\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 129, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/129\hfil An application of the Lyapunov-Schmidt method] {An application of the Lyapunov-Schmidt method to semilinear elliptic problems} \author[Q. A. Ng\^o\hfil EJDE-2005/129\hfilneg] {Qu\^o\!$^{'}$c Anh Ng\^o} \address{Qu\^o\!$^{'}$c Anh Ng\^{o} \hfill\break Department of Mathematics, Mechanics and Informatics, College of Science, Vietnam National University, Hanoi, Vietnam} \email{bookworm\_vn@yahoo.com \; anhngq@yahoo.com.vn} \date{} \thanks{Submitted July 12, 2005. Published November 23, 2005.} \subjclass[2000]{35J50, 35J55} \keywords{Semilinear; elliptic system; Lyapunov; Schmidt; fixed-point principle} \begin{abstract} In this paper we consider the existence of nonzero solutions for the undecoupling elliptic system \begin{gather*} -\Delta u=\lambda u+\delta v+f(u,v), \\ -\Delta v=\theta u+ \gamma v+g(u,v), \end{gather*} on a bounded domain of $\mathbb{R}^n$, with zero Dirichlet boundary conditions. We use the Lyapunov-Schmidt method and the fixed-point principle. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \section{Introduction} In this present paper we consider the Dirichlet problem $$\label{btbd} \begin{gathered} -\Delta u= \lambda u+\delta v+f(u,v) \mbox{ in } \Omega, \\ -\Delta v=\theta u+\gamma v+g(u,v) \mbox{ in } \Omega, \\ u=v=0 \mbox{ on }\partial \Omega, \end{gathered}$$ where $\Omega \subset \mathbb{R}^{n}$ ($n \geq 3$) is a bounded domain with smooth boundary and subject to Dirichlet boundary conditions; $A=\begin{pmatrix} \lambda & \delta \\ \theta & \gamma \end{pmatrix}$ is a matrix of real entries; $f,g:\Omega \times \mathbb{R} \to \mathbb{R}$ are globally Lipschitz functions for $u$, $v$; i.e. \begin{gather*} | {f ( {u,v} ) - f ( {\widetilde u,\widetilde v} )} | \leq k_1 ( {| {u - \widetilde u} | + | {v - \widetilde v} |} ), \\ | {g ( {u,v} ) - g ( {\widetilde u,\widetilde v} )} | \leq k_2 ( {| {u - \widetilde u} | + | {v - \widetilde v} |} ), \end{gather*} for all $u, \widetilde u, v, \widetilde v \in \mathbb{R}$. Our goal is finding non-trivial solutions to the system \eqref{btbd} under the above hypothesis, and other suitable conditions on the first two eigenvalues of the Laplacian and on the parameter. Note that the problem Dirichlet for system \eqref{btbd} have been studied by many authors. In \cite{T}, under more restrictive conditions, Hoang has considered the system \eqref{btbd} in which $\Omega$ is an unbounded domain. In \cite{N3}, the author has considered the case of positivity of solutions in a bounded domain and in \cite{TA}, the positivity of solutions have been mentioned for an unbounded domain. Equation \eqref{btbd} represents a steady state case of reaction-diffusion systems of interest in biology. Reaction-diffusion systems have been intensively studied during recent years, see \cite{S2} where many references can be found. There exists a decoupling technique, which consists of reducing the system \eqref{btbd} to a single nonlinear equation containing an integral and a differential term. This technique was introduced by Rothe \cite{R2}, Lazer \& McKenna \cite{LMc} and Brown \cite{B} and has been used thereafter by many authors. For the resonant case many known techniques used to solve the scalar case can be applied to find solutions and positive solutions. See for example Ahmad, Lazer \& Paul \cite{ALP}, Ambrosetti \& Mancini \cite{AM}, Anane \cite{A}, Bartolo, Benci \& Fortunato \cite{BBF}, Berestycki \& De Figueiredo \cite{BF}, Capozzi, Lupo \& Solimini \cite{CLS}, Cesari \& Kannan \cite{CK}, Costa \& Magalh\~{a}es \cite{CM}, De Figueiredo \& Gossez \cite{FG}, Gossez \cite{G}, Innacci \& Nkashama \cite{IN1, IN2}, Landesman \& Lazer \cite{LL}, Lupo \& Solimini \cite{LS}, Omari \& Zanolin \cite{OZ}, Rabinowitz \cite{R1}, Schechter \cite{S1}, Solimini \cite{S3}, Vargas \& Zuluaga \cite{VZ1, VZ2}, Zuluaga \cite{Z1, Z2} and the references therein. The decoupling technique has some obvious shortcomings, for example, it is very difficult to apply to systems with three or more equations. Even, in the case of two equations is too restrictive to give conditions to solve the second equation of \eqref{btbd} for $v$ in terms of $u$. It is known, see \cite{CM}, using the eigenvalues of the matrix $A$, we will be able to give a precise description of kernel of operator $-\Delta - A$, and easy to see that this kernel is nonzero if and only if $A - \lambda_j I$ is singular for some eigenvalue $\lambda_j$ of the operator $-\Delta$. Zuluaga \cite{Z3} showed results of existence and nonexistence of solutions for \eqref{btbd} under the condition $\lambda_1$, the first eigenvalue of $-\Delta$, is also a eigenvalue of matrix $A$. In this paper, we will extend these results obtained in \cite{Z3} under the conditions in which $\lambda_1$ is not a eigenvalue of $A$. Our paper is organized as follows. Section 2 provides some preliminaries and notation including the Lyapunov-Schmidt method. In Section 3, we consider the problem \eqref{btbd} under some special case where some parameters and both Lipschitz constants are equal, problem (\ref{btbd_db}). Our main result for such problem is the Theorem \ref{dlc_db}. By the similar arguments, in Section 4, we state our main result of this paper for the problem \eqref{btbd}. \section{Preliminaries and Notation} In $E= L^2(\Omega) \times L^2(\Omega)$ we use the norm $\| U \|_{L^2(\Omega) \times L^2(\Omega)}^2 = \| u \|_{L^2(\Omega)}^2 + \| v \|_{L^2(\Omega)}^2,$ where $U = ( {u,v} )$. To simplify notation, we use $\|\cdot \|$ to denote the norm in $L^2(\Omega)$ or in $L^2(\Omega) \times L^2(\Omega)$. \subsection*{Solutions of \eqref{btbd}} We say that $U \in H_0^1 ( \Omega ) \times H_0^1 ( \Omega )$ is a solution of \eqref{btbd} if $$U = ( { - \Delta } )^{ - 1} ( {AU + G( U )} ), \label{btbd_k}$$ where $G( U ) = ( f( {u,v} ), g( {u,v} ) )$. It is clear that $( { - \Delta } )^{ - 1} :E \to H_0^1 ( \Omega ) \times H_0^1 ( \Omega )$ is a linear, self-adjoint, continuous and bijective operator. Also, the embedding $H_0^1 ( \Omega ) \times H_0^1 ( \Omega ) \hookrightarrow E$ is compact, thus $( { - \Delta } )^{ - 1} :E \to E$ is compact, self-adjoint and injective as well. Hence, the operator defined by the right hand side of (\ref{btbd_k}) is compact. Throughout this paper we shall denote by $\lambda_1$, $\lambda_2$ the first two eigenvalues of $-\Delta$ and $\varphi_1$, $\varphi_2$ are the eigenfunctions associated with the eigenvalue $\lambda_1$ and $\lambda_2$, respectively. \subsection*{The Lyapunov-Schmidt method} We will denote by $X$ the subspace of $H_0^1 ( \Omega )$ spanned by $\varphi_1$, that is to say $X = \{ t\varphi _1 : t \in \mathbb{R} \}$. We shall also denote $Y = X^ \bot = \langle {\varphi _1 } \rangle ^ \bot$. So, we have the identity $H_0^1 ( \Omega ) = X \oplus Y.$ Then all $U = (u, v) \in E$ can be written as \begin{gather*} u = u_0 + z,u_0 \in X,z \in Y, \\ v = v_0 + w,v_0 \in X,w \in Y, \end{gather*} where $u,v \in H_0^1 ( \Omega )$. Let us denote by $P$ and $Q$ the projection on $X$ and $Y$, respectively. Applying $P$ and $Q$ to both sides of (\ref{btbd_k}) we obtain a decomposition of it in two systems as follows $$\begin{gathered} u_0 = P( { - \Delta } )^{ - 1} [ {\lambda ( {u_0 + z} ) + \delta ( {v_0 + w} ) + f( {u_0 + z, v_0 + w} )} ],\\ v_0 = P( { - \Delta } )^{ - 1} [ {\theta ( {u_0 + z} ) + \gamma ( {v_0 + w} ) + g( {u_0 + z, v_0 + w} )} ], \end{gathered} \label{htx}$$ and $$\begin{gathered} z = Q( { - \Delta } )^{ - 1} [ {\lambda ( {u_0 + z} ) + \delta ( {v_0 + w} ) + f( {u_0 + z, v_0 + w} )} ], \\ w = Q( { - \Delta } )^{ - 1} [ {\theta ( {u_0 + z} ) + \gamma ( {v_0 + w} ) + g( {u_0 + z, v_0 + w} )} ]. \end{gathered} \label{hty}$$ For each $( {u_0 ,v_0 } ) \in X \times X$ fixed, we solve (\ref{hty}) and have a solution $( {z_0, w_0} ) \in Y \times Y$ which will be plugged into (\ref{htx}) to get the solution $( {u_0 ,v_0 } )$ of (\ref{htx}). Thus, the solutions of \eqref{btbd} will be of the form $( {u_0 + z_0, v_0 + w_0} )$. \section{A special case of Problem \eqref{btbd}} Before stating our main result, in this Section, we consider problem \eqref{btbd} in which $\gamma = \lambda = \lambda_1$, $k_1 = k_2 = k$ and $\delta = \theta > 0$, i.e. we shall deal with the existence of non-trivial solutions of the problem $$\label{btbd_db} \begin{gathered} -\Delta u= \lambda_1 u+\delta v+f(u,v) \quad \mbox{in } \Omega, \\ -\Delta v=\delta u+\lambda_1 v+g(u,v) \quad \mbox{in } \Omega, \\ u=v=0 \quad \mbox{on }\partial \Omega, \end{gathered}$$ where $\lambda_1$ is the first eigenvalue of $-\Delta$. Applying the Lyapunov-Schmidt method we obtain a decomposition of it in two systems as follows $$\begin{gathered} u_0 = P( { - \Delta } )^{ - 1} [ {\lambda _1 ( {u_0 + z} ) + \delta ( {v_0 + w} ) + f( {u_0 + z, v_0 + w} )} ],\\ v_0 = P( { - \Delta } )^{ - 1} [ {\delta ( {u_0 + z} ) + \lambda _1 ( {v_0 + w} ) + g( {u_0 + z, v_0 + w} )} ], \end{gathered} \label{htx_db}$$ and $$\begin{gathered} z = Q( { - \Delta } )^{ - 1} [ {\lambda _1 ( {u_0 + z} ) + \delta ( {v_0 + w} ) + f( {u_0 + z, v_0 + w} )} ], \\ w = Q( { - \Delta } )^{ - 1} [ {\delta ( {u_0 + z} ) + \lambda _1 ( {v_0 + w} ) + g( {u_0 + z, v_0 + w} )} ]. \end{gathered} \label{hty_db}$$ Fixing $( {u_0 ,v_0 } ) \in X \times X$, we shall consider (\ref{hty_db}). Letting $F_Q ( {z,w} ) = ( {F_Q^{( 1 )} ( {z,w} ),F_Q^{( 2 )} ( {z,w} )} ),$ where \begin{gather*} F_Q^{( 1 )} ( {z,w} ): = Q( { - \Delta } )^{ - 1} [ {\lambda _1 ( {u_0 + z} ) + \delta ( {v_0 + w} ) + f( {u,v} )}], \\ F_Q^{( 2 )} ( {z,w} ): = Q( { - \Delta } )^{ - 1} [ {\delta ( {u_0 + z} ) + \lambda _1 ( {v_0 + w} ) + g( {u,v} )} ]. \end{gather*} \begin{lemma}\label{bd1} If $$\label{dk1} ( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 < \frac{{\lambda _2^2 }}{2}$$ then $F_Q$ is a contraction in $Y \times Y$. \end{lemma} \begin{proof} Let $z,\widetilde z,w,\widetilde w \in Y$, by the definition of $F_Q^{( 1 )} ( {z,w} )$, we find \begin{align*} F_Q^{( 1 )} ( {z,w} ) - F_Q^{( 1 )} ( {\widetilde z,\widetilde w} ) =& Q( { - \Delta } )^{ - 1} \big( \lambda _1 ( {z - \widetilde z} ) + \delta ( {w - \widetilde w} ) \\ &+ f( {u_0 + z,v_0 + w} ) - f( {u_0 + \widetilde z,v_0 + \widetilde w} ) \big). \end{align*} Therefore, from the characterization of $\lambda_1$, we get \begin{align*} \|F_Q^{( 1 )} ( {z,w} ) - F_Q^{( 1 )} ( {\widetilde z,\widetilde w} ) \| \leq& \frac{1}{\lambda _2} \big( \lambda _1 \| {z - \widetilde z} \| + \delta \| {w - \widetilde w} \| \\ &+ \| {f( {u_0 + z,v_0 + w} ) - f( {u_0 + \widetilde z,v_0 + \widetilde w} )} \| \big). \end{align*} By using the Minkowski's inequality and our Lipschitzian assumptions, we obtain $\| {f( {u_0 + z,v_0 + w} ) - f( {u_0 + \widetilde z,v_0 + \widetilde w} )} \| \leq k( {\| {z - \widetilde z} \| + \| {w - \widetilde w} \|} ).$ So $\| {F_Q^{( 1 )} ( {z,w} ) - F_Q^{( 1 )} ( {\widetilde z,\widetilde w} )} \| \leq \frac{1}{{\lambda _2 }}( {( {\lambda _1 + k} )\| {z - \widetilde z} \| + ( {\delta + k} )\| {w - \widetilde w} \|} ).$ Therefore, $\| {F_Q^{( 1 )} ( {z,w} ) - F_Q^{( 1 )} ( {\widetilde z,\widetilde w} )} \|^2 \leq \frac{2}{{\lambda _2^2 }}( {( {\lambda _1 + k} )^2 \| {z - \widetilde z} \|^2 + ( {\delta + k} )^2 \| {w - \widetilde w} \|^2 } ).$ Similarly, we claim that $\| {F_Q^{( 2 )} ( {z,w} ) - F_Q^{( 2 )} ( {\widetilde z,\widetilde w} )} \|^2 \leq \frac{2}{{\lambda _2^2 }}\Big( {( {\delta + k} )^2 \| {z - \widetilde z} \|^2 + ( {\lambda_1 + k} )^2 \| {w - \widetilde w} \|^2 } \Big).$ Now we obtain $\| {F_Q ( {z,w} ) - F_Q ( {\widetilde z,\widetilde w} )} \|^2 \leq \frac{2} {{\lambda _2^2 }}\Big( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } \Big) \Big( {\| {z - \widetilde z} \|^2 + \| {w - \widetilde w} \|^2 } \Big).$ Hence, the assertion follows. \end{proof} By using fixed-point principle, we conclude that (\ref{hty_db}) has a unique solution $( {z_0( {u_0 ,v_0 } ) , w_0( {u_0 ,v_0 } )} )$ for each $( {u_0 ,v_0 } ) \in X \times X$ fixed. The assertion of the above Lemma let us to define \begin{align*} F:X \times X&\to Y \times Y,\\ ( {u_0 ,v_0 } ) &\mapsto F( {u_0 ,v_0 } ) := ( {z_0 ,w_0 } ), \end{align*} be the function such that $( {z_0 ,w_0 } )$ is the only fixed point of $F_Q$. \begin{lemma}\label{bd2} If $$\label{dk2} ( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 < \frac{{\lambda _2^2 }}{4}$$ then $$\label{dk3} \begin{split} &\| F( {u_0 ,v_0 } ) - F( {\widetilde u_0 ,\widetilde v_0 } ) \|^2 \\ & \leq \frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } )}}( \| {u_0 - v_0 } \|^2 + \| {\widetilde u_0 - \widetilde v_0 } \|^2 ). \end{split}$$ for every $( {u_0 ,v_0 } )$ and $( {\widetilde u_0 ,\widetilde v_0 } )$ in $X \times X$. \end{lemma} \begin{proof} Suppose that $F( {u_0 ,v_0 } ) = ( {z_0 ,w_0 } )$ and $F( {\widetilde u_0 ,\widetilde v_0 } ) = ( {\widetilde z_0 ,\widetilde w_0 } )$. By the definition of $F$, we have \begin{gather*} z_0 = Q( { - \Delta } )^{ - 1} [ {\lambda _1 ( {u_0 + z_0} ) + \delta ( {v_0 + w_0} ) + f( {u_0 + z_0, v_0 + w_0} )} ], \\ w_0 = Q( { - \Delta } )^{ - 1} [ {\delta ( {u_0 + z_0} ) + \lambda _1 ( {v_0 + w_0} ) + g( {u_0 + z_0, v_0 + w_0} )} ], \end{gather*} and \begin{gather*} \widetilde z_0 = Q( { - \Delta } )^{ - 1} [ {\lambda _1 ( {\widetilde u_0 + \widetilde z_0} ) + \delta ( {\widetilde v_0 + \widetilde w_0} ) + f( {\widetilde u_0 + \widetilde z_0, \widetilde v_0 + \widetilde w_0} )} ], \\ \widetilde w_0 = Q( { - \Delta } )^{ - 1} [ {\delta ( {\widetilde u_0 + \widetilde z_0} ) + \lambda _1 ( {\widetilde v_0 + \widetilde w_0} ) + g( {\widetilde u_0 + \widetilde z_0, \widetilde v_0 + \widetilde w_0} )} ]. \end{gather*} Because \begin{gather*} Q( { - \Delta } )^{ - 1} ( {u_0 } ) = Q( { - \Delta } )^{ - 1} ( {v_0 } ) = 0, \\ Q( { - \Delta } )^{ - 1} ( {\widetilde u_0 } ) = Q( { - \Delta } )^{ - 1} ( {\widetilde v_0 } ) = 0, \end{gather*} we have \begin{align*} \| {z_0 - \widetilde z_0 } \| \leq & \frac{1}{{\lambda _2 }} \Big( \lambda _1 \| {z_0 - \widetilde z_0} \| + \delta \| {w_0 - \widetilde w_0} \| \\ &+ \| {f( {u_0 + z_0 ,v_0 + w_0 } ) - f( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \| \Big)\\ \leq & \frac{1}{{\lambda _2 }}\Big( ( {\lambda _1 + k} )\| {z_0 - \widetilde z_0} \|+ ( {\delta + k} )\| {w_0 - \widetilde w_0} \| \\ &+ k ( {\| {u_0 - \widetilde u_0 } \| + \| {v_0 - \widetilde v_0 } \|} ) \Big). \end{align*} Thus \begin{align*} \| {z_0 - \widetilde z_0 } \|^2 \leq& \frac{4} {{\lambda _2^2 }}\Big( ( {\lambda_1 + k} )^2 \| {z_0 - \widetilde z_0 } \|^2 + ( {\delta + k} )^2 \| {w_0 - \widetilde w_0 } \|^2 \\ & + k^2 \big( \| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 \big) \Big). \end{align*} Similarly, we find \begin{align*} \| {w_0 - \widetilde w_0 } \|^2 \leq & \frac{4} {{\lambda _2^2 }}\Big( ( {\delta + k} )^2 \| {z_0 - \widetilde z_0 } \|^2 + ( {\lambda _1 + k} )^2 \| {w_0 - \widetilde w_0 } \|^2 \\ & + k^2 \big( \| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 \big) \Big). \end{align*} Hence \begin{align*} \| {z_0 - \widetilde z_0 } \|^2 + \| {w_0 - \widetilde w_0 } \|^2 \leq & \frac{4} {\lambda _2^2 }\Big( ( {( {\delta + k} )^2 + ( {\lambda _1 + k} )^2 } )( {\| {z_0 - \widetilde z_0 } \|^2 + \| {w_0 - \widetilde w_0 } \|^2 } ) \\ &+ 2k^2 ( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } ) \Big). \end{align*} Therefore \begin{align*} &\| {z_0 - \widetilde z_0 } \|^2 + \| {w_0 - \widetilde w_0 } \|^2 \\ &\leq \frac{{8k^2 }} {{\lambda _2^2 - 4( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } )}}( {\| {u_0 - v_0 } \|^2 + \| {\widetilde u_0 - \widetilde v_0 } \|^2 } ). \end{align*} \end{proof} Now, we consider the system (\ref{htx_db}). First, the fact that $F$ is a contraction mapping yields $$\begin{gathered} u_0 = P( { - \Delta } )^{ - 1} [ {\lambda _1 ( {u_0 + z_0} ) + \delta ( {v_0 + w_0} ) + f( {u_0 + z_0, v_0 + w_0} )} ],\\ v_0 = P( { - \Delta } )^{ - 1} [ {\delta ( {u_0 + z_0} ) + \lambda _1 ( {v_0 + w_0} ) + g( {u_0 + z_0, v_0 + w_0} )} ]. \end{gathered}$$ Because \begin{gather*} P( { - \Delta } )^{ - 1} ( {z_0 } ) = P( { - \Delta } )^{ - 1} ( {w_0 } ) = 0, \\ P( { - \Delta } )^{ - 1} ( {\lambda _1 u_0 } ) = u_0 , P( { - \Delta } )^{ - 1} ( {\lambda _1 v_0 } ) = v_0, \end{gather*} we deduce that $$\begin{gathered} 0 = P( { - \Delta } )^{ - 1} [ \delta v_0 + f( {u_0 + z_0, v_0 + w_0} ) ],\\ 0 = P( { - \Delta } )^{ - 1} [ \delta u_0 + g( {u_0 + z_0, v_0 + w_0} ) ]. \end{gathered}$$ On the other hand, from the definition of subspace $X$, $P( { - \Delta } )^{ - 1} ( {\delta u_0 } ) = \frac{\delta }{{\lambda _1 }}u_0, \quad P( { - \Delta } )^{ - 1} ( {\delta v_0 } ) = \frac{\delta }{{\lambda _1 }}v_0.$ This yields $$\label{bd2_1} \begin{gathered} 0 = \frac{\delta }{{\lambda _1 }}v_0 + P( { - \Delta } )^{ - 1} [ f( {u_0 + z_0, v_0 + w_0} ) ],\\ 0 = \frac{\delta }{{\lambda _1 }}u_0 + P( { - \Delta } )^{ - 1} [ g( {u_0 + z_0, v_0 + w_0} ) ]. \end{gathered}$$ Now, (\ref{bd2_1}) is equivalent to $$\begin{gathered} u_0 = - \frac{\lambda _1}{\delta} P( { - \Delta } )^{ - 1} [ g( {u_0 + z_0, v_0 + w_0} ) ],\\ v_0 = - \frac{\lambda _1}{\delta} P( { - \Delta } )^{ - 1} [ f( {u_0 + z_0, v_0 + w_0} ) ]. \end{gathered}$$ Letting $F_P ( {u_0, v_0} ) = ( {F_P^{( 1 )} ( {u_0, v_0} ),F_P^{( 2 )} ( {u_0, v_0} )} ),$ where \begin{gather*} F_P^{( 1 )} ( {u_0, v_0} ): = - \frac{\lambda _1}{\delta} P( { - \Delta } )^{ - 1} [ g( {u_0 + z_0, v_0 + w_0} ) ], \\ F_P^{( 2 )} ( {u_0, v_0} ): = - \frac{\lambda _1}{\delta} P( { - \Delta } )^{ - 1} [ f( {u_0 + z_0, v_0 + w_0} ) ]. \end{gather*} \begin{lemma}\label{bd3} If $( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 < \lambda _2^2 /4$ and $$\label{dk4} \frac{{8k^2 }}{{\delta ^2 }}\Big( {1 + \frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\delta + k} )^2 + ( {\lambda _1 + k} )^2 } )}}} \Big) < 1$$ then $F_P$ is a contraction in $X \times X$. \end{lemma} \begin{proof} Letting $( {\widetilde u_0, \widetilde v_0} )$ in $X \times X$. Corresponding to $( \widetilde u_0, \widetilde v_0 )$, from Lemma \ref{bd1}, we have $( {\widetilde z_0, \widetilde w_0} )$ in $Y \times Y$. From the definition of $F_P^{( 1 )} ( {u_0, v_0} )$ we find \begin{align*} &F_P^{( 1 )} ( {u_0 ,v_0 } ) - F_P^{( 1 )} ( {\widetilde u_0 , \widetilde v_0 } )\\ &= - \frac{{\lambda _1 }}{\delta }P( { - \Delta } )^{ - 1} [ {g( {u_0 + z_0 ,v_0 + w_0 } ) - g( {\widetilde u_0 + \widetilde z_0 , \widetilde v_0 + \widetilde w_0 } )} ]. \end{align*} Using our Lipschitzian assumptions we obtain \begin{align*} &\| {F_P^{( 1 )} ( {u_0 ,v_0 } ) - F_P^{( 1 )} ( {\widetilde u_0 , \widetilde v_0 } )} \| \\ & \leq \frac{{\lambda _1 }}{\delta } \frac{1}{{\lambda _1 }}\| {g( {u_0 + z_0 ,v_0 + w_0 } ) - g( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \|\\ & \leq \frac{k}{\delta }( {\| {u_0 - \widetilde u_0 } \| + \| {v_0 - \widetilde v_0 } \| + \| {z_0 - \widetilde z_0 } \| + \| {w_0 - \widetilde w_0 } \|} ). \end{align*} By (\ref{dk3}), we have \begin{align*} & \| {F_P^{( 1 )}( {u_0 ,v_0 } ) - F_P^{( 1 )} ( {\widetilde u_0 ,\widetilde v_0 } )} \|^2 \\ &\leq \frac{{4k^2 }}{{\delta ^2 }} \Big( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 + \| {z_0 - \widetilde z_0 } \|^2 + \| {w_0 - \widetilde w_0 } \|^2 } \Big) \\ &\leq \frac{{4k^2 }}{{\delta ^2 }} \Big( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } \Big) \\ &\quad+ \frac{{4k^2 }}{{\delta ^2 }}\frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } )}}( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } )\\ &\leq \frac{{4k^2 }}{{\delta ^2 }}\Big( 1 + \frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } )}} \Big) ( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } ). \end{align*} Similarly, we have \begin{align*} & \| {F_P^{( 2 )} ( {u_0 ,v_0 } ) - F_P^{( 2 )} ( {\widetilde u_0 , \widetilde v_0 } )} \|^2 \\ &\leq \frac{{4k^2 }}{{\delta ^2 }}\Big( 1 + \frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } )}} \Big) ( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } ). \end{align*} Thus \begin{align*} & \| {F_P ( {u_0 ,v_0 } ) - F_P ( {\widetilde u_0 ,\widetilde v_0 } )} \|^2 \\ &\leq \frac{{8k^2 }}{{\delta ^2 }}\Big( 1 + \frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 } )}} \Big) ( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } ). \end{align*} So, the proof is complete. \end{proof} The main result in this section is the following theorem, whose proof follows the arguments above. \begin{theorem}\label{dlc_db} If $( {\lambda _1 + k} )^2 + ( {\delta + k} )^2 < \lambda _2^2/4$, and $\frac{{8k^2 }}{{\delta ^2 }}\Big( {1 + \frac{{8k^2 }}{{\lambda _2^2 - 4( {( {\delta + k} )^2 + ( {\lambda _1 + k} )^2 } )}}} \Big) < 1,$ then (\ref{btbd_db}) has a solution. Furthermore, this solution is unique. \end{theorem} \section{Main results} In this Section, we establish existence result for the cases in which $A - \lambda_1 I$ is regular. Letting $l := ( {| \lambda | + k_1 } )^2 + ( {| \delta | + k_1 } )^2 + ( {| \theta | + k_2 } )^2 + ( {| \gamma | + k_2} )^2.$ Our main result is as follows. \begin{theorem}\label{dlc} Suppose that $\lambda_1$ is not a eigenvalue of matrix $A$, $l < \lambda _2^2/2$, and $\frac{{4( {k_1^2 + k_2^2 } )\big( {( {\lambda _1 - \lambda } )^2 + ( {\lambda _1 - \gamma } )^2 + \theta ^2 + \delta ^2 } \big)}} {{( {( {\lambda _1 - \lambda } ) ( {\lambda _1 - \gamma } ) - \theta \delta } )^2 }} \Big( {1 + \frac{{4( {k_1^2 + k_2^2 } )}} {{\lambda _2^2 - 2l}}} \Big) < 1.$ Then, \eqref{btbd} has a unique solution $( {u,v} )$ in $L^2 ( \Omega ) \times L^2 ( \Omega )$. \end{theorem} For the proof of the above theorem we need some lemmas. \begin{lemma}\label{bd4} For each $( {u_0 ,v_0 } ) \in X \times X$ fixed, if $l < \lambda _2^2$ then (\ref{hty}) has a unique solution $( {z_0 , w_0 } ) \in Y \times Y$. \end{lemma} As in Lemma \ref{bd1}, it is easy to verify the statement of the above lemma. This result let us to define \begin{align*} T:X \times X&\to Y \times Y,\\ ( {u_0 ,v_0 } ) &\mapsto T( {u_0 ,v_0 } ) := ( {z_0 ,w_0 } ), \end{align*} where $( {z_0 ,w_0 } )$ is the unique solution of (\ref{hty}). \begin{lemma}\label{bd5} If $l < \lambda _2^2/2$ then $$\label{dk5} \| {T( {u_0 ,v_0 } ) - T( {\widetilde u_0 ,\widetilde v_0 } )} \|^2 \leq \frac{{4( {k_1^2 + k_2^2 } )}}{{\lambda _2^2 - 2l}} \big( {\| {u_0 - v_0 } \|^2 + \| {\widetilde u_0 - \widetilde v_0 } \|^2 } \big).$$ \end{lemma} It is easy to check the statement of the above lemma. \begin{lemma}\label{bd6} If $l < \lambda _2^2/2$ and $$\label{dk6} \frac{{4( {k_1^2 + k_2^2 } )( {( {\lambda _1 - \lambda } )^2 + ( {\lambda _1 - \gamma } )^2 + \theta ^2 + \delta ^2 } )}} {{( {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } )^2 }}\Big( {1 + \frac{{4( {k_1^2 + k_2^2 } )}} {{\lambda _2^2 - 2l}}} \Big) < 1$$ then (\ref{htx}) has a unique solution in $X \times X$. \end{lemma} \begin{proof} By Lemma \ref{bd4}, we obtain $$\begin{gathered} u_0 = P( { - \Delta } )^{ - 1} [ {\lambda ( {u_0 + z_0} ) + \delta ( {v_0 + w_0} ) + f( {u_0 + z_0, v_0 + w_0} )} ],\\ v_0 = P( { - \Delta } )^{ - 1} [ {\theta ( {u_0 + z_0} ) + \gamma ( {v_0 + w_0} ) + g( {u_0 + z_0, v_0 + w_0} )} ]. \end{gathered}$$ It follows from the properties of $P$ that $$\begin{gathered} u_0 = P( { - \Delta } )^{ - 1} [ {\lambda u_0 + \delta v_0 + f( {u_0 + z_0, v_0 + w_0} )} ],\\ v_0 = P( { - \Delta } )^{ - 1} [ {\theta u_0 + \gamma v_0 + g( {u_0 + z_0, v_0 + w_0} )} ], \end{gathered}$$ which implies $$\label{bd4_1} \begin{gathered} u_0 = \frac{\lambda }{\lambda _1} u_0 + \frac{\delta}{\lambda _1} v_0 + P( { - \Delta } )^{ - 1} [f( {u_0 + z_0, v_0 + w_0} ) ],\\ v_0 = \frac{\theta }{\lambda _1} u_0 + \frac{\gamma}{\lambda _1} v_0 + P( { - \Delta } )^{ - 1} [g( {u_0 + z_0, v_0 + w_0} ) ]. \end{gathered}$$ By solving the system (\ref{bd4_1}), we have \begin{gather*} u_0 = \frac{{\lambda _1 ( {\lambda _1 - \gamma } )P( { - \Delta } )^{ - 1} [ {f} ] + \lambda _1 \delta P( { - \Delta } )^{ - 1} [{g} ]}} {{( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta }} = :F_P^{( 1 )} ( {u_0 ,v_0 } ), \\ v_0 = \frac{{\lambda _1 ( {\lambda _1 - \lambda } )P( { - \Delta } )^{ - 1} [ {g} ] + \lambda _1 \theta P( { - \Delta } )^{ - 1} [ {f} ]}} {{( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta }} = :F_P^{( 2 )} ( {u_0 ,v_0 } ). \end{gather*} Hence, we obtain \begin{align*} & F_P^{( 1 )} ( {u_0 ,v_0 } ) - F_P^{( 1 )} ( {\widetilde u_0 , \widetilde v_0 } ) \\ &= \frac{\lambda _1 ( {\lambda _1 - \gamma } )}{{( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta }} P( { - \Delta } )^{ - 1} [ {f( {u_0 + z_0 ,v_0 + w_0 } ) - f( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} ] \\ & + \frac{\lambda _1 \delta}{{( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta }} P( { - \Delta } )^{ - 1} [ {g( {u_0 + z_0 ,v_0 + w_0 } ) - g( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} ]. \end{align*} Thus \begin{align*} &\| {F_P^{( 1 )} ( {u_0 ,v_0 } ) - F_P^{( 1 )} ( {\widetilde u_0 ,\widetilde v_0 } )} \| \\ &\leq \frac{| {\lambda _1 - \gamma } |}{{| {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } |}} \| {f( {u_0 + z_0 ,v_0 + w_0 } ) - f( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \| \\ &\quad +\frac{ | \delta |}{{| {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } |}}\| {g( {u_0 + z_0 ,v_0 + w_0 } ) - g( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \|. \end{align*} Similarly, we have \begin{align*} &\| {F_P^{( 2 )} ( {u_0 ,v_0 } ) - F_P^{( 2 )} ( {\widetilde u_0 ,\widetilde v_0 } )} \| \\ &\leq \frac{| {\lambda _1 - \lambda } |}{{| {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } |}} \| {f( {u_0 + z_0 ,v_0 + w_0 } ) - f( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \| \\ &\quad +\frac{ | \theta |}{{| {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } |}}\| {g( {u_0 + z_0 ,v_0 + w_0 } ) - g( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \|. \end{align*} Thus \begin{align*} &\| {F_P ( {u_0 ,v_0 } ) - F_P ( {\widetilde u_0 ,\widetilde v_0 } )} \|^2 \\ &\leq \frac{{( {\lambda _1 - \gamma } )^2 + ( {\lambda _1 - \lambda } )^2 + \delta ^2 + \theta ^2 }}{{( {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } )^2 }} \Big( \| {f( {u_0 + z_0 ,v_0 + w_0 } ) - f( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \|^2 \\ &\quad+ \| {g( {u_0 + z_0 ,v_0 + w_0 } ) - g( {\widetilde u_0 + \widetilde z_0 ,\widetilde v_0 + \widetilde w_0 } )} \|^2 \Big), \end{align*} where $F_P ( {u_0, v_0} ) = ( {F_P^{( 1 )} ( {u_0, v_0} ),F_P^{( 2 )} ( {u_0, v_0} )} ).$ Using our Lipschitzian assumptions, \begin{align*} & \| {F_P ( {u_0 ,v_0 } ) - F_P ( {\widetilde u_0 ,\widetilde v_0 } )} \|^2 \\ &\leq 4( {k_1^2 + k_2^2 } ) \frac{{( {\lambda _1 - \gamma } )^2 + ( {\lambda _1 - \lambda } )^2 + \delta ^2 + \theta ^2 }}{{( {( {\lambda _1 - \lambda } )( {\lambda _1 - \gamma } ) - \theta \delta } )^2 }} \Big( {1 + \frac{{4( {k_1^2 + k_2^2 } )}}{{\lambda _2^2 - 2l}}} \Big) \\ &\quad\times ( {\| {u_0 - \widetilde u_0 } \|^2 + \| {v_0 - \widetilde v_0 } \|^2 } ) \end{align*} which completes the proof. \end{proof} The proof of Theorem \ref{dlc} is similar to the proof of Theorem \ref{dlc_db}; therefore, we omit it. \subsection*{Acknowledgments} Part of this research was done in Spring of 2005, while I was a student at the Department of Mathematics, Mechanics and Informatics, College of Science, Vietnam National University. I thank the department members for their hospitality. The author would like to thank also Professor Ho\{a}ng Quoc Toan, for his interest, encouragement, fruitful discussions and helpful comments. Special thanks goes to Professor Tr\^{a}n Huy Ho for his interest in my work and valuable conversations. This work cannot be done without the support and understanding from my family. I would like to thank my daddy Ngo D. Quoc, my mommy Phan T. T. Huyen and my younger sister Ngo T. H. Trang for their endless love. Also, I want to thank the anonymous referee for his/her valuable comments and suggestions. \begin{thebibliography}{00} \bibitem{ALP}\textsc{S. Ahmad and A. Lazer and J. Paul}, Elementary critical point theory and perturbation of elliptic boundary value problems at resonance, {\it Indiana Univ. Math. J.} {\bf 25} (1976), 933-944. \bibitem{AM}\textsc{A. Ambrosetti and G. Mancini}, Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue, {\it J. Diff. Equations} {\bf 28} (1978), 220-245. \bibitem{A}\textsc{A. Anane}, {\it Etude des valeurs propers et la resonance pour le operateur P-Laplacian}, Ph. D. Thesis, Univ. Bruxelles, 1988. \bibitem{B}\textsc{K. J. Brown}, Spatially inhomogeneous steady-state solutions for systems of equations describing interacting populations, {\it J. Math. Anal. Appl.} {\bf 95} (1983), 251-264. \bibitem{BF}\textsc{H. Berestycki and D. De Figueiredo}, Double resonance in semilinear elliptic problems, {\it Comm. Partial Diff. Equations} {\bf 6} (1981), 91-120. \bibitem{BBF}\textsc{P. Bartolo and V. Benci and D. Fortunato}, Abstract critical point theorems and applications to some nonlinear problems with strong resonance, {\it Nonlinear Analysis T.M.A.} {\bf 7} (1983), no. 9, 981-1012. \bibitem{CLS}\textsc{A. Capozzi and D. Lupo and S. Solimini}, On the existence of a nontrivial solution to nonlinear problem at resonance, {\it Nonlinear Analysis T.M.A.} {\bf 13} (1989), no. 2, 151-163. \bibitem{CK}\textsc{L. Cesari and R. Kannan}, Qualitative study of a class of nonlinear boundary value problems at resonance, {\it J. Diff. Equations} {\bf 56} (1985), 63-81. \bibitem{CMN}\textsc{R. Chiappinelli and J. Mawhin and R. Nugari}, Bifurcation from infinity and multiple solutions for some Dirichlet problems with unbounded nonlinearities, {\it Nonlinear Analysis T.M.A}, in press. \bibitem{CH}\textsc{S. Chow and J. Hale}, {\it Methods of Bifurcation Theory}, Springer-Verlag, 1982. \bibitem{CM}\textsc{D. Costa and Magalh\~{a}es}, A variational approach to subquadratic perturbations of elliptic systems, {\it J. Diff. Equations} {\bf 111} (1994), no. 1, 103-122. \bibitem{FC}\textsc{D. De Figueiredo and R. Chiappinelli}, Bifurcation from infinity and multiple solutions for an elliptic system, {\it Differential and Integral Equations} {\bf 6} (1993), no. 4, 757-771. \bibitem{FG}\textsc{D. De Figueiredo and J. Gossez}, Resonance below the first eigenvalue for a semilinear elliptic problem, {\it Math. Ann.} {\bf 281} (1988), 589-610. \bibitem{FM}\textsc{D. De Figueiredo and E. Mitidieri}, A maximum principle for an elliptic system and applications to semilinear problems, {\it Siam. J. Math. Anal.} {\bf 17} (1986), 836-849. \bibitem{G}\textsc{J. Gossez}, Some nonlinear differential equations at resonance at first eigenvalue, {\it Conf. Sem. Mat. Univ Bari} {\bf 167} (1979), 355-389. \bibitem{H}\textsc{J. Hern\'{a}ndez}, Maximum principles and decoupling for positive solutions of reaction-diffusion systems, {\it Oxford University Press, K. J. Brown and A. Lacey eds}, 1990, 199-224. \bibitem{T}\textsc{Hoang, Quoc Toan}, {\it On a system of semilinear elliptic equations on an unbounded domain}, to appear in Vietnam Journal of Mathematics. \bibitem{TA}\textsc{Hoang, Quoc Toan and Ng\^{o}, Qu\^{o}\hspace{0.35ex}\llap{\raise 0.3ex\hbox{\'{}}}\hspace{-0.2ex}c Anh}, {\it Existence of positive solution for a system of semilinear elliptic differential equations on an unbounded domain}, submitted to NoDEA. \bibitem{IN1}\textsc{R. Iannacci and M. Nkashama}, Nonlinear boundary value problems at resonance, {\it Nonlinear Analysis T.M.A.} {\bf 11} (1987), 455-473. \bibitem{IN2}\textsc{R. Iannacci and M. Nkashama}, {\it Nonlinear second order elliptic partial differential equations at resonance}, Report 87-12, Memphis State University, 1987. \bibitem{KZ}\textsc{M. Krasnosels'kii and F. Zabreico}, {\it Geometrical Methods of Nonlinear Analysis}, Springer-Verlag, 1984. \bibitem{LL}\textsc{E. Landesman and A. Lazer}, Nonlinear perturbation of elliptic boundary value problems at resonance, {\it J. Math. Mech.} {\bf 19} (1970), 609-623. \bibitem{LMc}\textsc{A. Lazer and P. J. McKenna}, On steady-state solutions of a system of reaction-diffusion equations from biology, {\it Nonlinear Analysis T.M.A.} {\bf 6} (1982), 523-530. \bibitem{LS}\textsc{D. Lupo and S. Solimini}, A note on a resonance problem, {\it Proc. Royal Soc. Edinburgh} {\bf 102} A (1986), 1-7. \bibitem{M}\textsc{J. Mawhin}, {\it Bifurcation from infinity and nonlinear boundary value problems, in ordinary and partial differential equations}, vol. II, Sleeman and Jarvis eds, Longman, Ifarlow, 1989, 119-129. \bibitem{MS1}\textsc{J. Mawhin and K. Schmitt}, Landesman-Lazer type problems at an eigenvalue of odd multiplicity, {\it Results in Math.} {\bf 14} (1988), 138-146. \bibitem{MS2}\textsc{J. Mawhin and K. Schmitt}, Nonlinear eigenvalue problems with the parameter near resonance, {\it Ann. Polon. Math.} {\bf 51} (1990), 241-248. \bibitem{N2}\textsc{Ng\^{o}, Qu\^{o}\hspace{0.35ex}\llap{\raise 0.3ex\hbox{\'{}}}\hspace{-0.2ex}c Anh}, {\it College graduation thesis}, H\{a} N\d{\^{o}}i - Vi\d{\^{e}}t Nam, 2005. \bibitem{N3}\textsc{Ng\^{o}, Qu\^{o}\hspace{0.35ex}\llap{\raise 0.3ex\hbox{\'{}}}\hspace{-0.2ex}c Anh}, {\it Existence of positive solution of semilinear elliptic equations on a bounded domain}, in preparation. \bibitem{N1}\textsc{L. Nirenberg}, {\it Topics in nonlinear functional analysis}, New York, 1974. \bibitem{OZ}\textsc{P. Omari and F. Zanolin}, A note on nonlinear oscillations at resonance, {\it Acta Math. Sinica} {\bf 3} (1987), 351-361. \bibitem{R1}\textsc{P. Rabinowitz}, {\it Minimax methods in critical point theory with applications to differential equations}, CBMS 65 Regional Conference Series in Math, A.M.S., 1986. \bibitem{R2}\textsc{F. Rothe}, Global existence of branches of stationary solutions for a system of reaction-diffusion equations from biology, {\it Nonlinear Analysis T.M.A.} {\bf 5} (1981), 487-498. \bibitem{S1}\textsc{M. Schechter}, Nonlinear elliptic boundary value problems at resonance, {\it Nonlinear Analysis T.M.A.} {\bf 14} (1990), no. 10, 889-903. \bibitem{S2}\textsc{J. Smoller}, {\it Shock Waves and Reaction-Diffusion Equations}, Springer-Verlag, 1983. \bibitem{S3}\textsc{S. Solimini}, On the solvability of some elliptic partial differential equations with the linear part at resonance, {\it J. Math. Anal. Appl.} {\bf 117} (1986), 138-152. \bibitem{VZ1}\textsc{C. Vargas and M. Zuluaga}, On a nonlinear Dirichlet problem type at resonance and birfucation, {\it PDEs, Pitmat research, Notes in Mathematics}, {\bf 273} (1992), 248-252. \bibitem{VZ2}\textsc{C. Vargas and M. Zuluaga}, A nonlinear elliptic problem at resonance with a nonsimple eigenvalue, {\it Nonlinear Analysis T.M.A.} (1996), 711-721. \bibitem{Z1}\textsc{M. Zuluaga}, A nonlinear elliptic system at resonance, {\it Dynamic Systems and Applications} {\bf 3} (1994), no. 4, 501-510. \bibitem{Z2}\textsc{M. Zuluaga}, Nonzero solutions of a nonlinear elliptic system at resonance, {\it Nonlinear Analysis T.M.A} {\bf 31} (1996), no. 3/4, 445-454. \bibitem{Z3}\textsc{M. Zuluaga}, On a nonlinear elliptic system: resonance and birfucation cases, {\it Comment. Math. Univ. Caroliae}, {\bf 40} 4 (1999), 701-711. \end{thebibliography} \end{document}