The variational formulation of problem (3.1) is as follows:
Find wε ∈ Hε such that

Df

∫
Ωε

∇uε · ∇ϕdx+Dp

∫
Πε

∇vε · ∇ψdx+ a

∫
Πε

g(vε)ψdx =
∫

Ωε

fϕdx (3.2)

for all (ϕ,ψ) ∈ Kε
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Under the above structural hypotheses and the conditions fulfilled by Hε, it is well-
known by classical existence and uniqueness results (see [8] and [22]) that (3.2) is
a well-posed problem.

Let us note that we can write the above microscopic model in the equivalent
weak form:

Df

∫
Ωε

∇uε · ∇ϕdx+Dp

∫
Πε

∇vε · ∇ϕdx+ a

∫
Πε

g(vε)ϕdx

=
∫

Ωε

fϕdx ∀ϕ ∈ H1(Ω), ϕ = 0 on ∂Ω,

Dp

∫
Πε

∇vε · ∇ψdx+ a

∫
Πε

g(vε)ψdx = 0 ∀ψ ∈ H1
0 (Πε),

uε = vε on Sε.

(3.3)

Also, note that if we let

θε(x) =

{
uε(x) x ∈ Ωε,

vε(x) x ∈ Πε,

then (3.3) is a weak form of

−D∆θε = F in Ω,

θε = 0 on ∂Ω,

where

D = χΩεDf + (1− χΩε)Dp,

F = χ
Ωε
f − (1− χ

Ωε
)ag.

By classical existence results there is a unique solution θε ∈ H1
0 (Ω) and, by restric-

tion, we obtain uε and vε as required.
Let us introduce the matrix

A =

{
DfId in Y \T
DpId in T.

The main result of this section is as follows:

Theorem 3.1. One can construct an extension P εuε of the solution uε of the
variational problem (3.2) such that P εuε ⇀ u weakly in H1

0 (Ω), where u is the
unique solution of

−
n∑

i,j=1

a0
ij

∂2u

∂xi∂xj
+ a

|T |
|Y ∗|

g(u) = f in Ω,

u = 0 on ∂Ω.

(3.4)

Here, A0 = ((a0
ij)) is the homogenized matrix, whose entries are

a0
ij =

1
|Y |

∫
Y

(
aij + aik

∂χj

∂yk

)
dy, (3.5)

in terms of the functions χi, i = 1, . . . , n, solutions of the so-called cell problems
−div(AD(yj + χj)) = 0 in Y,

χj is Y -periodic.
(3.6)

The constant matrix A0 is symmetric and positive-definite.
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3.1. A priori estimates. Apart from the results given by Lemma 2.1 and Lemma
2.2, we recall the following well-known result (see, for instance, [20] and [23]).

Lemma 3.2. There exists a positive constant C, independent of ε, such that for
all v ∈ V ε,

‖v‖2L2(Sε) ≤ C(ε−1‖v‖2L2(Ωε) + ε‖∇v‖2L2(Ωε)) . (3.7)

Also, in the same spirit of [11, lemma 6.1], we can prove immediately the following
result.

Lemma 3.3. There exists a positive constant C, independent of ε, such that for
every v ∈ H1(Πε),

‖v‖2L2(Πε) ≤ C(ε‖v‖2L2(Sε) + ε2‖∇v‖2L2(Πε)) . (3.8)

To describe the effective behavior of uε and vε, as ε→ 0, we need to prove some
a priori estimates for them.

Proposition 3.4. Let uε and vε be the solutions of the problem (3.1). There exists
a positive constant C, independent of ε, such that

‖P εuε‖H1
0 (Ω) ≤ C, (3.9)

‖ṽε‖L2(Ω) ≤ C, (3.10)

‖∇wε‖L2(Ωε)×L2(Πε) ≤ C, (3.11)

‖P εuε − vε‖L2(Πε) ≤ Cε. (3.12)

Proof. Let us take (uε, vε) as a test function in (3.2). Using the properties of f and
g, Hölder and Poincaré’s inequalities, the first three estimates come immediately.
In order to get the fourth one, we shall make use of Lemma 3.3:

‖P εuε − vε‖2L2(Πε) ≤ C
(
ε‖uε − vε‖2L2(Sε) + ε2‖∇(P εuε − vε)‖2L2(Πε)

)
≤ Cε2

(
‖∇P εuε‖L2(Ω) + ‖∇vε‖L2(Πε)

)2

≤ Cε2
(
‖∇uε‖L2(Ωε) + ‖∇vε‖L2(Πε)

)2 ≤ Cε2,

which completes the proof. �

Corollary 3.5. If uε and vε are the solutions of (3.1), then, passing to a subse-
quence, still denoted by ε, there exist u ∈ H1

0 (Ω) and v ∈ L2(Ω) such that

P εuε ⇀ u weakly in H1
0 (Ω), (3.13)

ṽε ⇀ v weakly in L2(Ω) (3.14)

and

v =
|T |
|Y |

u. (3.15)

Proof. The convergence results (3.13)-(3.14) are direct consequences of the esti-
mates (3.9)-(3.10). To prove (3.15), let ϕ ∈ L2(Ω). We have∫

Ω

ṽεϕdx =
∫

Πε

vεϕdx =
∫

Πε

(vε − P εuε)ϕdx+
∫

Πε

P εuεϕdx ∀ϕ ∈ L2(Ω).

From Proposition 3.4 we get

|
∫

Πε

(vε − P εuε)ϕdx| ≤ ‖vε − P εuε‖L2(Πε)‖ϕ‖L2(Ω) → 0.
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Hence, using (3.13) and the fact that χΠε ⇀ |T |/|Y | weakly in L2(Ω), we have

lim
ε→0

∫
Ω

ṽεϕdx = lim
ε→0

∫
Ω

χΠεP εuεϕdx =
|T |
|Y |

∫
Ω

uϕdx,

which gives exactly (3.15). �

Finally, let us note that there exists a positive constant C, independent of ε,
such that ∫

Ω

|θε|2dx ≤ C and
∫

Ω

|∇θε|2dx ≤ C .

Hence, there exists θ ∈ H1
0 (Ω) such that θε ⇀ θ weakly in H1

0 (Ω) and it is not
difficult to see that θ = u. This proves, in fact, the following statement.

Corollary 3.6. Let θε be defined by

θε(x) =

{
uε(x) x ∈ Ωε,

vε(x) x ∈ Πε.

Then there exists θ ∈ H1
0 (Ω) such that θε ⇀ θ weakly in H1

0 (Ω), where θ is the
unique solution of

−
n∑

i,j=1

a0
ij

∂2θ

∂xi∂xj
+ a

|T |
|Y ∗|

g(θ) = f in Ω,

θ = 0 on ∂Ω,

and A0 is given by (3.5)-(3.6), i.e. θ = u, due to the well-posedness of problem
(3.4).

3.2. Proof of Theorem 3.1. Set

ξε = (ξε
1, ξ

ε
2) = (Df∇uε, Dp∇vε).

From (3.11) it follows that there exists a positive constant C such that

‖ξε
1‖L2(Ωε) ≤ C and ‖ξε

2‖L2(Πε) ≤ C .

If we denote by ∼ the zero extension to the whole of Ω of functions defined on
Ωε or Πε, we see that ξ̃ε

1 and ξ̃ε
2 are bounded in (L2(Ω))n and hence there exist

ξ1, ξ2 ∈ (L2(Ω))n such that

ξ̃ε
i ⇀ ξi weakly in (L2(Ω))n, i = 1, 2. (3.16)

Let us see now which equation is satisfied by ξ1 and ξ2. Let φ ∈ D(Ω). Taking
(φ|Ωε , φ|Πε) as a test function in (3.2) we get∫

Ω

ξ̃ε
1 · ∇φdx+

∫
Ω

ξ̃ε
2 · ∇φdx+ a

∫
Sε

g(vε)φdσ =
∫

Ω

χΩεfφdx. (3.17)

Now, we can pass to the limit, with ε→ 0, in all the terms of (3.17). For the first
two, we have

lim
ε→0

∫
Ω

ξ̃ε
1 · ∇φdx =

∫
Ω

ξ1 · ∇φdx (3.18)

and

lim
ε→0

∫
Ω

ξ̃ε
2 · ∇φdx =

∫
Ω

ξ2 · ∇φdx. (3.19)
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In order to pass to the limit in the third term, let us notice that, exactly like in
Section 2.2, using Theorem 2.4, we can easily prove that for any φ ∈ D(Ω) and for
any zε ⇀ z weakly in H1

0 (Ω), we get

φg(zε) ⇀ φg(z) strongly in Lq(Ω).

In particular, we have

φg(θε) ⇀ φg(θ) strongly in Lq(Ω). (3.20)

Now, let us write a
∫
Πε g(vε)φdσ in the following form

a

∫
Πε

g(vε)φdσ = a

∫
Πε

g(θε)φdσ = a

∫
Ω

g(θε)φdσ − a

∫
Ωε

g(θε)φdσ. (3.21)

Obviously

lim
ε→0

a

∫
Ω

g(θε)φdσ = a

∫
Ω

g(θ)φdx = a

∫
Ω

g(u)φdx. (3.22)

On the other hand, we know that χΩε ⇀ |Y ∗|/|Y | weakly in any Lσ(Ω) with σ ≥ 1.
In particular, defining q∗ such that

1
q

+
1
q∗

= 1,

we see that q∗ ≥ 1 and, consequently,

χΩε ⇀
|Y ∗|
|Y |

weakly in Lq∗(Ω). (3.23)

Hence, from (3.20)-(3.23), we obtain

lim
ε→0

a

∫
Πε

g(vε)φdσ = a
|T |
|Y |

∫
Ω

g(u)φdx. (3.24)

It is not difficult to pass to the limit in the right-hand side of (3.17). Since

χΩεf ⇀
|Y ∗|
|Y |

f weakly in L2(Ω),

we obtain

lim
ε→0

∫
Ω

χΩεfφdx =
|Y ∗|
|Y |

∫
Ω

fφdx. (3.25)

Putting together (3.18), (3.19), (3.24) and (3.25), we have∫
Ω

ξ1 · ∇φdx+
∫

Ω

ξ2 · ∇φdx+ a
|T |
|Y |

∫
Ω

g(u)φdx =
|Y ∗|
|Y |

∫
Ω

fφdx ∀φ ∈ D(Ω).

Hence

−div(ξ1 + ξ2) + a
|T |
|Y |

g(u) =
|Y ∗|
|Y |

f in Ω. (3.26)

It remains now to identify ξ1 + ξ2. Introducing the auxiliary periodic problem
(3.6) and following the same classical procedure like in the last step of the proof of
Theorem 2.3, one easily gets

ξ1 + ξ2 = A0∇u. (3.27)

Since u ∈ H1
0 (Ω) (i.e. u = 0 on ∂Ω) and u is uniquely determined, the whole

sequence P εuε converges to u and Theorem 3.1 is proved.
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Remark 3.7. In (3.1) we took the ratio of our diffusion coefficients to be of order
one just for a better comparison between the two situations we intended to deal
with: the case in which the chemical reactions take place on the boundary of the
grains and the case in which the chemical reactions occur inside them. However,
a much more interesting problem would arise if we consider different orders for
the diffusion in the ”obstacles” and in the “pores”. More precisely, if one takes
the ratio of the diffusion coefficients to be of order ε2, then the limit model will
be the so-called double-porosity model. This scaling preserves the physics of the
flow inside the grains, as ε → 0. The less permeable part of our medium (the
grains) contributes in the limit as a nonlinear memory term. In fact, the effective
limit model includes two equations, one in T and another one in Ω, the last one
containing an extra-term which reflects the remaining influence of the grains (see,
for instance, [2], [5], [6], [12], [20]).

Remark 3.8. As in Section 2, g does not need to be Lipschitz continuous (as it is
the case, for instance, of the second example or the multivalued example of Remark
2.8) and so, again, the solution of the homogenized problem may give rise to a “dead
zone” (where u(x) = 0) (see Dı́az [18]). As a matter of fact, some “dead zone” may
be formed, this time, at the level of the microscopic problems, since the equation
satisfied by function vε leads to such type of behaviors when g is not Lipschitz
continuous and a suitable balance between the data and the spatial domain is
satisfied (see Dı́az [18]). It is quite surprising that the macroscopic balance on
the data and domain necessary for the formation of “macroscopic dead zone” may
take place by passing to the limit in the microscopic system independently if the
microscopic condition for the formation of the “microscopic dead zone” holds or
not.
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