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LIOUVILLE’S THEOREM AND THE RESTRICTED MEAN
PROPERTY FOR BIHARMONIC FUNCTIONS

MOHAMED EL KADIRI

Abstract. We prove that under certain conditions, a bounded Lebesgue mea-
surable function satisfying the restricted mean value for biharmonic functions

is constant, in Rn with n ≥ 3.

1. Introduction

It is well known that a biharmonic function f in Rn, i.e. a solution of the classical
biharmonic equation ∆2u = 0, satisfies the biharmonic mean formula on every open
ball B = B(x, r) of center x and radius r > 0 in Rn:

f(x) =
1
|B|

∫
B

fdλ− r2

2(n+ 2)
∆f(x),

where |B| denotes the volume of the ball B and λ is the Lebesgue measure on Rn.
This formula is due to Pizzetti and can be found in [6].

When the biharmonic function f is bounded, say

sup
x∈Rn

|f(x)| = M < +∞,

one has

sup
x∈Rn

|∆f(x)| ≤ 4(n+ 2)
r2

M.

Letting r → ∞, this yields ∆f ≡ 0, so that f is a bounded harmonic function on
Rn, hence f is constant by the Liouville’s classical Theorem. This is the Liouville’s
property for biharmonic functions.

Let us recall that a function f on a domain Ω of Rn, locally integrable and whose
Laplacian in the distribution sense is a function, satisfies the restricted biharmonic
mean property if there exists a function r : Ω → R+ such that 0 < r(x) ≤ d(x,CΩ)
and

f(x) =
1

|B(x)|

∫
B(x)

f(y)dy − r(x)2

2(n+ 2)
∆f(x) (1.1)

for every x ∈ Ω, where B(x) is the open ball of center x and radius r(x).
In [1] and [2], we proved that, under certain conditions on the functions f and r,

if f satisfies the biharmonic mean property on the balls B(x) of center x and radius
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r(x), then f is biharmonic. This result extends a result by Hansen and Nadirashvili
[3, 4] on functions possessing the restricted (harmonic) mean property to functions
satisfying the restricted biharmonic property.

Let r : Rn → R+ be such that 0 < r(x) ≤ ‖x‖ + M0, n ≥ 2, where M0 is
a constant, and let f be a Lebesgue measurable bounded function on Rn which
satisfies

f(x) =
1

|B(x)|

∫
B(x)

f(y)dy

for every x ∈ Rn. Hansen and Nadirashvili [5] proved that if f is continuous or if r
is bounded from below on every compact set of Rn by some positive constant, then
f is constant. Our main goal in this work is to extend this result to biharmonic
functions, to establish a Liouville’s theorem for functions having the restricted
biharmonic mean property. For doing this, we use representation measures for
harmonic functions used in [1], and derived from the biharmonic mean formula in
[5]. We will verify that the conditions in [5] are satisfied and then use their results.

By a function we always mean a function with values in R, unless otherwise
stated.

The results of this paper extend easily to polyharmonic functions of order greater
than 2. We have treated only the biharmonic case for reasons of simplicity.

2. Liouville’s theorem and the restricted biharmonic mean property

Let us recall some results of [4] and [5] that will be used in the sequel. Let n ≥ 3
and let G denote the Green kernel in Rn normalized in such a way that for every
y ∈ Rn, ∆G(., y) = −εy in the distribution sense. Recall that

G(x, y) =
1

σn(n− 2)
1

‖x− y‖n−2
, ∀(x, y) ∈ (Rn)2,

where σn is the area of the unit sphere of Rn.
Let B(Rn) be the Borel field. A kernel on Rn is a function N : Rn×B(Rn) → R+

such that
(1) For every A ∈ B(Rn), x 7→ N(x,A) is Borel measurable,
(2) For every x ∈ Rn, A 7→ N(x,A) is a measure µx on B(Ω).

A kernel N on Rn is said to be Markovian if N(x,Rn) = 1 for x ∈ Rn.
Fix a Markovian kernel (x,A) 7→ µx(A) on Rn such that, for some constants

M0 ≥ 1, 0 < η < 1, γ > 0 and a > 0, the following conditions are satisfied:
(i) µx(s) ≤ s for every non-negative superharmonic function s on Rn.
(ii) There exist a function r0 on Rn, 0 < r0(x) ≤ ‖x‖ + M0 =: ρ(x) and a

constant γ > 0 such that µx ≥ γλB(x,r0(x)) and (Gεx−Gµx)1CB(x,ηr0(x))λ ≤
aρ2µx.

Remarks (See [5]) 1. The condition (i) is satisfied if and only if Gµx ≤ Gεx .
2. Let r be a Borel measurable function on Rn such that 0 < r ≤ ‖ · ‖ + M0

for some constant M0 ≥ 1. Then the kernel (x,E) 7→ λB(x,r(x))(E) satisfies the
conditions (i) and (ii), where λA denotes the probability measure 1A

|A|λ if |A| 6= 0
(for Condition (ii), it is sufficient to take r0(x) = r(x)/2).

Theorem 2.1 ([5, Cor. 2.4]). Let f be a Lebesgue measurable bounded function on
Rn such that

f(x) =
∫
fdµx
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for every x ∈ Rn. Assume that f is continuous or that r0 is locally bounded from
below by a constant > 0. Then f is constant.

3. Liouville’s Theorem and the restricted biharmonic mean property

For a ball B = B(x, r) of Rn, put

wB(x, z) = G(x, z)− 1
|B|

∫
B

G(y, z)dλ(y).

It is not difficult to see that the function wB satisfies the following properties:

(1) wB(x, y) = 0 if y /∈ B.
(2) The function wB(x, .) is invariant under rotations around x.
(3) One has

2(n+ 2)
r2

∫
wB(x, y)dλ(y) = 1.

This equality is an immediate consequence of the harmonic mean formula on B
applied to the function

∫
B′ G(., y)dy, where B′ is any open ball of center x such

that B ⊂ B′.
It follows that for x ∈ R, the measure µr

x on Rn of density 2(n+2)
r2 wB(x)(x, .) with

respect to the Lebesgue measure is a probability measure supported by B(x, r) and
invariant under rotations around x. In particular, one has,∫

s(y)dµr
x(y) ≤ s(x)

for any non-negative superharmonic function s on Rn. The map (x,A) 7→ µr
x(A),

where A is a Borel set of Rn, is a Markovian kernel on Rn.
Let r > 0 be a function on Rn such that there exists a constant M0 ≥ 0 satisfying

r(x) ≤ ‖x‖ + M0 = ρ(x) for any x ∈ Rn. We denote by µx the measure µr(x)
x .

When r is Borel measurable, the Markovian kernel (x,A) 7→ µ
r(x)
x (A) satisfies the

condition (i) of the section above.

Lemma 3.1. Let f be a bounded function of class C2 in Rn such that ∆f is con-
stant, then f is constant.

Proof. By replacing f by −f if necessary one can assume that ∆f = c with c ≤ 0,
so that f is a superharmonic function which we assume to be ≥ 0 by adding to it
a constant if needed. When n = 2 the result is then immediate. If n ≥ 3, f is the
Green potential of a measure cλ, hence c = 0. We then deduce that f is a bounded
harmonic function, hence constant by the Liouville’s classical theorem. �

Theorem 3.2. Let r be a real function on Rn, n ≥ 3, such that 0 < r(x) ≤
‖x‖ + M0, and let f be a bounded Lebesgue measurable function whose Laplacian
in the distribution sense is a bounded function and such that

f(x) =
1

|B(x)|

∫
B(x)

fdλ− r(x)2

2(n+ 2)
∆f(x), (3.1)

for every x ∈ Rn. If f is continuous or if r is locally bounded from below by a
positive constant, then f is constant.
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Proof. As in [1], we remark that if f satisfies (3.1) for every x ∈ Rn, then ∆f(x) =∫
∆fdµx for every x ∈ Rn. Following [7, Sec. 2.1], we may assume that r is Borel

measurable. We have already seen that r satisfies condition (i) of the previous
section, we shall prove that it satisfies also condition (ii). Then the theorem follows
then from Theorem 2.1 and Lemma 3.1. Let r0(x) = r(x)/2 for x ∈ Ω. Then it is
easy to verify that the condition µx ≥ γλB(x,r0(x)) is satisfied for some constant γ
(which does not depend on x).

For simplicity, let x = 0 and assume that B(x) = B, the unit ball of Rn, let
w = wB(0, .). Then it is not difficult to see that w = κn(| · |−n + (n

2 − 1)| · |2 − n
2 ).

The function w is invariant under rotations around 0 and that w ≈ (1 − | · |)2 on
{η < | · | < 1}. Let us take ψ :]0, 1[→ R+ such ψ(|z|) = w(z) and let σt be the
normalized area measure on {| · | = 1}. Then

Gε0
Ω −Gµ0

Ω = Gε0
B −Gµ0

B = const
∫ 1

0

(Gε0
B −Gσt

B )ψ(t)tn−1dt,

where for η < |z| < 1,

(Gε0
B −Gσt

B )(z) = κn(|z|2−n − t2−n)+ ≤ const(t− |z|)+,
and then

(Gε0
Ω −Gµ0

Ω )(z) ≤ C

∫ 1

|z|
(t− |z|)ψ(t)dt

= Cψ(|z|)
∫ 1

0

(t− |z|)dt

=
C

2
w(z)(1− |z|)2.

Then condition (ii) is satisfied for r0(x) = r(x)
2 and η = 1. Hence, it follows from

Theorem 2.1 that the function ∆f is constant, therefore f is constant by Lemma
3.1. �

We say that a function f is bounded by another function g ≥ 0 on an open set
U of Rn if |f | ≤ g on U . By combining the above theorem with [1, Theorems 9 and
10] ([2, Theorems 2.1 and 2.2]), we obtain the following result.

Corollary 3.3. Let f be a locally integrable function in a domain U of Rn, n ≥ 3,
whose Laplacian, in the distribution sense, is bounded by an harmonic function.
Let r be a real function > 0 on U such that for any x ∈ U , B(x, r(x)) ⊂ U and
(1.1) takes place. If U = Rn assume that f is bounded and that r(x) ≤ ‖x‖+M0,
for some constant M0 ∈ R+. Suppose moreover that ∆f is a continuous or that r
is locally bounded from below by a constant > 0. Then f is harmonic.

We will study to the cases n = 1 and n = 2 in a forthcoming work.
Remarks. 1. We did not consider if the hypothesis that ∆f is bounded in the
above theorem can be dropped.

2. If the function r is bounded from below by a positive constant, then the
condition that f is bounded and the restricted biharmonic mean property in the
above theorem implies that that the function ∆f is bounded. In fact, we have

sup
x∈Rn

|∆f(x)| ≤ 4(n+ 2)
infx∈Rn r(x)

sup
x∈Rn

|f(x)| < +∞.



EJDE-2004/66 LIOUVILLE’S THEOREM AND THE RESTRICTED MEAN PROPERTY 5

References
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