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SOLUTION MATCHING FOR A THREE-POINT
BOUNDARY-VALUE PROBLEM ON A TIME SCALE

MARTIN EGGENSPERGER, ERIC R. KAUFMANN, NICKOLAI KOSMATOV

Abstract. Let T be a time scale such that t1, t2, t3 ∈ T. We show the exis-
tence of a unique solution for the three-point boundary value problem

y∆∆∆(t) = f(t, y(t), y∆(t), y∆∆(t)), t ∈ [t1, t3] ∩ T,

y(t1) = y1, y(t2) = y2, y(t3) = y3 .

We do this by matching a solution to the first equation satisfying a two-point

boundary conditions on [t1, t2]∩T with a solution satisfying a two-point bound-

ary conditions on [t2, t3] ∩ T.

1. Introduction

Bailey, Shampine and Waltman [2] were the first to use solution matching tech-
niques to obtain solutions of two-point boundary value problems for the second
order equation y′′ = f(x, y, y′) by matching solutions of initial value problems.
Since then, many authors have used this technique on three-point boundary value
problems on an interval [a, c] for an nth order differential equation by piecing to-
gether solutions of two-point boundary value problems on [a, b], where b ∈ (a, c)
is fixed, with solutions of two-point boundary value problems on [b, c]; see for ex-
ample, Barr and Sherman [3], Das and Lalli [6], Henderson [7, 8], Henderson and
Taunton [9], Lakshmikantham and Murty [12], Moorti and Garner [13], and Rao,
Murty and Rao [14].

All the above cited works considered boundary value problems for differential
equations. In this work, we will use the solution matching technique to obtain a
solution to a three-point boundary value problem for a ∆-differential equation on
a time scale. The theory of time scales was introduced by Stephan Hilger, [10],
as a means of unifying theories of differential equations and difference equations.
Three excellent sources about dynamic systems on time scales are the books by
Bohner and Peterson [4], Bohner and Peterson [5], and Kaymakcalan et. al., [11].
The definitions below can be found in [4].

A time scale T is a closed nonempty subset of R. For t < sup T and r >
inf T, we define the forward jump operator, σ, and the backward jump operator, ρ,
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respectively, by

σ(t) = inf{τ ∈ T : τ > t} ∈ T,

ρ(r) = sup{τ ∈ T : τ < r} ∈ T.

If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said to be right dense.
If ρ(t) < t, t is said to be left scattered, and if ρ(t) = t, t is said to be left dense.

If T has a left-scattered maximum at M , then we define Tκ = T\{M}. Otherwise
we define Tκ = T. If T has a right-scattered minimum at m, then we define
Tκ = T \ {m}. Otherwise we define Tκ = T.

We say that the function x has a generalized zero (g.z.) at t if x(t) = 0 or if
x(σ(t)) · x(t) < 0. In the latter case, we would say the generalized zero is in the
real interval (t, σ(t)).

For x : T → R and t ∈ T, (assume t is not left scattered if t = sup T), we
define the delta derivative of x(t), x∆(t), to be the number (when it exists), with
the property that, for each ε > 0, there is a neighborhood, U , of t such that∣∣x(σ(t))− x(s)− x∆(t)(σ(t)− s)

∣∣ ≤ ε|σ(t)− s|,

for all s ∈ U .
For x : T → R and t ∈ T, (assume t is not right scattered if t = inf T), we define

the nabla derivative of x(t), x∇(t), to be the number (when it exists), with the
property that, for each ε > 0, there is a neighborhood, U , of t such that∣∣x(ρ(t))− x(s)− x∇(t)(ρ(t)− s)

∣∣ ≤ ε|ρ(t)− s|,

for all s ∈ U .
Remarks: If T = R, then x∆(t) = x∇(t) = x′(t). If T = Z, then x∆(t) =
x(t + 1) − x(t) is the forward difference operator while x∇(t) = x(t) − x(t − 1) is
the backward difference operator.

Let T be a time scale such that t1, t2, t3 ∈ T. We consider the existence of
solutions of the three-point boundary value problem

y∆∆∆(t) = f(t, y(t), y∆(t), y∆∆(t)), t ∈ (t1, t3) ∩ T, (1.1)

y(t1) = y1, y(t2) = y2, y(t3) = y3. (1.2)

We obtain solutions by matching a solution of (1.1) satisfying two-point boundary
conditions on [t1, t2] ∩ T to a solution of (1.1) satisfying two-point boundary con-
ditions on [t2, t3] ∩ T. In particular, we will give sufficient conditions such that if
y1(t) is the solution of (1.1) satisfying the boundary conditions y(t1) = y1, y(t2) =
y2, y

∆j

(t2) = m, (j = 1 or 2) and y2(t) is y(t2) = y2, y
∆j

(t2) = m, y(t3) = y3,
(using the same j), then the solution of (1.1), (1.2) is

y(t) =

{
y1(t), t ∈ [t1, t2] ∩ T,

y2(t), t ∈ [t2, t3] ∩ T .

We will assume that f : T×R3 → R is continuous and that solutions of initial value
problems for (1.1) exist and are unique on [t1, t3] ∩ T. Moreover, we require that
t2 ∈ T is dense and fixed throughout. In addition to these hypotheses, we suppose
that there exists a function g : T× R3 → R such that:

(A) For each v3, u3 ∈ R the function f satisfies

f(t, v1, v2, v3)− f(t, u1, u2, u3) > g(t, v1 − u1, v2 − u2, v3 − u3)
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when t ∈ (t1, t2] ∩ T, u1 − v1 ≥ 0, and u2 − v2 < 0, or when t ∈ [t2, t3) ∩
T, u1 − v1 ≤ 0, and u2 − v2 < 0

(B) There exists ε1 > 0 such that, for each 0 < ε < ε1, the initial value problem

y∆∆∆(t) = g(t, y(t), y∆(t), y∆∆(t)), t ∈ [t1, t3] ∩ T,

y(t2) = 0, y∆∆(t2) = 0, y∆(t2) = ε,

has a solution z such that z∆ does not change sign on [t1, t3] ∩ T
(C) There exists ε2 > 0 such that, for each 0 < ε < ε2, the initial value problem

y∆∆∆(t) = g(t, y(t), y∆(t), y∆∆(t)), t ∈ [t1, t3] ∩ T ,

y(t2) = 0, y∆(t2) = 0, y∆∆(t2) = ε(−ε)

has a solution z on [t2, t3]∩T, ([t1, t2]∩T), such that z∆∆ does not change
sign on [t2, t3] ∩ T, ([t1, t2] ∩ T)

(D) For each w ∈ R, the function g satisfies g(t, v1, v2, w) ≥ g(t, u1, u2, w) when
t ∈ (t1, t2]∩T, u1−v1 ≥ 0 and v2 > u2 ≥ 0, or when t ∈ [t2, t3)∩T, u1−v1 ≤
0 and v2 > u2 ≥ 0

We will need also the following two theorems due to Atici and Guseinov, (The-
orems 2.5 and 2.6 in [1, pg. 79]).

Theorem 1.1. If f : T → C is ∆-differentiable on Tκ and if f∆ is continuous on
Tκ, then f is ∇-differentiable on Tκ and

f∇(t) = f∆(ρ(t))

for all t ∈ Tκ.

Theorem 1.2. If f : T → C is ∇-differentiable on Tκ and if f∇ is continuous on
Tκ, then f is ∆-differentiable on Tκ and

f∆(t) = f∇(σ(t))

for all t ∈ Tκ.

2. Existence and Uniqueness of Solutions

Consider the boundary conditions,

y(t1) = y1, y(t2) = y2, y∆j

(t2) = m (2.1)

for j = 1, 2, and

y(t2) = y2, y∆j

(t2) = m, y(t3) = y3, (2.2)

for j = 1, 2, where y1, y2, y3,m ∈ R. In this section, the solution of (1.1), (2.1),
(j = 1, 2) is matched with the solution of (1.1), (2.2), (j = 1, 2) to obtain a unique
solution of (1.1), (1.2). Our first theorem states that solutions of (1.1), (2.1),
j = 1, 2, and (1.1), (2.2), j = 1, 2, are unique.

Theorem 2.1. Let y1, y2, y3 ∈ R, and assume that conditions (A) through (D)
are satisfied. Then, given m ∈ R, each of the boundary value problems (1.1),(2.1),
j = 1, 2, and (1.1)(2.2), j = 1, 2, has at most one solution.
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Proof. We will consider only the proof for (1.1), (2.1) with with j = 1; the argu-
ments for the other cases is similar.

Let us assume that there are distinct solutions α and β of (1.1), (2.1) (with
j = 1). Define w ≡ α − β. Then w(t1) = w(t2) = w∆(t2) = 0. By uniqueness of
solutions of initial value problems for (1.1) we know that w∆∆(t2) 6= 0. Without
loss of generality, we let w∆∆(t2) < 0.

Since w(t1) = 0 and since t2 is dense, there exists an r1 ∈ (t1, t2) ∩ T such that
w∆∆(t) has a g.z. at r1, w∆(t) > 0 on [r1, t2) ∩ T, w(t) < 0 on (r1, t2] ∩ T, and
w∆∆(t) < 0 on [r1, t2)∩T. From the definition of a generalized zero, we have either
w∆∆(r1) = 0 or w∆∆(r1) ·w∆∆(σ(r1)) < 0. If r1 is right dense, then w∆∆(r1) = 0.
If r1 is right scattered and w∆∆(r1) 6= 0, then w∆∆(r1) · w∆∆(σ(r1)) < 0. Since
w∆∆(t) < 0 on (r1, t2] ∩ T, w∆∆(r1) > 0. Thus w∆∆(r1) ≥ 0.

Now let 0 < ε < 1
2 min{ε2,−w∆∆(t2)} and let zε satisfy the criteria of hypothesis

(C) relative to the interval [t1, t2] ∩ T; that is

z∆∆∆
ε (t) = g(t, zε(t), z∆

ε (t), z∆∆
ε (t)), t ∈ [t1, t3] ∩ T,

zε(t2) = z∆
ε (t2) = 0, z∆∆

ε (t2) = −ε

and z∆∆
ε does not change sign in [t1, t2] ∩ T.

Set Z ≡ w − zε. Then Z(t2) = Z∆(t2) = 0, and Z∆∆(t2) < 0. Moreover,
Z∆∆(r1) = w∆∆(r1) − z∆∆

ε (r1) > 0, and Z∆∆(t2) < 0 imply that there exists an
r2 ∈ [r1, t2) ∩ T such that Z∆∆ has a g.z. at r2 and Z∆∆(t) < 0 on (r2, t2] ∩ T. As
above, since Z∆∆ has a g.z. at r2, Z∆∆(r2) ≥ 0. Also, Z∆(t) > 0 and Z(t) < 0 on
[r2, t2) ∩ T.

When σ(r2) > r2,

Z∆∆∆(r2) =
Z∆∆(σ(r2))− Z∆∆(r2)

σ(r2)− r2
< 0 .

When σ(r2) = r2,

Z∆∆∆(r2) = lim
t→r+

2

Z∆∆(t)
t− r2

< 0 .

Regardless of wether r2 is right dense or right scattered we have, from the definition
of the delta derivative, that Z∆∆∆(r2) < 0.

From conditions (A) and (D) we have

Z∆∆∆(r2) = w∆∆∆(r2)− z∆∆∆
ε (r2)

> g(r2, w(r2), w∆(r2), w∆∆(r2))− g(r2, zε(r2), z∆
ε (r2), z∆∆

ε (r2))
≥ 0.

That is, Z∆∆∆(r2) > 0, which is a contradiction. Our assumption must be wrong
and consequently (1.1) (2.1) has at most one solution. �

Theorem 2.2. Assume that hypotheses (A) through (D) are satisfied. Then (1.1),
(1.2) has at most one solution.

Proof. Assume that there exist two distinct solutions α and β of (1.1), (1.2). Define
w = α− β. Then w(t1) = w(t2) = w(t3) = 0. From Theorem 2.1, w∆(t2) 6= 0 and
w∆∆(t2) 6= 0. Without loss of generality let w∆(t2) = α∆(t2) − β∆(t2) > 0. By
Theorem 1.2 we have w∇(t2) = w∆(t2) > 0. Then there exist points r1 ∈ (t1, t2)∩T
and r2 ∈ (t2, t3) ∩ T such that w∆ has a g.z. at r1 and r2 and w∆(t) > 0 on
(r1, r2) ∩ T.
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Let ε = 1
2 min{ε1, w

∆(t2)} and let zε be the solution of the initial value problem
z∆∆∆
ε (t) = g(t, zε(t), z∆

ε (t), z∆∆
ε ), t ∈ [t1, t3] ∩ T, zε(t2) = 0, z∆(t2) = ε, zε(t2) = 0.

By condition (B), z∆
ε does not change sign on [t1, t3] ∩ T.

Define Z ≡ w − zε. Then Z(t2) = 0, Z∆(t2) > 0, and Z∆∆(t2) = w∆∆(t2) 6= 0.
There are two cases to consider.
Case 1: Z∆∆(t2) < 0. Recall that w∆ has a g.z. at r1. If r1 is right dense, then
w∆(r1) = 0. If r1 is right scattered, then either w∆(r1) = 0 or w∆(σ(r1))·w∆(r1) <
0. In the latter case since w∆(t) > 0 on (r1, r2)∩T, we have w∆(r1) < 0. Regardless
of wether r1 is right dense or right scattered we have Z∆(r1) = w∆(r1)−z∆

ε (r1) ≤ 0.
Since Z∆(r1) ≤ 0 and Z∆∆(t2) < 0, there exists an r3 ∈ (r1, t2] ∩ T such that

Z∆∆ has a g.z. at r3 and Z∆∆(t) < 0 on (r3, t2] ∩ T.
On the one hand, if σ(r3) > r3, then

Z∆∆∆(r3) =
Z∆∆(σ(r3))− Z∆∆(r3)

σ(r3)− r3
< 0 .

If σ(r3) = r3, then

Z∆∆∆(r3) = lim
t→r+

3

Z∆∆(t)
t− r3

< 0 .

Regardless of wether r3 is right dense or right scattered we have, from the definition
of the delta derivative, that Z∆∆∆(r3) < 0.

On the other hand, from conditions (A) and (D) we have

Z∆∆∆(r3) = w∆∆∆(r3)− z∆∆∆
ε (r3)

> g(r3, w(r3), w∆(r3), w∆∆(r3))− g(r3, zε(r3), z∆
ε (r3), z∆∆

ε (r3))
≥ 0 .

That is, conditions (A) and (D) imply that Z∆∆∆(r3) > 0 which is a contradiction.
Consequently, Z∆∆(t2) 6< 0.
Case 2: Z∆∆(t2) > 0. Again, we know that w∆ has a g.z. at r2. If σ(r2) = r2,
then w∆(r2) = 0. If σ(r2) > r2, then either w∆(r2) = 0 or w∆(r2) > 0 and
w∆(σ(r2)) < 0 or w∆(r2) < 0 and w∆(ρ(r2)) > 0. Consequently, either Z∆(r2) < 0
or Z∆(σ(r2)) < 0.

Since Z∆(r∗) < 0, (where r∗ = r2 or r∗ = σ(r2)), and since Z∆∆(t2) > 0, there
exists r4 ∈ (t2, r∗) such that Z∆∆ has a g.z. at r4, Z∆∆(t) > 0 on [t2, r4) ∩ T, and
Z∆∆ does not have a g.z. in [t2, r4) ∩ T.

We now obtain a contradiction. On the one hand, we can use the definition of
the ∆-derivative to calculate Z∆∆∆(r4). If ρ(r4) = r4, then by Theorem 1.1 we
have

Z∆∆∆(r4) = Z∆∆∇(r4) = lim
t→r−4

Z∆∆(t)− 0
t− r4

< 0.

If ρ(r4) < r4, then either σ(r4) = r4 or σ(r4) > r4. If σ(r4) = r4, then

Z∆∆∆(r4) = lim
t→r+

4

Z∆∆(t)
t− r4

< 0.

If σ(r4) > r4, then

Z∆∆∆(r4) =
Z∆∆(σ(r4))− Z∆∆(r4)

σ(r4)− r4
< 0.

In any case, we have, by definition of the ∆-derivative, that Z∆∆∆(r4) < 0.
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On the other hand, we have from conditions (A) and (D),

Z∆∆∆(r4) = w∆∆∆(r4)− z∆∆∆
ε (r4)

> g(r4, w(r4), w∆(r4), w∆∆(r4))− g(r4, zε(r4), z∆
ε (r4), z∆∆

ε (r4))
≥ 0.

Conditions (A) and (D) imply Z∆∆∆(r4) > 0 which is a contradiction. Thus
Z∆∆(t2) 6> 0.

Since Z∆∆(t2) 6= 0 and Z∆∆(t2) < 0 and Z∆∆(t2) > 0 lead to contradictions,
our original assumption must be false. As such, the boundary value problem (1.1),
(1.2) has at most one solution and the theorem is proved. �

Now given m ∈ R, let α(x,m), β(x, m), u(x, m) and v(x, m) denote the solutions,
when they exist, of the boundary value problems for (1.1),(2.1) and (1.1),(2.2),
j = 1, 2, respectively.

Theorem 2.3. Suppose that (A) through (D) are satisfied and that, for each m ∈ R,
there exist solutions of (1.1), (2.1) and (1.1), (2.2), j = 1, 2. Then u∆(t2,m) and
α∆∆(t2,m) are strictly increasing functions of m whose range is R, and v∆(t2,m)
and β∆∆(t2,m) are strictly decreasing functions of m with ranges all of R.

Proof. The “strictness” of the conclusion arises from Theorem 2.1. We will prove
the theorem with respect to the solution α(t,m). Let m1 > m2 and let w(t) ≡
α(t, m1)− α(t, m2). Then when w(t1) = w(t2) = 0, w∆(t2) > 0, and w∆∆(t2) 6= 0.

Assume that w∆∆(t2) < 0. Then there exists an r1 ∈ (t1, t2) ∩ T such that
w∆ has a g.z. at r1 and w∆(t) > 0 on (r1, t2] ∩ T. By continuity, there exists an
r2 ∈ (r1, t2) ∩ T such that w∆∆ has a g.z. at r2 and w∆∆(t) < 0 on (r2, t2] ∩ T.
Note that w(t) < 0 on [r2, t2) ∩ T.

Let 0 < ε < min{ε2,−w∆∆(t2)} and let zε be the solution of the initial value
problem satisfying conditions of (C), and set Z ≡ w−zε. Then Z(t2) = 0, Z∆(t2) =
w∆(t2) > 0, and Z∆∆(t2) < 0. Furthermore Z∆∆(r2) ≥ 0. Thus there exist
r3 ∈ (r2, t2)∩T such that Z∆∆(r3) = 0 and Z∆∆(t) < 0 on (r3, t2]. Then Z∆(t) > 0
and Z(T ) < 0 on [r3, t2). As in the proofs of Theorems 2.1 and 2.2, we can then
argue that Z∆∆∆(r3) < 0 and Z∆∆∆(r3) > 0, which is again a contradiction. Thus
w∆∆(t2) > 0 and consequently, α∆∆(t2,m) is strictly increasing as a function of
m.

We now show that {α∆∆(t2,m)
∣∣m ∈ R} = R. Let k ∈ R and consider the

solution u(x, k) of the (1.1), (2.1) (with j = 2) with u as specified above. Consider
also the solution α(x, u∆(t2, k)), of (1.1), (2.1) (with j = 1). Then α(x, u∆(t2, k))
and u(x, k) are solutions of (1.1), (2.1). Hence, by Theorem 2.1, α(x, u∆(t2, k)) ≡
u(x, k). Therefore, α∆∆(t2, u∆(t2, k)) = k and so {α∆∆(t2,m) : m ∈ R} = R. The
other three parts are established in a similar manner and the proof is complete. �

Theorem 2.4. Assume the hypothesis of Theorem 2.3. Then (1.1), (1.2) has a
unique solution.

Proof. By Theorem 2.3, there exists a unique m0 such that u∆(t2,m0) = v∆(t2,m0).
Also u∆∆(t2,m0) = m0 = v∆∆(t2,m0). Then,

y(t) =

{
u(t,m0) = y1(t), t1 ≤ t ≤ t2,

v(t, m0) = y2(t), t2 ≤ t ≤ t3,

is a solution of (1.1), (1.2). By Theorem 2.2, y(t) is the unique solution. �



EJDE-2004/91 SOLUTION MATCHING ON A TIME SCALE 7

References

[1] F. M. Atici and G. Sh. Guseinov, On Green’s Functions and Positive Solutions for Boundary
Value Problems on Time Scales, J. Comput. Appl. Math. 141 (2002), 75-99.

[2] P. Bailey, L. Shampine, and P. Waltman, Nonlinear Two Point Boundary Value Problems,

Academic Press, New York, 1968.
[3] D. Barr and T. Sherman, Existence and uniqueness of solutions of three-point boundary value

problems, J. Differential Equations 13(1973), 197-212.

[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An introduction with
Applications, Birkhäuser, Boston, 2001.
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