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ON THE ROLE OF THE EQUAL-AREA CONDITION IN
INTERNAL LAYER STATIONARY SOLUTIONS TO A CLASS OF

REACTION-DIFFUSION SYSTEMS

JANETE CREMA, ARNALDO SIMAL DO NASCIMENTO

Abstract. We present necessary conditions for the formation of internal tran-
sition layers in stationary solutions to some singularly perturbed reaction-

diffusion systems. In particular we prove that the well-known equal-area con-
dition which is always assumed in a typical set of sufficient conditions for
existence of such solutions is actually a necessary hypothesis. Examples of

existence and nonexistence of these solutions are given.

1. Introduction

The prime concern in this paper is to present a necessary condition for the
formation of internal transition layers for stationary solutions in N -dimensional
domains of a singularly perturbed reaction-diffusion system. This system often
appears in the literature and has the general form

ut = ε div (h1(x)∇u) + f(x, u,v), in R+ × Ω

vt = div (h2(x)∇v) + g(x, u,v), in R+ × Ω
∂v
∂n̂

= 0 (or v = (0, 0, . . . , 0), on R+ × ∂Ω,

where Ω is a smooth domain in RN and the bold letters stand for vector-valued
functions. However in order to put our work into perspective let us consider a
simpler system of reaction-diffusion equations of activator-inhibitor type:

ut = ε∆u + f(u, v), (t, x) ∈ R+ × Ω

vt = ∆v + g(u, v), (t, x) ∈ R+ × Ω
∂u

∂n̂
=

∂v

∂n̂
= 0, (t, x) ∈ R+ × ∂Ω,

(1.1)

where ε is a small positive parameter and Ω a smooth domain in RN , N ≥ 1.
Part of the available literature on this problem is devoted to the study of (1.1) in

the context of spatial pattern formation as it appears in many different fields such
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as mathematical biology, chemical reactions, morphogenesis, combustion, etc.. See
[6], for instance, for a survey on this issue.

Roughly speaking we will say that a uniformly bounded family Φε = (uε, vε) of
stationary (meaning that ut = vt = 0) solutions to (1.1) develops internal transition
layer as ε → 0 if the component uε exhibits a sharp spatial transition between two
different states. These internal transition layer stationary solutions will be referred
to as ITLS solutions, and a rigorous definition will be provided.

Typically the setting in which the issue of spatial pattern formation in reaction-
diffusion systems is considered involves the choice of a specific parameter region (the
rates of diffusion and/or reaction) and the geometry of the zero-level set (nullcline)
of the reaction terms f and g.

For one-dimensional domains, and using different techniques, existence (some-
times stability too) of ITLS solutions to (1.1) has been established in [4, 5, 14, 11,
6, 12], for instance. There is a vast literature on the subject but the references
above best suit our purposes.

However, regardless of the particular technique used, whenever proving the exis-
tence of ITLS solutions to (1.1), the following hypotheses are tacitly assumed. The
zero set of f ,

Z = {(u, v) ∈ R2 : f(u, v) = 0}

has at least two different solutions u = h−(v) and u = h+(v), h−(v) < h+(v), in a
suitable domain which contains a real number v = v∗ satisfying∫ h+(v∗)

h−(v∗)

f(s, v∗) ds = 0.

Usually Z is supposed to take a sigmoidal form in the (u, v)-plane. This assumption
is known as the equal-area condition (or rule) and it is always assumed as a sufficient
condition for existence of ITLS solutions to (1.1). Sometimes it does not appear
explicitly but in an equivalent form, as a Melnikov integral, for instance. See [10],
for this matter.

It might seems at first sight that this hypothesis is not necessary for proving
existence of such solutions. We give herein a rigorous mathematical proof that this
is not the case. Rather it is a necessary condition.

Of course for each phenomenon the mathematical system models there is a phys-
ical mechanism underlying the equal-area condition whenever internal transition
layer is created.

An immediate conclusion of our results is that if the above equal-area condition
on f does not hold then, as long as concentration phenomenon is concerned, we can
only expect formation of spikes and/or boundary layer for stationary solutions of
the system considered, just to mention the simplest geometric configurations that
can occur (see example A.4 in Applications).

See [3, 2, 9], for instance, for cases of a single scalar equation where the equal-area
condition does not hold and spike and boundary layer solutions are obtained.

The present work is an extension to a class of systems of results obtained in
[1] for a single scalar elliptic equation and at the same time an improvement of
the approach used therein. In order to be more specific let us briefly describe one
particular case of the main result in [1].
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Let the constants α and β, α < β, satisfy f(x, α) = f(x, β) = 0, ∀x ∈ Ω ⊂
RN , N ≥ 1 and consider a smooth (N − 1)-dimensional compact manifold without
boundary Γ such that Γ ⊂ Ω.

Suppose that the boundary-value problem

ε div (h1(x)∇u) + f(x, u) = 0, x ∈ Ω
∂u

∂n̂
= 0 on ∂Ω,

(1.2)

has a family {uε} of solutions which develops inner transition layer with interface
Γ connecting the states α to β. Then necessarily∫

Γ

{
∫ β

α

f(x, s)ds}x · η̂(x) dS = 0 . (1.3)

where η̂ stands for the outward unit normal vector on Γ. In particular if f does not
depend on x then ∫ β

α

f(s)ds = 0. (1.4)

If in [1] we had allowed the interface Γ to intersect ∂Ω in a proper way (as we
do herein) then still for the case α and β constants and f independent of x, (1.3)
would become ( ∫ β

α

f(s)ds
) ∫

Γ

x · η̂(x) dS = 0.

Then we would only recover the equal-area condition at the price of requiring the
interface Γ to be a subset of the boundary of a star-shaped set, as the above equality
shows. This is so because in [1] we used the vector-field X̃(x) = x. Resorting to
a vector-field X(x) which when restricted to the interface Γ coincides with the
normal vector-field η̂(x) on Γ (used in the present work) would allows us to recover
the equal-area condition without the star-shape condition since then X(x)·η̂(x) = 1
on Γ.

Herein we let α and β be functions of the space-variable x and in order to obtain
any meaningful conclusion we generalize the Pohozaev procedure by working with
the vector field X(x) described above.

As an illustration we describe the corresponding version of the above equal-
area condition for (1.1) which is obtained in the present work. Let Φε = (uε, vε)
be a family of ITLS solutions to (1.1) with interface Γ ⊂ Ω in the sense that
Φε ε→0→ (u0, v0), uniformly on compact sets of Ω\Γ, where

u0(x) = α(x)χΩα
(x) + β(x)χΩβ

(x), x ∈ Ω = Ωα ∪ Γ ∪ Ωβ

and χA stands for the characteristic function of the set A. Then we show that
necessarily f(α(x), v0(x)) = 0 = f(β(x), v0(x)), for all x ∈ Ω\Γ and there must
exist constants ᾱ, β̄ (ᾱ < β̄) and v̄ such that∫ β̄

ᾱ

f(s, v̄)ds = 0, (1.5)

where ᾱ = α(x̄) and β̄ = β(x̄), for some x̄ ∈ Γ.
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2. Necessity for the formation of internal layers

The main theorem is stated in a more general framework than those considered
in the references supplied. Although existence of ITLS solutions to the full system
considered below seems to be difficulty our results imply that whenever trying to do
so the appropriate equal-area condition must be assumed. Henceforth the following
system will be considered:

ut = ε div (h1(x)∇u) + f(x, u,v), x ∈ Ω

vt = div (h2(x)∇v) + g(x, u,v), x ∈ Ω
∂v
∂n̂

= 0 (or v = (0, 0, . . . , 0) on ∂Ω,

(2.1)

where Ω is a smooth domain in RN , N ≥ 1, 0 < ε ≤ ε0 for some small ε0; g =
(g1, g2, . . . , gn) and f , gi are functions in C1(Ω×R×Rn), h2 = (h2,1, h2,2, . . . h2,n)
with h2∇v = (h2,1∇v1, . . . , h2,n∇vn), h1, h2,i ∈ C1,ν(Ω), 0 < ν < 1, satisfying
0 < m < h1, h2,i < M , for i = 1, . . . n, and some constants m and M . Since
our definition of internal transition layer will be local in space we do not need
any boundary condition on u. On the other hand the boundary condition on v
is used just once for technical reasons. This boundary condition could have been
suppressed as well at the price of adding another (not restrictive) hypothesis in the
definition of boundary layer. We will comment on this in the appropriate place.

We now state and justify our definition.

Definition 2.1. Let U be an open connect set in Ω and let Γ ⊂ U be an (N − 1)-
dimensional smooth (at least C2) compact connected orientable manifold whose
boundary ∂Γ is such that ∂Γ∩ ∂Ω is a smooth (N − 2)-dimensional submanifold of
∂Ω.

We will say that an ε-family of stationary solutions to (2.1),

Φε = {(uε,vε) ∈ [C1(U) ∩ C2(U)]N+1, 0 < ε < ε0},

develops internal transition layer, as ε → 0, in U with interface Γ if:
• The family Φε is bounded in Ω uniformly for 0 < ε < ε0.
• uε

ε→0→ u0, uniformly on compact sets of U\Γ, where u0 is given by

u0(x) = α(x)χUα
(x) + β(x)χUβ

(x)

for some functions α and β in C0(U), α(x) < β(x) for x ∈ Γ and U =
Uα ∪ Γ ∪ Uβ , where Uα and Uβ are disjoint open connect sets.

• vε
ε→0→ v0 uniformly in U .

In this case we will refer to Φε, as a family of ITLS solutions to (2.1) in U with
interface Γ.

This definition is consistent with known existence results for the one-dimensional
case, when v is a scalar function. Indeed consider (1.1) with Ω = (0 , 1) = I and
0 < ε < ε0. Then the existence of a family Φε of ITLS solutions (as defined above)
is proved, for instance, in [4]. See also [14] and [11] for related results. Actually Φε

is a C2
ε (I)×C1(Ī) bounded family where Cp

ε (Ī) is the space of p-times continuous
differentiable functions on Ī with the norm ‖u‖Cp

ε
=

∑p
j=0 |εj dj

dxj u(x)|.
The above definition, which is local in space, suffices for our purposes and it

allows for the existence of more than one transition-layer surface (interface) in Ω.
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Remark 2.1. As in [1] we could equally well have considered the case in which the
interface Γ does not intersect ∂Ω. Actually this case is somehow easier and will be
omitted.

Remark 2.2. The question of how the interface Γ of an eventual family of ITLS
solutions to (2.1) intersects the boundary of Ω is in general very difficult. It is known
that in some simple scalar equations the intersection is orthogonal. However since
this is not the issue herein only restriction on the smoothness of the intersection
will be assumed.

The next theorem states what is the main result of the present work.

Theorem 2.1. Let U ⊂ Ω ⊂ RN be an smooth open bounded connect set and Φε =
{(uε,vε)}0<ε<ε0 a family of ITLS solutions to problem (2.1), in U with interface Γ.
Then f(x, u0(x),v0(x)) = 0 on U\Γ and∫

Γ

∫ β(x)

α(x)

f(x, s,v0(x))ds dS (2.2)

where dS stands for the element of (N − 1)-dimensional surface measure.

The following lemma will play an important role in the proof of Theorem 2.1.

Lemma 2.1. Under the conditions of Theorem 2.1, we have

lim
ε→0

ε

∫
∂U
|∇uε(x)|2dS = 0.

Proof. It suffices to show that

(a) limε→0 |ε1/2∇uε(x)| = 0, a.e. in ∂U\∂Γ; and
(b) There exists M > 0 such that

∣∣ε1/2∇uε(x)
∣∣ ≤ M , a.e. in x ∈ ∂U\∂Γ,

uniformly for 0 < ε < ε0.

Once this has been accomplished an application of Lebesgue Bounded Convergence
Theorem will conclude the proof.

Due to smoothness of ∂Ω we can take without loss of generality U smooth and
such that ∂U ∩ ∂Ω ⊂ Γ. This will prevent us from taking on Schauder estimates
on portions of ∂Ω, which is a delicate and very technical matter, and at same time
this type of neighborhood of Γ will suffice for our purposes.

A standard procedure will be used and therefore we only sketch the proof. It is
based on a blow-up technique and Schauder estimates that have been used in the
scalar case. Therefore only the points in which the proof differs from the scalar
case will be stressed. See [1], for more details.

Firstly, for x ∈ ∂U\∂Γ we define a C2 local change of variables Σ, with Σ(x) = 0,
which straightens ∂U near x and then set

ũε(y) = uε(Σ−1(y)), for y ∈ B+
ρ ,

where B+
ρ stands for the positive hemisphere of the ball of radius ρ and center at

the origin. Let us consider {εk} any positive sequence converging to 0. Now define
scaled functions ωk(z) and θk(z) by ωk(z) = ũεk

(
ε
1/2
k z

)
, θk(z) = ṽεk

(
ε
1/2
k z

)
for

z ∈ B+

ρ/ε
1/2
k

.
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All the coefficients in the new differential equation for ωk are Cν bounded, uni-
formly in k. For a fixed ρ, we set

ρk :=
(
ρ/ε

1/2
k

) k→∞→ ∞ .

Let Rm be a monotone increasing sequence of positive numbers such that Rm →
+∞, as m → ∞. For each m, there is km such that 2Rm < ρk, for k ≥ km.
Since {uε}0≤ε≤ε0 and {vε}0≤ε≤ε0

are bounded in U , uniformly on ε, it follows that
‖θk‖C(B+

2Rm
)
, ‖ωk‖C(B+

2Rm
)
≤ K1, for some constant K1 which is independent of k.

Thus by [7, Theorem 8.24], we conclude that θk and ωk are locally Cν bounded
in B+

2Rm
, uniformly in k. Interior Schauder estimates in BRm

(here the fact that

∂U ∩ ∂Ω ⊂ Γ comes into play) yield that ωk is C2,ν bounded in B+
2Rm

, uniformly
for k ≥ km. Then by a diagonal process we can extract a subsequence, still labelled
{ωk}, such that ωk → ωo in C2

loc(RN
+ ) where RN

+ = {z ∈ RN : zN ≥ 0}.
Consequently, for B+

1 = {z ∈ RN : zN ≥ 0 and |z| ≤ 1} we have |ωk −
ω0|C2(B+

1 ) → 0. But from the definition of ωk we conclude that ω0 ≡ β(x) or
ω0 ≡ α(x), and so ω0(z) is a constant function in B+

1 .
In particular limk→∞ |∇ωk(0)| = 0 and then if εk → 0, εk ∈ (0, ε0),

lim
k→∞

∣∣∣ε1/2
k ∇uεk

(x)
∣∣∣ = 0

for any x ∈ ∂U\∂Γ. Since ∂U ∩ ∂Γ has zero (N − 1)-dimension surface measure,
(a) follows.

Finally standard Schauder estimates may be evoked to obtain (b). Thus our
claim is proved. �

But note that if Φε = (uε, vε) is a family of ITLS solutions on U then it still will
be on any smooth open Û ⊂ U containing Γ. Consequently making ut = 0 in the
first equation of (2.1), integrating and using the Divergence Theorem and Lemma
2.1 we conclude that for any Û such that Γ ⊂ Û ⊂ U

lim
ε→0

∫
Û

f(x, uε(x),vε(x)) = 0,

For ε → 0, the family (uε,vε) → (u0,v0) uniformly in any compact set K ⊂ Û\Γ.
So by boundness and regularity of f we conclude that for any open set Û such that
Û ⊂ U , ∫

Û
f(x, u0(x),v0(x)) = 0

We have thus proved the following lemma.

Lemma 2.2. Under the conditions of Theorem 2.1, f(x, u0(x),v0(x)) = 0 for all
x ∈ U\Γ.

Proof of Theorem 2.1. Let η̂ stands for the normal vector field to Γ (which by
hypothesis is C2) and let us take a C1 vector field X : U → RN so that when
restrict to Γ it coincides with η̂. As in the Pohozaev procedure, making ut = 0 in
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the first equation of (2.1), multiplying it by X(x).∇uε and integrating over U we
obtain∫

U
{ε div(h1(x)∇uε)(X(x) · ∇uε) + f(x, uε,vε) X(x) · ∇uε} dx = 0 (2.3)

Working with the first term of this equality and using that

div[X(x) · ∇uh1∇u]

= X(x) · ∇u div(h1∇u) + h1

[ N∑
i,k=1

∂Xk

∂xi
uxk

uxi
+ X(x) · ∇(

|∇u|2

2
)
]

along with the Divergence Theorem, it follows that

− ε

∫
∂U

h1(x)X(x) · ∇uε
∂uε

∂n̂
dS +

ε

2

∫
∂U

h1(x)|∇uε|2X(x) · n̂ dS

− ε

2

∫
U
|∇uε|2X(x) · ∇h1 dx− ε

2

∫
U

h1(x)|∇uε|2 div X(x) dx

+ ε

∫
U

N∑
i,k=1

h1
∂Xk

∂xi
uxk

uxi

=
∫
U

f(x, uε, vε)X(x) · ∇uε dx.

(2.4)

We claim that the left hand side of this equality goes to 0, as ε → 0. In fact, this
holds for the first and second terms by virtue of Lemma 2.1.

By utilizing energy estimates on U applied to the first equation of (2.1) (with
ut = 0) and Lemma 2.2 we obtain

lim
ε→0

ε

∫
U
|∇uε(x)|2 dx = 0 . (2.5)

So the third, fourth, and fifth terms of (2.4) approach zero, as ε → 0. Hence

lim
ε→0

∫
U

f(x, uε,vε)X(x) · ∇uε dx = 0. (2.6)

Note that if F (x, u) =
∫ u

θ
f(x, s,v) ds,

div[X(x)F (x, u)] = f(x, u,v)∇u·X(x)+
∫ u

θ

X(x)·∇xf(x, s,v)ds+div X(x)F (x, u),

(2.7)
where

∇xf(x, s,v(x)) = ∂xf(x, s,v(x)) +
∑

∂3,if(x, s,v(x))∇vi(x)∂xf(x, s, t1, t2, . . . tn)

is the gradient of f with respect to x and ∂3,i(x, s, t1, t2, . . . tn) is the partial de-
rivative of f with respect to ti, i = 1, 2, . . . n. The Divergence Theorem yields∫

U
f(x, uε,vε) X(x) · ∇uε dx

=
∫

∂U
X(x) · n̂

∫ uε

θ

f(x, s,vε) ds dS

−
∫
U
{
∫ uε

θ

X(x) · ∇xf(x, s,vε)ds + div X(x)
∫ uε

θ

f(x, s,vε)ds}dx

(2.8)
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Now each element of the right-hand term of (2.8) will be analyzed.
By hypothesis, {uε} and {vε} converge uniformly on compact sets K ⊂ U\Γ and

U , respectively. So by regularity of f we obtain for any x ∈ U\Γ that∫ uε(x)

θ

f(x, s,vε(x)) ds
ε→0→

∫ u0(x)

θ

f(x, s,v0(x)) ds,

with the same result when we take ∂xf or ∂3,if , i = 1, 2, . . . n, instead of f . Then
applying Lebesgue Convergence Theorem we conclude that∫

∂U
X(x) · n̂

∫ uε

θ

f(x, s,vε) ds dS
ε→0→

∫
∂U

X(x) · n̂
∫ u0

θ

f(x, s,v0) ds dS (2.9)

and ∫
U

∫ uε

θ
X(x) ∂xf(x, s,vε)dsdx

ε→0→
∫
U

∫ u0

θ
X(x) ∂xf(x, s,v0)dsdx. (2.10)

Recalling that U\Γ = Uα ∪ Uβ , for σ ∈ {α, β} we obtain∫
Uσ

div X(x)
∫ uε

θ
f(x, s,vε)dsdx

ε→0→
∫
Uσ

div X(x)
∫ σ

θ
f(x, s,v0)dsdx. (2.11)

We also have that for i = 1, 2, . . . n,

X(x)
∫ uε

θ

∂3,if(x, s,vε(x)) ds → X(x)
∫ u0

θ

∂3,if(x, s,v0(x)) ds (2.12)

strongly in L2(U). Then if ∇vε to converge weakly in L2(U) we will have∫
U

∫ uε

θ

X(x)·∇xf(x, s,vε(x))ds dx →
∫
U

∫ u0

θ

X(x)·∇xf(x, s,v0(x))ds dx. (2.13)

To establish the weak convergence of {vε} in H1(U) note that energy estimates
on the second equation of (2.1) (with vt = 0) and boundness of g, uε, and vε give
us the boundness of ∇vε in L2(Ω), uniformly on ε. Moreover vε → v0 uniformly in
U . So vε is bounded in H1(U) and ∇vε converges weakly to ∇v0 in L2(Ω). Passing
to the limit in (2.8), as ε → 0, and using (2.6), (2.9) to (2.11) and (2.13) we obtain

0 =
∫

∂U
X(x) · n̂

∫ u0(x)

θ

f(x, s,v0(x))ds dS

−
∫
Uα

{
∫ α(x)

θ

X(x) · ∇xf(x, s,v0(x)) + div X(x)f(x, s,v0(x)) ds} dx

−
∫
Uβ

{
∫ β(x)

θ

X(x) · ∇xf(x, s,v0(x)) + div X(x)f(x, s,v0(x)) ds} dx .

By (2.7) and Lemma 2.2 it follows that

0 =
∫

∂U
X(x) · n̂ F (x, u0(x)) dS −

∫
Uα

div{X(x)F (x, α(x))}dx

−
∫
Uβ

div{X(x)F (x, β(x))}dx.

The Divergence Theorem implies∫
Γ

{
∫ β(x)

α(x)

f(x, s,v0(x))ds }X(x) · η̂ dS = 0. (2.14)
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Due to the way X was taken we obtain∫
Γ

{
∫ β(x)

α(x)

f(x, s,v0(x))ds } η̂ · η̂ dS =
∫

Γ

{
∫ β(x)

α(x)

f(x, s,v0(x))ds } dS = 0, (2.15)

thus proving (2.2). �

Remark 2.3. It is worthwhile to note that boundary condition vε = 0 or ∂vε

∂η̂ = 0
in R+×∂Ω was need in order to obtaining (2.13). Without the boundary condition
on vε, the same conclusion could have been obtained had we required boundness
of {vε} in C1(Ω), uniformly in ε, in Definition 2.1.

This additional hypothesis is not restrictive since the existence of a family Φε =
(uε,vε) which satisfies also this condition is proved, for instance, in [14], for the
case Ω = [0, 1].

In the next results our goal is to recover the equal-area condition on f .

Corollary 2.1. If Ω = (0, 1) then the interface Γ is a point x ∈ (0, 1) and condition
(2.2) becomes ∫ β(x)

α(x)

f(x, s,v0(x)) ds = 0 (2.16)

which is the known equal-area condition for f .

Corollary 2.2. If Φε is a family of ITLS solutions to (2.1) as in Theorem 2.1,
then there must exist x ∈ Γ such that (x, α(x),v0(x)) and (x, β(x),v0(x)) are roots
of f and ∫ β(x)

α(x)

f(x, s,v0(x)) ds = 0. (2.17)

This corollary follows from the continuity of α, β, v0, and f .
Next we provide sufficient conditions so that α(x), β(x) and v0(x) be constant

functions, thus recovering the equal-area formula for f . First of all we observe
that if g is allowed to depend on ε, i.e., g = g(ε, x, u,v) is a continuous function
in any point (ε, x, u,v) then the conclusions of Theorem 2.1 still remains true. In
particular we have

Corollary 2.3. With the notation of Theorem 2.1 let us take f = f(u,v) and
g = g(ε, x, u,v). If {(uε,vε)} is a family of ITLS solutions in Ω with interface
Γ and if g(ε, x, uε(x),vε(x)) ε→0→ 0 a.e. in Ω then v0 is a constant vector-valued
function. Moreover if for any constant vector c = (c1, c2, . . . , cn) there holds that
the set {s : f(s, c) = 0} is discrete, then α0 and β0 are also constant functions. In
this case (2.2) simplifies to ∫ β0

α0

f(s,v0)ds = 0 (2.18)

Proof. Since (uε,vε) satisfies (2.1) (with time derivatives vanishing), by multiplying
the second equation by vε, integrating on Ω and passing to the limit as ε → 0, we
conclude that v0 is a constant vector-valued function.

By our hypotheses, f(uε,vε)
ε→0→ f(u0,v0), uniformly in compact sets K ⊂ Ω\Γ.

Thus Lemma 2.2 implies f(u0(x),v0) = 0 and therefore u0(x) ∈ {s; f(s,v0) = 0}
for any x ∈ Ω\Γ. But this is a discrete set and uε

ε→0→ u0 uniformly in compact sets
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K ⊂ Ω\Γ. Therefore u0 = αχΩα
+ βχΩβ

is a constant function on each connect
component of Ω\Γ, i.e., α and β are constant functions on Ωα and Ωβ , respectively.
But in particular (uε,vε) is a family of ITLS solutions in a open set U ⊂ Ω with U as
in Theorem 2.1. Consequently (2.2) holds and by above considerations it simplifies
to (2.18). �

Remark 2.4. Under the hypothesis of Corollary 2.3 the nodal curve of f must
intersect the set {s : f(s,v0) = 0} at least three times in order that (2.18) holds.

3. Applications

We single out four examples from the extensive existing bibliography concern-
ing existence of internal transition layers for such systems and conclude that the
different forms of the equal-area assumed therein are in fact necessary conditions.

A.1 Spatial dependent reactions terms. The following model problem is con-
sidered, for instance, in [8]:

ut = ε2uxx + (1− u2)(u− a)− v − k

ω
sin(ωx + b)

vt =
1
σ

vxx + (δu− v), x ∈ [0, 1]

ux = vx = 0 for x ∈ {0, 1}.

(3.1)

where a ∈ (−1, 0), ε and σ are positive and small, δ > 0, k > 0, ω > 0, and b ∈ R.
In particular the existence of a family of stationary solution to (3.1) which develops
internal transition layer, as ε → 0, is proved.

Corollary 2.1 implies that a necessary condition for existence of such a family is
that for some x0 ∈ [0, 1] the following holds∫ h+(v(x0))

h−(v(x0))

[(1− ξ2)(ξ − a)− v(x0)−
k

ω
sin(ωx0 + b)]dξ = 0.

But this is just hypothesis A.2 (p. 372) in [8], assumed therein as a sufficient
condition.

We remark that in the notation of Corollary 2.1, the above equation reads

ṽ =
1

β(x0)− α(x0)

∫ β(x0)

α(x0)

[(1− ξ2)(ξ − a)] dξ

where ṽ = v(x0) + k
ω sin(ωx0 + b).

A.2 A rescaled system regarding instability of patterns. Consider the re-
action - diffusion system

ut = ε2∆u + f(u, v),

vt = D∆v + g(u, v), (x, t) ∈ Ω× (0,∞)
∂u

∂n̂
=

∂v

∂n̂
= 0, (x, t) ∈ ∂Ω× (0,∞)

(3.2)

where u is the activator, v is the inhibitor, Ω is a smooth domain in RN , D > 0
and ε a small positive parameter. The nullcline of f is sigmoidal and consists of
three smooth curves u = h−(v), u = h0(v) and u = h+(v) defined on the intervals
I−, I0 and I+, respectively. Also if minI− = v and maxI+ = v then the inequality
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h−(v) < h0(v) < h+(v) holds for I∗ = (v, v) and h+(v) (resp., h−(v)) coincides
with h0(v) at only one point v = v (resp., v = v), respectively.

In [13], (3.2) is assumed to satisfy a set of hypotheses which include the following
condition on f :

• J(v) =
∫ h+(v)

h−(v)
f(ξ, v)dξ has one isolated zero at v = v∗ ∈ I∗.

Among the hypotheses in [13], they suppose the existence of a family of ITLS
solutions (uε, vε) to (3.2), whose interface Sε is smooth up to ε = 0. Under this
hypothesis it is proved that this family of ITLS solutions becomes unstable for
ε small. By “smooth up to ε = 0” it is meant that there exists an (N − 1)-
dimensional smooth compact connected manifold S0 without boundary in RN such
that Sε

ε→0→ S0.
To capture the morphology of the patterns which should be very intricate in

the limit and based on the balance of the bulk force and the mean curvature effect
they formally derive that the rate of shrinking of this patterns is of order ε1/3. See
[13], p. 1103. Then by a suitable scaling, the resulting rescaled equations capture
the morphology of the magnified patterns. After performing the change of variable
X = x−x∗

ε1/3 for a suitable x∗ ∈ RN , the rescaled system becomes

ũt = ε̃2∆ũ + f(ũ, ṽ),

νε̃ṽt = D∆ṽ + ε̃g(ũ, ṽ), (X, t) ∈ Ωε × (0,∞)
∂ũ

∂n̂
=

∂ṽ

∂n̂
= 0, (X, t) ∈ ∂Ωε × (0,∞)

(3.3)

where ε̃ = ε2/3 and the rescaled domain Ωε satisfies Ωε
ε→0→ Ω̃ with |Ω̃| < ∞.

This convergence may be any one as long as the hypotheses of Theorem 2.1 on the
tubular neighborhood U of Γ are satisfied.

It turns out that the system for the stationary solutions to (3.3) is just (2.1)
when h1 = 1, h2 = D and g = εg(u, v), namely,

ε̃2∆ũ + f(ũ, ṽ) = 0, X ∈ Ωε

D∆ṽ + ε̃g(ũ, ṽ) = 0, X ∈ Ωε

∂ũ

∂n̂
=

∂ṽ

∂n̂
= 0, X ∈ ∂Ωε

(3.4)

Thus Corollary 2.3 applies to any family (ũε, ṽε) of solutions to (3.4) which develops
internal transition layer with interface S0. In our notation v0 = v∗, α0 = h−(v∗)
and β0 = h+(v∗). We conclude that ṽε → v0 where J(v0) = 0 and v0 ≡constant.
The point to be stressed here is that the equal-area condition J(v0) = 0 assumed
in [13] is actually a necessary condition.

A.3 The FitzHugh-Nagumo system. Consider the well-known FitzHugh-Nagu-
mo system (F-N system, for short) which is a simplified version of the Hodgkin-
Huxley equations, which models electrical impulses travelling in the axon of the
squid:

ut = ε∆u + h(u) + v, (t, x) ∈ R+ × Ω

vt = d∆v + δu− γv, (t, x) ∈ R+ × Ω
∂u

∂n̂
=

∂v

∂n̂
= 0, (t, x) ∈ R+ × ∂Ω.

(3.5)
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Here ε, δ and γ are positive constants whereas d is a nonnegative one. For the case
Ω = [0, 1], existence of ITLS solutions to F-N system above has long been related to
the existence of fronts and pulses for F-N system in the positive real line. Therefore
according to (1.5) if one expects to obtain a family (uε, vε) of ITLS solutions to F-N
system above then h must satisfy the following hypothesis: there are constants α,
β (β > α) and v̄ such that h(α) = h(β) = v̄ and

1
(β − α)

∫ β

α

h(s)ds = v̄.

Hence if this condition is violated one can only expect existence of pulses for the
F-N system in the real line.

A.4 A model from morphogenesis. As another application let us consider the
system introduced in [15] in the context of morphogenesis and which inspired many
related works:

ut = d1∆u− u + (up/vq), (t, x) ∈ R+ × Ω

τvt = d2∆v − v + (ur/vs), (t, x) ∈ R+ × Ω
∂u

∂n̂
=

∂v

∂n̂
= 0, (t, x) ∈ R+ × ∂Ω,

(3.6)

where d1, d2, p, q, r, τ are positive constant, s ≥ 0 and

0 <
p− 1

q
<

r

s + 1
.

Our results give a rigorous proof to the heuristic fact that stationary solutions
to (3.6) do not develop internal transition layers as d1 → 0. This will follow from
Corollary 2.3 along with the fact that for each fixed v, say v̄, the line (u, v̄) intersects
the graph of the function v = up−1/q at most twice thus making it impossible for
(2.17) to hold. Therefore, as d1 → 0, among the simplest geometric configuration
possible, stationary solutions to (3.16) can only develop formation of spikes and/or
boundary layer.
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