
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 58, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ON GLOBAL SOLUTIONS FOR THE VLASOV-POISSON
SYSTEM

PETER ZHIDKOV

Abstract. In this article we show that the Vlasov-Poisson system has a

unique weak solution in the space L1 ∩ L∞. For this purpose, we use the
method of characteristics, unlike the approach in [12].

1. Introduction

Consider the classical Vlasov-Poisson system

∂f

∂t
+ v · ∇xf +∇vf · E(x, t) = 0, (t, x, v) ∈ R× R3 × R3, f = f(t, x, v), (1.1)

E(x, t) =
∫

R3×R3
∇U(x− y)f(t, y, v)dy dv, U(x) = κ|x|−1, (1.2)

f(0, x, v) = f0(x, v), (1.3)

where all quantities are real, a·b means the usual scalar product of a, b ∈ R3, κ = ±1
is a constant, and f is an unknown function that has the sense of a distribution
function of particles in the (x, v)-space. In view of the sense of f , we require

f ≥ 0 and
∫

R3×R3
f(t, x, v)dx dv ≡ 1. (1.4)

Everywhere Lp denotes the standard Lebesgue space Lp(R3×R3) with the standard
norm (here 1 ≤ p ≤ ∞). In what follows, we look for weak solutions of (1.1)–(1.4)
that belong to L1 ∩ L∞ for each fixed t ∈ R.

The Vlasov-Poisson system has applications in particular in plasma physics and
stellar dynamics. There is a numerous literature devoted to studies of Vlasov equa-
tions. Here we mention the following papers. In [1, 4, 6, 14], the Vlasov equation
with a smooth bounded potential U is considered; the existence and uniqueness
of a weak solution with values in the space of normalized nonnegative measures is
proved. In [2, 3, 7, 9], the Vlasov-Poisson system is investigated (see also [1]). In
[3], the existence and uniqueness of radial solutions is proved. In [1, 2, 7, 9], weak
solutions of this system are studied (we note that in these papers the question about
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the uniqueness of weak solutions similar to ours is left open). We also mention pa-
per [5] where weak solutions of the Vlasov-Maxwell system are considered. In [13],
the existence of a global smooth solution to (1.1)–(1.4) is demonstrated. In [8], the
Vlasov equation with potentials of higher singularities is considered and in [15], a
two-time problem for the equation with a smooth bounded potential is treated. In
addition, when the present article was already prepared, the author learned about
paper [12] where a result quite similar to ours is obtained by a completely different
method.

Here we prove in particular the uniqueness of a weak solution of (1.1)–(1.4).
In this connection, we mention paper [10] where for the Vlasov-Poisson system
in the one-dimensional case the non-uniqueness of solutions is shown. This does
not contradict our result because in that article the solution is weaker than ours:
measure-valued solutions are considered there.

Definition. Let f(t, ·, ·) ∈ C(I;Lp) for all 1 ≤ p < ∞ where I ⊂ R is an interval
containing 0 and ‖f(t, ·, ·)‖L∞ ≤ C for all t ∈ I. Then, we call f a weak solution
of (1.1)–(1.4) if (1.2)–(1.4) are satisfied and if for any function η = η(t, x, v) in
I×R3×R3 continuously differentiable and equal to zero from outside of a compact
set one has for all t ∈ I:∫

R3×R3
dx dv [η(t, x, v)f(t, x, v)− η(0, x, v)f0(x, v)]

−
∫ t

0

ds

∫
R3×R3

dx dv f(s, x, v)

×
{
ηs(s, x, v) + v · ∇xη(s, x, v) +∇vη(s, x, v) · E(x, s)

}
= 0.

(1.5)

The main result in the present paper reads as follows.

Theorem 1.1. For any f0 ∈ L1 ∩L∞ with a compact support problem (1.1)–(1.4)
has a unique weak solution f(t, x, v) global in t such that its (x, v)-support is bounded
uniformly in t from an arbitrary finite interval. The energy of the system,

E(f) =
1
2

∫
R3×R3

|v|2f(t, x, v) dx dv−
∫

R12
dx dx′ dv dv′ f(t, x, v)U(x−x′)f(t, x′, v′),

does not depend on t.

2. Proof of Main Theorem

To (1.1)–(1.4), we associate the system

ẋ(t, x0, v0) = v(t, x0, v0), (2.1)

v̇(t, x0, v0) = w(x(t, x0, v0), t) :=
∫

R3×R3
∇U(x(t, x0, v0)− y)f(t, y, v) dy dv, (2.2)

(x(0, x0, v0), v(0, x0, v0)) = (x0, v0), (2.3)

f(t, x(t, x0, v0), v(t, x0, v0)) = f0(x0, v0)

for almost all (x0, v0) ∈ R3 × R3 for a fixed t, (2.4)

where (x0, v0) runs over the entire R3 ×R3. Formally, if (x(t, x0, v0), v(t, x0, v0)) is
a solution of system (2.1)–(2.4) and if f(t, x, v) is given by (2.4), then f satisfies
(1.1)–(1.4). Here, we are aimed in particular to justify this fact.
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For g ∈ L1 ∩ L∞, set

(Tg)(x) =
∫

R3×R3
∇U(x− y)g(y, v)dy dv.

Let ω(·) be a nonnegative even C∞-function with a compact support in R3 satisfying∫
R3 ω(x) dx = 1 and let Un(x) = (U(·) ? n3ω(n·))(x) where the star means the

convolution and n = 1, 2, 3, . . . . Consider the sequence of approximations of system
(2.1)–(2.4) that occur by substitutions of Un in place of U in (2.1)–(2.4). We denote
these approximations by (2.1n)–(2.4n). Let also Tn be the integral operator which
is defined by analogy with T with the change of U by Un.

It is the well known result proved in fact in [1, 4, 6, 14] that for each n system
(2.1n)–(2.4n) possesses a unique global solution (xn(t, x0, v0), vn(t, x0, v0)); also,
for any fixed t the map St

n transforming (x0, v0) into (xn(t, x0, v0), vn(t, x0, v0))
is a diffeomorphism of R3 × R3 onto itself (i. e. it is a one-to-one map contin-
uously differentiable with its inverse), and the corresponding function defined by
fn(t, xn(t, x0, v0), vn(t, x0, v0)) ≡ f0(x0, v0) is finite for each fixed t and it is a weak
solution of the problem arising from (1.1)–(1.4) by replacing U by Un; in addition,
diam(supp fn(t, ·, ·)) is continuous in t. Also, for each n the corresponding energy
En(fn), which occurs by replacing U by Un in the representation for E, and the
norms ‖fn(t, ·, ·)‖Lp

with 1 ≤ p ≤ ∞ do not depend on t. In addition, according to
[16] det Jn(t, x0, v0) ≡ 1 where

Jn =
∂(xn(t, x0, v0), vn(t, x0, v0))

∂(x0, v0)

is the Jacobi matrix. Denote Dx
n(t) = sup{p ∈ [0,∞) : ess sup|x|>p fn(t, x, v) > 0}

and Dv
n(t) = sup{q ∈ [0,∞) : ess sup|v|>q fn(t, x, v) > 0}. Also, for any (x, v) ∈

R3 × R3, n and s, t ∈ R there exists a unique point (x0, v0) ∈ R3 × R3 such that
(xn(s, x0, v0), vn(s, x0, v0)) = (x, v). By (xn, vn)(t, s, x, v) we denote the point of
the corresponding trajectory (xn(τ, x0, v0), vn(τ, x0, v0)), where τ ∈ R, taken at the
time τ = t. Clearly (xn, vn)(t, s, xn(s, τ, x, v), vn(s, τ, x, v)) ≡ (xn, vn)(t, τ, x, v) and
fn(t, x, v) ≡ f0((xn, vn)(0, t, x, v)).

Lemma 2.1. For any finite f0 ∈ L1 ∩L∞ there exist D0 > 0 and T = T (D0) > 0,
where T (s) is a nonincreasing function of s > 0, such that Dx

n(t) + Dv
n(t) ≤ D0 for

all n and all t ∈ [−T, T ].

Proof. We consider only the case t > 0 because for t < 0 all our estimates can be
made analogously. First of all, we have the estimate

|(Tnfn)(x, t)| ≤ C([Dv
n(t)]3‖fn(t, ·, ·)‖L∞ + ‖fn(t, ·, ·)‖L1). (2.5)

‘ Further, it can be easily derived from (2.1n),(2.2n) and (2.5) that for any (x0, v0) ∈
supp(f0),

|xn(t, x0, v0)| ≤ |x0|+
∫ t

0

|vn(s, x0, v0)| ds ≤ |x0|+
∫ t

0

Dv
n(s) ds

and

|vn(t, x0, v0)| ≤ C1 + |v0|+ C2

∫ t

0

[Dv
n(s)]3 ds .
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Hence

Dx
n(t) ≤ Dx

n(0) +
∫ t

0

Dv
n(s) ds

Dv
n(t) ≤ C3 + Dv

n(0) + C4

∫ t

0

[Dv
n(s)]3 ds

with constants C3, C4 > 0 independent of t ∈ [0, 1] and n, which easily implies our
claim. �

Corollary 2.2. There exists C > 0 such that |(Tnfn)(x, t)| ≤ C for all x and
t ∈ [−T, T ].

The proof of this corollary follows from (2.5) and Lemma 2.1.

Lemma 2.3. There exists a positive constant C such that

|(Tng)(x1)− (Tng)(x2)| ≤ −C|x1 − x2| ln |x1 − x2|

for all g ∈ L1 ∩L∞ satisfying ‖g‖L1 + ‖g‖L∞ ≤ 1 and g(x, v) = 0 if |x|+ |v| > D0,
all n = 1, 2, 3, . . . and for all x1, x2 ∈ R3 such that |x1 − x2| ≤ 1/2.

Proof. Take arbitrary x, h ∈ R3, such that |h| ≤ 1/2, and g. Then, we have

(Tng)(x + h)− (Tng)(x) =
( ∫

B2|h|(x)

+
∫

BD0 (0)\B2|h|(x)

)
dy

(
∇U(x + h− y)

−∇U(x− y)
) ∫

BD0 (0)

g(y, v) dv = I1 + I2.

Since ‖g‖L∞ ≤ 1, for I1 we have

|I1| ≤ C1D
3
0(T )

∫
B2|h|(0)

|y|−2 dy ≤ C ′|h|.

For I2, we deduce

|I2| ≤ C2|h|D3
0(T )

∫
BD0 (0)\B2|h|(0)

|y|−3 dy ≤ −C3|h| ln |h|.

�

Corollary 2.4. One has∣∣(Tg)(x + h)− (Tg)(x)
∣∣ ≤ −C|h| ln |h|

for all x and h : |h| ≤ 1/2 and for all g ∈ L1 ∩ L∞ satisfying ‖g‖L1 + ‖g‖L∞ ≤ 1
and g(x, v) = 0 if |x|+ |v| > D0.

Lemma 2.5. For any ε > 0 there exists δ > 0 such that∣∣(xn(t, x0, v0), vn(t, x0, v0))− (xn(t, x1, v1), vn(t, x1, v1))
∣∣ < ε

for all n and all t ∈ [−T, T ] if |(x0, v0)− (x1, v1)| < δ.

Proof. We consider only the case t > 0 because for t < 0 the proof can be made by
analogy. We have by Lemma 2.3:

|xn(t, x0, v0)− xn(t, x1, v1)| ≤ |x0 − x1|+
∫ t

0

|vn(s, x0, v0)− vn(s, x1, v1)| ds
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and

|vn(t, x0, v0)− vn(t, x1, v1)|

≤ |v0 − v1| − C

∫ t

0

|xn(s, x0, v0)− xn(s, x1, v1)| ln |xn(s, x0, v0)− xn(s, x1, v1)| ds

until |xn(t, x0, v0) − xn(t, x1, v1)| ≤ 1/2. Now our claim follows by standard argu-
ments similar to those used when proving the Gronwell’s lemma (see also [11]). �

Now, applying the Arzéla-Ascoli theorem, in view of Lemmas 2.1–2.5 and es-
timate (2.5) we deduce that the sequence {(xn(t, x0, v0), vn(t, x0, v0))}n=1,2,3,... of
functions from [−T, T ]×R3×R3 into R3×R3 contains a subsequence still denoted
{(xn(t, x0, v0), vn(t, x0, v0))}n=1,2,3,... which converges to a pair of continuous func-
tions (x(t, x0, v0), v(t, x0, v0)) uniformly in (t, x0, v0) from an arbitrary compact
subset of [−T, T ]× R3 × R3.

Lemma 2.6. For any t ∈ [−T, T ] there exists f(t, ·, ·) ∈ L1 ∩L∞ such that for any
p ∈ [1,∞) the sequence {fn(t, ·, ·)}n=1,2,3,... converges to f(t, ·, ·) strongly in Lp.

Proof. Take a sequence hk(·, ·) of continuous functions converging to f0 strongly in
Lp and almost everywhere, bounded in L∞ and such that hk(x, v) = 0 if |x|+ |v| >
D0 + 1 for all k. Then, we have

‖fn(t, ·, ·)− fm(t, ·, ·)‖Lp

≤ ‖hk(xn(0, t, ·, ·), vn(0, t, ·, ·))− hk(xm(0, t, ·, ·), vm(0, t, ·, ·))‖Lp

+ ‖hk(xn(0, t, ·, ·), vn(0, t, ·, ·))− f0(xn(0, t, ·, ·), vn(0, t, ·, ·))‖Lp

+ ‖hk(xm(0, t, ·, ·), vm(0, t, ·, ·))− f0(xm(0, t, ·, ·), vm(0, t, ·, ·))‖Lp
.

Then, obviously, for any ε > 0 the second and third terms in the right-hand side of
this inequality are smaller than ε/3 for all sufficiently large k and for all n and m,
and the first term is smaller than ε/3 for the same (fixed) values of k and for all
sufficiently large n and m. �

Corollary 2.7. One has ‖f(t, ·, ·)‖Lp
≡ ‖f0‖Lp

for all p ≥ 1 and all t.

The proof of this corollary follows from Lemma 2.6 and d
dt‖fn(t, ·, ·)‖Lp ≡ 0

which holds for all t ∈ R and for all p ∈ [1,∞), which are well known.

Lemma 2.8. Let {gn}n=1,2,3,... ⊂ L1 ∩ L∞, each gn = 0 if |x| + |v| > D0, this
sequence is bounded in L∞, and let for any p ∈ [1,∞) gn → g strongly in Lp.
Then, (Tngn)(x) → (Tg)(x) uniformly in x ∈ R3.

Proof. First, we have

|(Tngn)(x)− (Tg)(x)| ≤ |((Tn − T )gn)(x)|+ |(T (gn − g))(x)|.

The first term in the right-hand side of this inequality tends to 0 as n →∞ because

|((Tn − T )gn)(x)| ≤
∫

BD0 (0)

dy |∇Un(x− y)−∇U(x− y)|
∫

BD0 (0)

gn(y, v) dv

≤ C

∫
BD0 (0)

|∇Un(x− y)−∇U(x− y)| dy → 0
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uniformly in x ∈ R3. As for the second term, we have

|T (gn − g)(x)| ≤
∫

BD0 (0)

dy |∇U(x− y)|
∫

BD0 (0)

|gn(y, v)− g(y, v)| dv → 0.

�

Taking the limit n →∞ in (2.1n),(2.2n), we obtain by Lemmas 2.6 and 2.8,

x(t, x0, v0) = x0 +
∫ t

0

v(s, x0, v0) ds, (2.6)

v(t, x0, v0) = v0 +
∫ t

0

w(x(s, x0, v0), s) ds, (2.7)

where the function w is given by (2.2), and (2.2) and (2.7) hold for all (x0, v0)
and t ∈ [−T, T ]. Now, it follows by the known uniqueness theorem for ODEs
(see, for example, [11]) and by Corollary 2.4 that system (2.6)–(2.7) may have at
most one solution. It is also easy to see from (2.6)–(2.7) that for any fixed t the
transformation (x0, v0) → (x(t, x0, v0), v(t, x0, v0)) is a one-to-one map of R3 × R3

onto itself continuous with the inverse (to see this, it suffices to consider the initial
value problem for (x(t, x0, v0), v(t, x0, v0)) with initial data given at an arbitrary
time t0 ∈ [−T, T ]).

Theorem 2.9. Denote St(x0, v0) = (x(t, x0, v0), v(t, x0, v0)). Then, for any fixed
t ∈ [−T, T ] St is a one-to-one map continuous with its inverse of R3×R3 onto itself
so that in particular it transforms Borel subsets of R3 × R3 into Borel ones. For
any Borel set A ⊂ R3 × R3 one has m(A) = m(St(A)) where m(·) is the Lebesgue
measure in R3 × R3.

Proof. Take an arbitrary open bounded set A ⊂ R3 × R3. As well known, for
any ε > 0 there exists compact Kε ⊂ A such that m(A \ Kε) < ε. Let α =
dist(Kε, ∂A) > 0 and Aβ = {z ∈ St(A) : dist(z, ∂St(A)) ≥ β}. Let also β =
dist(St(Kε), ∂St(A)) > 0. For any z ∈ Kε take a ball Br(z) ⊂ A such that
St(Br(z)) ∈ A β

2
. Let Br1(z1), . . . , Brl

(zl) be a finite covering of Kε by these balls.
Then, by construction, there exists a number N such that St

n(Kε) ⊂ St(A β
4
) for all

n ≥ N . Now, we have

m(A)− ε ≤ m(Kε) ≤ m
(
∪l

k=1 Brk
(zk)

)
= m

(
St

n

(
∪l

k=1 Brk
(zk)

))
≤ m(A β

4
) ≤ m(St(A))

so that m(A) − ε ≤ m(St(A)). The inequality m(St(A)) − ε ≤ m(A) can be
obtained by the complete analogy by considering the map S0,t inverse to St. So,
m(A) = m(St(A)).

For an unbounded open set A the same equality follows in view of representations

A = ∪∞k=1A ∩Bk(0) and St(A) = ∪∞k=1S
t(A ∩Bk(0)).

This also implies the same equality for closed sets. For an arbitrary Borel set
A ⊂ R3×R3 the equality m(A) = m(St(A)) now can be obtained by approximations
of A by open sets from outside. �

Since the map (x0, v0) → (x(t, x0, v0), v(t, x0, v0)) is a homeomorphism of R3×R3

onto itself, for any s and (x, v) ∈ R3 × R3 there exists a unique point (x0, v0)
such that (x(s, x0, v0), v(s, x0, v0)) = (x, v). Using this fact, for any s, t ∈ R
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and (x, v) ∈ R3 × R3 we denote by (x, v)(t, s, x, v) the point of the trajectory
(x(τ, x0, v0), v(τ, x0, v0)) at the time τ = t with those initial value (x0, v0) for which
(x(s, x0, v0), v(s, x0, v0)) = (x, v).

Lemma 2.10. For any fixed t ∈ [−T, T ] one has f(t, x(t, x0, v0), v(t, x0, v0)) =
f0(x0, v0) for almost all (x0, v0) ∈ R3 × R3.

Proof. We have that, on a subsequence, fn(t, ·, ·) → f(t, ·, ·) almost everywhere
and fn(t, x1, v1) ≡ f0((xn, vn)(0, t, x1, v1)). So, in view of Theorem 2.9 to prove
Lemma, it suffices to show that f0((xn, vn)(0, t, ·, ·)) → f0((x, v)(0, t, ·, ·)) almost
everywhere. Set

(xn(0, t, x1, v1), vn(0, t, x1, v1))

= (x(0, t, x1, v1) + δn(x1, v1), v(0, t, x1, v1) + γn(x1, v1)),

where (δn, γn) → 0 as n →∞ uniformly in an arbitrary compact set, and show that
f0(x(0, t, x1, v1) + δn, v(0, t, x1, v1) + γn) → f0(x(0, t, x1, v1), v(0, t, x1, v1)) almost
everywhere over a subsequence. Let ϕk be a sequence of continuous functions,
uniformly bounded in L∞ and supports of which are uniformly bounded, converging
to f0 almost everywhere. Then, for p ∈ [1,∞),

‖f0(x(0, t, ·, ·) + δn, v(0, t, ·, ·) + γn)− f0(x(0, t, ·, ·), v(0, t, ·, ·))‖Lp

≤ ‖ϕk(x(0, t, ·, ·) + δn, v(0, t, ·, ·) + γn)− ϕk(x(0, t, ·, ·), v(0, t, ·, ·))‖Lp

+ ‖f0(x(0, t, ·, ·) + δn, v(0, t, ·, ·) + γn)− ϕk(x(0, t, ·, ·) + δn, v(0, t, ·, ·) + γn)‖Lp

+ ‖f0(x(0, t, ·, ·), v(0, t, ·, ·))− ϕk(x(0, t, ·, ·), v(0, t, ·, ·))‖Lp
.

The third term in the right-hand side tends to 0 as k → ∞ in view of The-
orem 2.9. As for the second one, since the map (x1, v1) → (x(0, t, x1, v1) +
δn(x1, v1), v(0, t, x1, v1) + γn(x1, v1)) is one-to-one continuous with the inverse and
preserving the Lebesgue measure, we have that it is equal to ‖f0 − ϕk‖Lp

→ 0 as
k →∞. So, for a given ε > 0 the second and third terms can be made smaller than
ε/3 by taking a sufficiently large k, uniformly in n. As for the first term, it can be
made smaller than ε/3 by taking the same sufficiently large fixed k and sufficiently
large n. �

Proposition 2.11. In the time interval [−T, T ], System (2.1)–(2.4) has a unique
solution (x(t, x0, v0), v(t, x0, v0)) such that the (x, v)-support of the corresponding
function f(t, x, v) is bounded uniformly for t ∈ [−T, T ].

Proof. We have to prove only the uniqueness of a solution. Suppose the opposite.
Without the loss of generality we can accept that there exists t0 ∈ [0, T ) such
that two different solutions (xi, vi)(t, x0, v0), i = 1, 2, coincide for t ∈ [0, t0] and
for all (x0, v0) and that in an arbitrary small right half-neighborhood of t0 there
are points t where (x1, v1)(t, x0, v0) 6= (x2, v2)(t, x0, v0) for some (x0, v0). Let also
f = fi(t, x, v), i = 1, 2, be the corresponding functions given by (2.4). Without
the loss of generality we accept that fi(t, xi(t, x0, v0), vi(t, x0, v0)) = f0(x0, v0) for
all (x0, v0) and t. Set also (x, v)(t, x0, v0) = [(x1, v1) − (x2, v2)](t, x0, v0), h(t) =
max(x0,v0)∈supp(f0) |x(t, x0, v0)| and r(t) = max(x0,v0)∈supp(f0) |v(t, x0, v0)|. Then,
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applying Lemma 2.3, we obtain for t > t0 sufficiently close to t0,

h(t) ≤
∫ t

t0

r(s) ds, (2.8)

|v(t, x0, v0)| ≤ −C

∫ t

t0

h(s) lnh(s) ds

+
∫ t

t0

ds
∣∣∣ ∫

R3×R3
∇U(x1(s, x0, v0)− y)[f1(s, y, v)− f2(s, y, v)] dy dv

∣∣∣ = I + II.

(2.9)

Let us estimate II. Since the maps St
i : (x0, v0) → (xi, vi)(t, x0, v0) are homeo-

morphisms of R3 × R3 onto itself, for any i, s and (x, v) ∈ R3 × R3 there exists a
unique point (x0, v0) such that (xi, vi)(s, x0, v0) = (x, v). Using this fact, for any
i = 1, 2, s, t ∈ R and (x, v) ∈ R3 × R3 we denote by (xi, vi)(t, s, x, v) the point
of the trajectory (xi, vi)(τ, x0, v0) at the time t with those initial value (x0, v0)
for which (xi, vi)(s, x0, v0) = (x, v). Respectively, Si(t, s) denote homeomorphisms
from R3×R3 onto itself mapping (x, v) into (xi, vi)(t, s, x, v). We have that fi(t, x, v)
are solutions of the linear transport equations with the exterior forces

Ei(x, t) =
∫

R3×R3
∇U(x− y)fi(t, y, v) dy dv

and so, again the mappings Si(s, t0) preserve the Lebesgue measure in R3 × R3.
Denote also Pi(k, s) = supp(fi(s, ·, ·)) \ (Bkh(s)(x1(s, x0, v0)) × R3) and Dx

2 (t) =
sup{p ∈ [0,∞) : ess sup|x|>p f2(t, x, v) > 0} and apply the obvious fact that

|y′ − y| ≤ h(s) (2.10)

for any (y, v) ∈ supp f1(s, ·, ·)) and (y′, v′) = S2(s, t0)(S1(t0, s)(y, v)). Then, we
have for t > t0 sufficiently close to t0,

II =
∫ t

t0

ds
∣∣∣( ∫

B4h(s)(x1(s,x0,v0))

+
∫

R3\B4h(s)(x1(s,x0,v0))

)
dy∫

R3
dv∇U(x1(s, x0, v0)− y)[f1(s, y, v)− f2(s, y, v)]

∣∣∣ (2.11)

where clearly the first term can be estimated as follows∣∣∣ ∫
B4h(s)(x1(s,x0,v0))

dy

∫
R3

dv ∇U(x1(s, x0, v0)−y)[f1(s, y, v)−f2(s, y, v)]
∣∣∣ ≤ C1h(s).

(2.12)
Further, making the change of variables (y, v) → (x1, v1)(t0, s, y, v) and using the
facts that the operators Si(t, s) preserve the Lebesgue measure and that f1(s, y, v) =
f2(t0, x1(t0, s, y, v), v1(t0, s, y, v)) almost everywhere, one can easily derive∫

(R3\B4h(s)(x1(s,x0,v0)))×R3
∇U(x1(s, x0, v0)− y)f1(s, y, v) dy dv

=
∫

S1(t0,s)(P1(4,s))

∇U(x1(s, x0, v0)− x(s, t0, y, v)− x2(s, t0, y, v))f2(t0, y, v) dy dv.

(2.13)
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Now, applying (2.10) and making in one of the integrals in the right-hand side the
change of variables (y, v) → (x2, v2)(s, t0, y, v), we obtain from (2.11)–(2.13),
II

≤
∫ t

t0

ds
{

C1h(s) + C2

∫
B5h(s)(x1(s,x0,v0))\B3h(s)(x1(s,x0,v0))

|∇U(x1(s, x0, v0)− y)| dy

+
∫

P2(3,s)

|∇U(x1(s, x0, v0)− x(s, t0, x2(t0, s, y, v), v2(t0, s, y, v))− y)

−∇U(x1(s, x0, v0)− y)|f2(s, y, v) dy dv
}

≤
∫ t

t0

ds
{

C3h(s) + C4h(s)
∫

Dx
2 (s)\B3h(s)(x1(s,x0,v0))

|x1(s, x0, v0)− y|−3 dy
}

≤ −C5

∫ t

t0

h(s) lnh(s) ds.

(2.14)
Estimates (2.9) and (2.14) yield

h(t) ≤
∫ t

t0

r(s) ds and r(t) ≤ −C6

∫ t

t0

h(s) lnh(s) ds,

which easily imply that h(t) ≡ r(t) ≡ 0 in a right half-neighborhood of t0. �

Proposition 2.12. The function f(t, x, v) is a weak solution of (1.1)–(1.4).

Proof. Obviously, f(t, ·, ·) ∈ C([−T, T ];Lp) for each p ∈ [1,∞). Let η(t, x, v) be an
admissible function for (1.5). Then, equality (1.5) for f can be obtained by writing
it for fn(t, x, v) with the further passing to the limit n →∞. �

Proposition 2.13. Let f(t, ·, ·) ∈ C(I;Lp) for each p ∈ [1,∞), where 0 ∈ I ⊂
[−T, T ] and I is an interval, and let it be a weak solution of (1.1)–(1.4). Then,
f(t, x(t, x0, v0), v(t, x0, v0)) = f0(x0, v0) for almost all (x0, v0), where the functions
x(t, x0, v0), v(t, x0, v0) are the solution of (2.1)–(2.3) corresponding to this f .

Proof. Consider the linear transport equation
∂

∂t
g + v · ∇xg +∇vg · w(x, t) = 0, g = g(t, x, v), (2.15)

g(0, x, v) = g0(x, v), (2.16)

where now the function w does not depend on the unknown g, is continuous and
bounded in (x, t) and satisfies the estimate

|w(x + h, t)− w(x, t)| ≤ −C|h| ln |h|, 0 < |h| ≤ 1/2,

g0 ∈ L1 ∩ L∞ and has a compact support. Again, for any point (x0, v0) the
characteristic system for (2.15)–(2.16),

ẋ = v, v̇ = w(x(t), t), x(0) = x0, v(0) = v0,

has a unique solution (x(t, x0, v0), v(t, x0, v0)) and the mapping Gt : (x0, v0) 7→
(x(t, x0, v0), v(t, x0, v0)) is a one-to-one function from R3 × R3 onto itself con-
tinuous with the inverse. Again, the function g(t, x, v) defined by the relation
g(t, x(t, x, v), v(t, x, v)) ≡ g0(x, v) is a weak solution of (2.15)–(2.16) whose (x, v)-
support is bounded uniformly with respect to t in a bounded interval. To prove
Proposition 2.13, it suffices to show the uniqueness of this solution. Let us do this.
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Suppose the existence of another compactly supported solution g1(t, x, v) and
let q = g − g1. Then, q(t, x, v) is a solution of equation (2.15) and q(0, x, v) ≡ 0.
Let ω(x) be a nonnegative even C∞

0 -function in R3 satisfying
∫

R3 ω(x)dx = 1 and
let ωh(x) = h−3(hx), h > 0. Let us take a T > 0 and let R > 0 be so large that
supp(q(t, ·, ·)) ∈ BR−1(0) for all t ∈ [−T, T ]. Observe that for any h ∈ H1

0 (BR(0))
the expressions h∇xq · v and h∇vq · w(x, t) are correctly determined by∫

R3×R3
h∇xq · v dx dv =

∫
R3×R3

q∇xh · v dx dv ,∫
R3×R3

h∇vq · w(x, t) dx dv =
∫

R3×R3
q∇vh · w(x, t) dx dv

so that ∇xq · v, ∇vq ·w ∈ H−1 where H−1 is the Sobolev space dual to H1
0 (BR(0))

with respect to the scalar product in L2. Moreover, it is easy to see that v · ∇xq,
∇vq · w ∈ C([−T, T ];H−1). Now, it follows from the corresponding identity for
solutions of (2.15) that can be obtained from (1.5) by replacing E by w that

∂

∂t
q = −v · ∇xq −∇vq · w ∈ C([−T, T ];H−1).

Hence, ωh ?x (ωh ?v qt), ωh ?x (ωh ?v (∇xq · v)), and ωh ?x (ωh ?v (∇vq · w)) are in
C([−T, T ];C1(R3×R3)), and the supports of these functions are bounded uniformly
in t ∈ [−T, T ] and 0 < h < 1. So, taking η(t, x, v) = ωh ?x (ωh ?v q(t, ·, ·))(t, x, v)
for the identity similar to (1.5), we obtain∫

R3×R3
η(t, x, v)q(t, x, v) dx dv

=
∫ t

0

ds

∫
R3×R3

q(s, x, v)
{
− ωh ?x (ωh ?v (∇xq · v))(s, x, v)

− ωh ?x (ωh ?v (∇vq · w))(s, x, v) + v · ∇xη(s, x, v) +∇vη(s, x, v) · w(x, s)
}
dx dv.

Now, using the evenness of ωh and integrating by parts in the right-hand side of
this equality, one can easily verify that the sums of the first and third and of the
second and fourth terms are equal to 0. So,∫

R3×R3
η(t, x, v)q(t, x, v)dx dv ≡ 0

and letting here h → +0, we deduce
∫

R3×R3 q2(t, x, v)dx dv ≡ 0. �

So, we have proved the existence and uniqueness of a local solution to (1.1)–(1.4)
finite for any fixed t. The relation d

dtE(f) ≡ 0 is also obvious and the mapping
St preserves the measure. According to the result proved in [13], for any p >
33
17 there exists C > 0 such that Dx(t) + Dv(t) ≤ C(1 + |t|)p for all t from an
arbitrary interval of the existence of our solution, where Dx(t) = sup{p ∈ [0,∞) :
ess sup|x|>p f(t, x, v) > 0} and Dv(t) = sup{q ∈ [0,∞) : ess sup|v|>q f(t, x, v) >

0} (in fact, in [13], smooth compactly supported solutions of problem (1.1)–(1.4)
are considered, but the proof in this paper is based only on general properties of
solutions as the conservation of the energy and the preservation of the Lebesgue
measure so that it holds in our case). This immediately yields that our solution
f(t, x, v) can be uniquely continued onto the entire real line t ∈ R and that it is
finite for any fixed t. So, our proof of Theorem 1.1 is complete.
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