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A NOTE ON A DEGENERATE ELLIPTIC EQUATION WITH
APPLICATIONS FOR LAKES AND SEAS

DIDIER BRESCH, JÉRÔME LEMOINE, & FRANCISCO GUÍLLEN-GONZALEZ

Abstract. In this paper, we give an intermediate regularity result on a de-
generate elliptic equation with a weight blowing up on the boundary. This
kind of equations is encountoured when modelling some phenomena linked to

seas or lakes. We give some examples where such regularity is useful.

1. Introduction

This paper is devoted to a degenerate elliptic equation that we can find in several
models in oceanography when we consider a domain with a depth vanishing on the
shore. A lot of mathematical studies in oceanography assume a domain with a
strictly positive depth in order to prevent the study in weighted spaces. Few papers
have been devoted to coefficients with degenerated behavior.

Regularity results in weighted Sobolev spaces on degenerate elliptic equations
have been studied for instance in [2, 3] with a vanishing weight on the boundary
that implies no boundary condition on the unknown. Here we study a degenerate
elliptic equation with a weight with a blowing up comportment on the shore. A H2

regularity in weighted spaces is proved allowing to consider general weights. We
will obtain such regularity by a careful study of the weight adapting the standard
method of translation, see [8]. For example, we use and adapt some results on
weighted Sobolev spaces that have been studied in [7].

Section 2 is devoted to the regularity result related to the degenerate elliptic
equation. Then in Section 3, we explain why this kind of equation is important in
oceanography. In the last section we describe precise examples where such regularity
is used. At first we give some examples where such regularity result is used for
existence result or error estimates that means the planetary-geostrophic equations
and the vertical geostrophic equations. Then we give an example where it is used in
a splitting projection method. We also mention that such equation is obtained from
the Great Lake equation. We remark that this degenerate elliptic equation may be
found in an other field such as in electromagnetism with the maxwell’s system, see
[18]. Similar degenerate elliptic equation may also be encountoured for a problem
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related to Saint-Venant’s equations if we want to apply Babuska-Brezzi’s Inf-Sup
Lemma in weighted spaces, see [1].

2. The degenerate elliptic equation

Let O be a two-dimensional domain. This section is devoted to a regularity result
on the following degenerate elliptic equation: Given h : O → R and g : θ → R, the
problem is to find Ψ : O → R such that

−∇x · (
1
h
∇xΨ) = gin O, Ψ = 0 on ∂O. (1)

Here, h is a function data satisfying

h ∈ W 1,∞(O), h > 0 in O, (2)

h(x) = ϕ(δ(x))in a neightbourhood of ∂O (3)

with δ(x) = dist(x,O). Moreover we assume that

ϕ is a non decreasing Lipschitz function, ϕ(0) = 0, (4)

∃ c > 0 such that: ∀s > 0,
∣∣∣ϕ′(s)
ϕ(s)

∣∣∣ ≤ c

s
(5)

and for all c1, c2 > 0, there exist α1, α2 > 0 such that

∀s, r > 0, c1 ≤
s

r
≤ c2 =⇒ α1 ≤

ϕ(s)
ϕ(r)

≤ α2. (6)

Remark Note that ϕ(s) = c sα, 0 < α < 1 and c > 0, satisfies the previous
hypothesis.

Now, we define the function space

H(O) = {Ψ ∈ L2(O) :
∇xΨ
h1/2

∈ (L2(O))2,Ψ = 0 on ∂O} (7)

endowed with the norm

‖Ψ‖H(O) = ‖∇xΨ
h1/2

‖(L2(O))2 .

where h is defined by (2)–(3). We remark that ‖ · ‖H(O) is a norm since 1
h ≥ c > 0

and Ψ = 0 on ∂O implies that there exists c > 0 such that for all Ψ ∈ H(O),

‖Ψ‖L2(O) ≤ c‖∇xΨ
h1/2

‖(L2(O))2 .

Lemma 2.1. Let H(O) be defined by (7) with h satisfying (2)–(6). Then D(O) is
dense in H(O).

The proof of this lemma is similar to the proof of [7, Theorem 11.2]. Therefore,
we omit it. The main result of this paper is the following

Theorem 2.2. Let O be a (two-dimensional) bounded domain of class C3. Let g be
such that δh1/2g ∈ L2(O) with h satisfying (2)–(6). There exists a unique solution
Ψ of (1) such that Ψ ∈ H(O) and

‖Ψ‖H(O) ≤ c‖δh1/2g‖L2(O).

Moreover, if
h1/2g ∈ L2(O) (8)



EJDE-2004/42 DEGENERATE ELLIPTIC EQUATIONS 3

then

h1/2∇x(
1
h
∇xΨ) ∈ (L2(O))4, (9)

‖h1/2∇x(
1
h
∇xΨ)‖(L2(O))4 ≤ c‖h1/2g‖L2(O) (10)

with c a constant depending only on the domain.

Proof. Weak solutions: The existence and uniqueness of weak solutions of (1)
follows from the Lax-Milgram theorem, since

‖Ψ‖2H(O) =
∫
O

gΨ ≤ ‖δh1/2g‖L2(O)‖
Ψ

δh1/2
‖L2(O)

≤ c‖δh1/2g‖L2(O)‖
∇xΨ
h1/2

‖(L2(O))2 .

In the previous estimate we have used Hardy’s inequality in weighted space which
will be proved in Lemma 2.3.
Regularity: We use the usual difference quotients (cf. Brezis [8]). The interior
regularity is well known since h ≥ c(ω) > 0 in each ω b O. To obtain the regularity
result up to the boundary, we define a local diffeomorphism T which preserves the
normal direction. More precisely we define the local diffeomorphism T : Q → V
by T (x∗, r) = (x∗, α(x∗)) + r n(x∗, α(x∗)) for all (x∗, r) ∈ Q where ∂O is locally
the graph of a C3 function α (see Figure 1). This property, combined with the
hypothesis (3) of h, will be strongly used in the sequel. We also define a cut-off
function θ such that

θ ∈ C2 in V,

θ = 0 on R2\V, θ = 1 in V1,

∂θ

∂ñ
= 0 on a neightbourhood of ∂O ∩ V,

where V1 b V and the extension ñ of the normal n is defined for all (x, y) ∈ V by

ñ(x, y) = n(T (x∗, 0))

where (x, y) = T (x∗, r), (x∗, r) ∈ Q.
remark Due to the C3 regularity of ∂O, T is a C2 diffeormorphism from Q onto a
neightbourhood of (x0, y0) denoted by V .

Multiplying (1) by θ, and denoting ξ = θΨ, it follows that ξ is the (unique)
solution in H(V ∩ O) of

−∇x · (
1
h
∇xξ) = f in V ∩ O,

ξ|∂(V ∩O) = 0,
(11)

where f = θg + ∇xh·∇xθ
h2 Ψ− 1

h∆xθΨ− 2
h∇xθ · ∇xΨ (since h1/2f ∈ L2(V ∩O)). For

this, it suffices to check that
∇xh · ∇xθ

h3/2
Ψ ∈ L2(V ∩ O).

Indeed, since ∂θ/∂ñ = 0 on a neightbourhood of ∂O ∩ V , then

∇xh · ∇xθ =
∂h

∂τ̃

∂θ

∂τ̃
= 0
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Figure 1. The local diffeomorphism T

on a neightbourhood of ∂O ∩ V . We recall that h doesn’t depend on τ̃ (where τ̃ is
defined as ñ) using that h is given by (3) and using the definition of T .

Now we use the difference quotient technic on (11) to deduce the weight regularity
announced in the theorem. Let ϕ : O → Rn (n ≥ 1) be a function. We denote, for
all (x∗, r) ∈ Q+,

ϕ̃(x∗, r) = ϕ(T (x∗, r)),

akl =
2∑

j=1

∂jT
−1
k (T (x∗, r))∂jT

−1
l (T (x∗, r))| Jac T (x∗, r)|, k, l = 1, 2,

k̂(x∗, r) = f̃(x∗, r)| Jac T (x∗, r)|.

Then we get that ξ̃ is the unique solution in H̃(Q+) of:∫
Q+

∑
k,l

akl

h̃
∂k ξ̃ ∂lϕ̃dx∗dr =

∫
Q+

k̂ϕ̃dx∗dr (12)

for all ϕ̃ ∈ H̃(Q+) where

H̃(Q+) = {ϕ̃ ∈ L2(Q+) : h̃−1/2∇xϕ̃ ∈ (L2(Q+))2, ϕ̃ = 0 on ∂Q+}.

We choose ϕ̃ = D−τ (Dτ ξ̃) with τ = |τ |e1, Dτ ξ̃ =
(
ξ̃(x+τ)− ξ̃(x)

)
/|τ | and |τ | small

enough in order to obtain ϕ̃ ∈ H(Q+). Using

‖ 1

h̃1/2
D−τ (Dτ ξ̃)‖L2(Q+) ≤ c‖ 1

h̃1/2
∇x(Dτ ξ̃)‖L2(Q+)

and
‖h̃1/2k̂‖L2(Q+) ≤ c‖h1/2g‖L2(O)
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we get

‖k̂D−τ (Dτ ξ̃)‖L1(Q+) ≤ c‖h1/2g‖L2(O)‖
1

h̃1/2
∇x(Dτ ξ̃)‖L2(Q+). (13)

Moreover, denoting

I =
∑
k,l

∫
Q+

Dτ (
1

h̃
akl∂k ξ̃)∂l(Dτ ξ̃)

since Dτ (akl/h̃) = Dτ (akl)/h̃, (recall that h̃ does not depend on τ) and T ∈ C2, we
have

I ≥ c‖ 1

h̃1/2
∇x(Dτ ξ̃)‖2(L2(Q+))2 − c‖ 1

h̃1/2
∇xξ̃‖L2‖ 1

h̃1/2
∇x(Dτ ξ̃)‖(L2(Q+))2

≥ c‖ 1

h̃1/2
∇x(Dτ ξ̃)‖2(L2(Q+))2 − c‖h1/2g‖L2(O)‖

1

h̃1/2
∇x(Dτ ξ̃)‖(L2(Q+))2

(14)

Using the variational formulation satisfied by ξ̃, (13) and (14) we get

‖ 1

h̃1/2
∇x(Dτ ξ̃)‖(L2(Q+))2 ≤ c‖h1/2g‖L2(O). (15)

Thus, by classical arguments,

∂2
1 ξ̃

h̃1/2
∈ L2(Q+) and

∂2∂1ξ̃

h̃1/2
∈ L2(Q+), (16)

and their respective norms are bounded by c‖h1/2g‖L2(O). In particular,

h̃1/2∂1(h̃−1∂1ξ̃) ∈ L2(Q+), h̃1/2∂1(h̃−1∂2ξ̃) ∈ L2(Q+) (17)

and their respective norms depend continuously on h1/2g in L2(O).
We remark that contrary to the homogeneous case, that means the standard

Laplacian operator, we have not yet the regularity h̃1/2∂2(h̃−1∂1ξ̃) ∈ L2(Q+). We
will obtain such regularity using the hypothesis (5) on h. Indeed, in the distribution
sense,

h̃1/2∂2(
1

h̃
∂1ξ̃) =

−∂2h̃

h̃3/2
∂1ξ̃ +

1

h̃1/2
∂2∂1ξ̃. (18)

Since ∂1ξ̃ = 0 on ∂Q+ then (16) yields ∂1ξ̃ ∈ H(Q+). Using the Hardy’s inequality
(21) and Hypothesis (5), we get∫

Q+

∣∣∣ ∂2h̃

h̃3/2
∂1ξ̃

∣∣∣2 ≤ c

∫
Q+

|∂1ξ̃|2

δ̃2h̃
≤ c

∫
Q+

|∂2∂1ξ̃|2

h̃
.

Thus, using the regularity (16), we get from (18)

h̃1/2∂2(
1

h̃
∂1ξ̃) ∈ L2(Q+), (19)

‖h̃1/2∂2(∂1ξ̃/h̃)‖(L2(Q+))2 ≤ c‖h1/2g‖L2(O).

Now we use the variational formulation (12) satisfied by ξ̃ to obtain the regularity
on h̃1/2∂2(∂2ξ̃/h̃). We have∣∣∫

Q+

a22

h̃
∂2ξ̃∂2Φ

∣∣∣ ≤ c‖h1/2g‖L2(O)‖
1

h̃1/2
Φ‖L2(Q+)
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Figure 2. The local coordinates

for all Φ ∈ D(Q+). Using now the weak regularity of ξ̃ and a22 ≥ c > 0 in Q+, this
gives

h̃1/2∂2(
1

h̃
∂2ξ̃) ∈ L2(Q+). (20)

Therefore, (17), (19) and (20) give the regularity (9). �

Lemma 2.3 (Hardy’s inequality in weighted spaces). Let h satisfy (2)–(6) and let
Ψ ∈ H(O). Then

‖ Ψ
δh1/2

‖L2(O) ≤ c‖∇xΨ
h1/2

‖L2(O)2 (21)

where c depends only on O.

Proof. The proof of this lemma is similar to the proof of the classical Hardy’s
inequality (see for instance [14]) introducing the corresponding weight. By density,
it suffices to consider Ψ ∈ D(O). The interior estimate is obvious. In the local
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coordinates (see Figure 2), we write∫ z

α(x)

|Ψ(x, y)|2dy

|y − α(x)|2ϕ(y − α(x))

≤ 2
∫ z

α(x)

(∫ +∞

y

dt

|t− α(x)|2ϕ(t− α(x))

)
Ψ(x, y)∂yΨ(x, y)dy

≤ 2
∫ z

α(x)

|Ψ(x, y)||∂yΨ(x, y)|
|y − α(x)|ϕ(y − α(x))

dy

≤ 2
(∫ z

α(x)

|Ψ(x, y)|2

|y − α(x)|2ϕ(y − α(x))
dy

)1/2(∫ z

α(x)

|∂yΨ(x, y)|2

ϕ(y − α(x))
dy

)1/2

.

Therefore, ∫ z

α(x)

|Ψ(x, y)|2

|y − α(x)|2ϕ(y − α(x))
dy ≤ 4

∫ z

α(x)

|∂yΨ(x, y)|2

ϕ(y − α(x))
dy.

Thus, integrating with respect to x, we get∫
V ∩O

|Ψ(x, z)|2

|z − α(x)|2ϕ(z − α(x))
dz dx ≤ 4

∫
V ∩O

|∂yΨ|2

ϕ(ξ − α(x))
dξ dx.

Since α is smooth enough, there exists c > 1 such that, for all (x, z) ∈ V ∩ O,

δ(x, z) ≤ |z − α(x)| ≤ cδ(x, z).

Therefore, using (5)–(6), we get∫
V ∩O

|Ψ|2

δ2ϕ(δ)
≤ c

∫
V ∩O

|∂yΨ|2

ϕ(δ)

and the result follows. �

3. Importance of this degenerate equation

Let us introduce the three-dimensional oceanographic domain

Ω = {(x, z) ∈ R3 : x = (x, y) ∈ O,−h(x) < z < 0}

with O ⊂ R2 the surface domain and h : O → R with h > 0 in O, the bottom
function. Moreover, Γs = O × {0} is the surface boundary and Γb = ∂Ω \ Γs the
bottom.

We denote ∇ = (∇x, ∂z) the three dimensional gradient vector (with ∇x =
(∂x, ∂y) the vectorial horizontal part) and ∆ is the Laplace operator. We explain,
in this section, why such degenerate equation naturally appears in different mod-
els issued from oceanography when hydrostatic pressure is assumed. In all these
equations, the field u = (v, w) and the pressure p satisfy the equation

Lv +∇x p = f, ∂zp = 0 in Ω,

∂zw = −div
x

v in Ω, (22)

and at least one of the the boundary conditions

(v, w) · n∂Ω = 0, v · n∂O = 0 (23)

where we use the notation v =
∫ 0

−h
v dz. We note that L is a certain operator

(algebraic or differential), see (30), (32) or (37) for some examples.
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Remark Of course Boundary conditions (23) are not necessary or sufficient to solve
System (22). We have to choose other boundary conditions following the choice of
the operator L.

Integrating the divergence free equation with respect to the vertical coordinate
and using the boundary condition (23), part 1, we obtain

∇x · v = 0 in O. (24)

If the domain is simply connected then, using (24), there exists a stream function
Ψ such that

v = ∇⊥
x Ψ in O, (25)

where ∇⊥
x is the 2D curl operator, i.e., (−∂y, ∂x). The boundary condition (23),

part 2, gives
Ψ = 0 on∂O. (26)

We assume that v maybe formally written as

v = A∇xp + g1 in Ω. (27)

where A is a matrix function (see the examples below). The purpose is to obtain
some regularity result on v. Integrating (27) with respect to z (taking into account
that ∂zp = 0 in Ω), we obtain

v = A∇xp + g1,

where A =
∫ 0

−h
A and g1 =

∫ 0

−h
g1 =. Therefore, using (25), we obtain

∇⊥
x Ψ = A∇xp + g1

and thus, assuming A invertible

∇xp = B(∇⊥
x Ψ− g1) (28)

where B = (A)−1. Taking the horizontal curl operator of (28), using that ∇⊥
x ·∇x =

0, we get
∇⊥

x · (B(∇⊥
x Ψ− g1)) = 0 in O, Ψ = 0 on ∂= O. (29)

On the other-hand, (27) and (28) yield

∇xv = ∇x

(
A

(
B(∇⊥

x Ψ− g1)
))

+∇xg1.

Thus the regularity of ∇xv depends on the regularity of Ψ and g1. Theorem 2.2
may be extended easily to more general degenerate elliptic equations including for
instance (29).

Now assume that A = Id then we get B = 1/h Id and therefore A
(
B(∇⊥

x Ψ)
)

=
∇⊥Ψ/h. Then the regularity of ∇xv in (L2(Ω))4 is given by the regularity of Ψ

h1/2∇x(h−1∇xΨ) ∈ (L2(O))4

deduced from Theorem 2.2.
Let us give now some applications of such regularity results on the stream func-

tion.

4. Some applications for lakes and seas

We consider again, in the three first examples, the three-dimensional domain

Ω = {(x, z) ∈ R3 : x = (x, y) ∈ O, −h(x) < z < 0}.
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4.1. Planetary geostrophic equation. Let us consider the hyperviscous parame-
trization for the planetary equations given by

εHv + fv⊥ +∇xp = 0, ∂zp = +T = 0,

div
x

v + ∂zw = 0, (v, w) · n∂Ω = 0, v · n∂O = 0,

∂tT −Kh∆xT −Kv∂2
zT + v · ∇xT + w∂zT + γDT = Q,

(30)

with f = (1 + βy) where β is a constant, with suitable bounda= ry and initial
conditions and D a suitable fourth order differential operator. This system has
been studied in [6] using some relations between T and u = (v, w) jointly with
the regularity result proved in Theorem 2.2. Here, we only recall how to get the
estimate on divxv which is necessary to obtain the existence result for (30) (the
regularity result proved in Theorem 2.2 is used there).

Let (v, p, T ) be an approximate sequence of (30) built for instance using a
Galerkin method. Then we get the following estimate.

Theorem 4.1. Let O be a bounded simply connected domain of class C3 and h
satisfied the hypothesis of Theorem 2. Then

‖divxv‖L2(Ω) ≤ c
(
‖D1/2T‖L2(Ω) + ‖∇xT‖(L2(Ω))2

)
.

where c depends only on Ω.

This estimate allows to pass to the limit on the approximate solutions and to
get an existence result of weak solutions for (30).

Proof. The hydrostatic equation ∂zp + T = 0 reads p = ps +
∫ 0

z
T with ps = ps(x).

Then,

M̃v +∇xps = ∇x

∫ 0

z

T (31)

with M̃ =
(

εH −f
f εH

)
. Using the same procedure than in Section 3, we prove that

there exists Ψ such that v = ∇⊥
x Ψ. The stream function Ψ satisfies a degenerate

elliptic equations similar to (1) and therefore it is possible to prove that

h1/2∇x(
1
h
∇xΨ) ∈ (L2(O))4

using Theorem 2.2 and the weak regularity satisfied by T . This regularity result
implies the required estimate on divx v using (31) and the relation

−∇xps =
M̃

h
∇⊥

x Ψ +
1
h

∫ 0

−h

∇x(
∫ 0

z

T )

coming from the hydrostatic approximation. The suitable fourth order differential
operator is obtained using the relation between v and T . �

4.2. Vertical-geostrophic equations. We recall here the equations studied in
[5] in domains with vanishing depth. These equations may also be obtained in
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lubrication and thin film theory. We consider that the flow satisfies the vertical-
geostrophic equations

−∂2
zv + kv⊥ +∇xp = 0, ∂zp = 0,

div
x

v + ∂zw = 0,

∂zv = g, w = 0 on Γs,

(v, w) = 0 on Γb, v · n∂O = 0.

(32)

If k = 0, integrating two times with respect to z, we prove that (v, w) is given by

v =
1
2
(z2 − h2)∇xp + (z + h)g, w = −

∫ z

0

divxv. (33)

Similar formula may be obtained if k 6= 0, see for instance [5]. Using the same lines
than in Section 3, there exists Ψ such that

∇⊥
x Ψ =

h3

3
∇xp +

h2

2
g,

and therefore we get, from (33),

v =
3

2 h3
(z2 − h2)∇⊥

x Ψ + (z + h)g − 3
4h

(z2 − h2)g, w = −
∫ z

0

divxv.

Using the regularity of the stream function Ψ associated to v, that implies

h3/2∇x(
1
h3
∇xΨ) ∈ (L2(O))4.

This gives a regularity result of (v, w) in (H1(Ω))3 assuming that g is smooth
enough, h satisfying the hypothesis of Theorem 2.2 and h ∈ W 2,∞. We note that
divxv depends only on the first derivative of Ψ.

4.3. Splitting-projection methods for the hydrostatic Navier-Stokes equa-
tions. In many geophysical fluids it is natural to assume hydrostatic pressure and
the “rigid lid” hypothesis (see [15]), hence the 3D Navier-Stokes equations gives to
the hydrostatic Navier-Stokes equations, see [12, 13]. For instance, these equations
model the general circulation in lakes and oceans. For simplicity, we impose con-
stant density, cartesian coordinates and temperature and salinity effects decoupled
of the dynamic flow. This gives the hydrostatic Navier-Stokes equations:

∂tv + (u · ∇)v − ν ∆v + fv⊥ + ∇x ps = F in Ω× (0, T ),

w(t; x, z) =
∫ 0

z

div xv(t; x, s) ds, div xv = 0 in O × (0, T ),

v|Γb
= 0, ν∂zv|Γs

= gs, v|t=0 = v0 in Ω.

(34)

The unknowns of this problem are: u = (v, w) : Ω×(0, T ) → R3 the 3D velocity field
(with v = (v1, v2) the corresponding horizontal velocity field) and ps : O× (0, T ) →
R a potential function, defined only on the surface O. The term fv⊥ represents
the Coriolis forces, being f a constant (depending on the angular velocity of the
earth and the latitude), F : Ω × (0, T ) → R2 are the horizontal external forces,
gs : Γs × (0, T ) → R2 models the friction effects on the surface and v0 : Ω → R2 is
the initial velocity.
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(i) Description of the splitting projection scheme,[9, 10]. We consider a
regular partition of the time interval [0, T ] by M subintervals of length k = T/M ,
hence we have the nodes {tm = m k}m=0,...,M .
Initialization: Given v0 ' v0, to compute w0 =

∫ 0

z
divxv

0 in Ω.
Time Step m:

Sub-step 1: Given um−1 = (vm−1, wm−1), to find ṽm : Ω → R2 such that

1
k

(vm − vm−1) + (um−1 · ∇)ṽm − ν∆ṽm + f(ṽm)⊥ = fm in Ω,

ν∂z ṽm|Γs
= gm

s , ṽm|Γb
= 0.

(35)

Sub-step 2: Given ṽm, to find vm : Ω → R2 and pm
s : O → R such that

1
k

(vm − ṽm) +∇x pm
s = 0 in Ω,

div
x

vm = 0 in O, vm · n∂O = 0 on ∂O.
(36)

Sub-step 3: Given vm, to compute wm(x, z) =
∫ 0

z
divxv

m(x, s) ds.

Note that sub-step 2 is equivalent to an elliptic-Neuman prob= lem in O for pm
s

(which degenerates when h = 0 on ∂O) and the explicit relation vm = ṽm−k∇xpm
s .

Indeed, integrating with respect top z from −h to 0, we get

vm − ṽm + kh∇xpm
s = 0 in O. (37)

Hence, taking divx and multiplying by n∂O,

k div
x

(h∇xpm
s ) = div

x
ṽm in O, h∇xpm

s · n∂O = 0.

(ii) A Coriolis correction scheme. In [9], a variant of this scheme is considered,
where one has Coriolis in an explicit way in the first sub-step (changing (ṽm)⊥ by
(vm−1)⊥ in (35), but with a correction of the Coriolis terms in the second sub-step,
changing (36) by

1
k

(vm − ṽm) + f(vm − vm−1)⊥ +∇x pm
s = 0 in Ω,

∇x · vm = 0 in O, vm · n∂O = 0 on ∂O.
(38)

Stability of these schemes. It is well known in the Navier-Stokes framework (see
for instance [16], [17]), that splitting-projection schemes are stables in the H1-norm
for both velocities ṽm and vm. In order to obtain stability in H1(Ω) for vm in the
hydrotatic Navier-Stokes equations (that is fundamental to prove the convergence
of the scheme) it is necessary to get the H2(Ω) stability for the pressure pm

s . Now,
in the Primitive Equations framework, taking into account that pm

s does not depend
on z, this H2(Ω) regularity is equivale= nt to a weight H2(O) regularity depending
on the bathymetry h. This H2 weighted regularity can be deduced from Theorem
2.2, see [9] following the steps described in Section 3.

4.4. Great-Lake equations. This example is not an illustration of Section 3 but,
as we will see, we obtain the same degenerate equation on the stream function. Let
us give here an equation studied in [11] in a domain with a depth with sidewalls.
This system will be studied in [4] with a depth vanishing on the shore.
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We assume that the mean flow (u, p) satisfies in a simply connected two-dimen-
sional space domain O, the following system

∂tu + u · ∇xu +∇xp = 0 in O,

∇x · (hu) = 0 in O,

hu · n = 0 on ∂O,

u(0) = u0.

Denoting ω = curlx u/h, and using the equation ∇x · (hu) = 0, we can easily prove
that the system is equivalent to

∂tω + u · ∇xω = 0, u = ∇⊥
x Ψ/h in O,

∇x · (
1
h
∇xΨ) = hω in O, Ψ = 0 on ∂O,

u(0) = u0.

(39)

We obtain again the degenerate equation on Ψ that we have studied in Section 2.
Now, the ”H2 regularity” obtained in Section 2 is not enough to follow the study of
Youdovitch made on the standard Euler equations. An ”Lr regularity” in weighted
spaces is required. This result remains as an interesting open question.
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