
Electronic Journal of Differential Equations, Vol. 2005(2005), No. 135, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

CONTROLLABILITY OF TIME-VARYING CELLULAR NEURAL
NETWORKS

WADIE AZIZ, TEODORO LARA

Abstract. In this work, we consider the model of Cellular Neural Network

(CNN) introduced by Chua and Yang in 1988, but with the cloning templates

ω-periodic in time. By imposing periodic boundary conditions the matrices
involved in the system become circulant and ω-periodic. We show some results

on the controllability of the linear model using a Theorem by Brunovsky for

the case of linear and ω-periodic system. Also we use this approach in im-
age detection, specifically foreground, background and contours of figures in

different scales of grey.

1. Introduction

Since its invention in 1988 [4, 5] Cellular Neural Network (CNN) paradigm has
evolved to cover broad class of problems and frameworks. It provides a powerful
analogue non-linear computing structure of a variety of array computations. Array
computations can be defined as the parallel execution of complex operations on a
large number of processors placed on a geometrical regular grid.

The extension of the CNN paradigm is the CNN universal machine in which
distributed, global memories and logic functions support the execution of complex
analogical algorithms. The key feature of the CNN architecture is its high opera-
tional speed ([6]). Several variations of the original CNN have been proposed and
used for black and white image processing, edge detection, noise removal, horizontal
or vertical line filtering, hole filling, objets shadowing and others. An analytical
method, based on the comparison principle for differential equations, has been pro-
posed for synthesizing CNN’s for simple transformations on bipolar image ([17]).

In [12] the delay model is introduced and used in image detection; with the
introduction of delay a combination of connected component detector and vertical
line detector is achieved in one output.

Results about dynamic and stability of CNN (non-linear and delay case) are
shown in [13]. Linear delayed and symmetric CNN are shown to be stable if the
delay is suitable chosen [11]. Gilli [7] investigates the stability of delayed CNN by
means of a Liapunov functional.
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Because the CNN model (in any form) involves a control (or input) it makes
sense wonder about its controllability. In [10] the controllability of the linear model
of CNN (constant cloning templates) with periodic boundary conditions is studied.

The introduction of periodic boundary conditions makes the matrices involved
in the general equation to be circulant which is a great advantage in the search of
controllability.

Non autonomous CNN appears by considering the interactions among cells of
the array depending on time, that is, the cloning templates Ã and B̃ now are time-
dependant [10]. From the point of view of the model, passing to non-autonomous
system is natural. It means that when time goes on the interactions among cells
change. This type of model may be used to achieve particular goals depending on
time.

The model we consider in this paper is basically the one given in [10]; i. e., Ã

and B̃ are 3× 3-matrices, or equivalently, 1-neighborhood and we impose periodic
boundary conditions (see [4, 5, 12]). Now Ã ≡ Ã(t), B̃ ≡ B̃(t), and of course, the
MN×MN matrices A and B are now A(t) and B(t) respectively. Once the problem
is set we shall give conditions under which is possible to guarantee controllability.
Moreover, we generalize the model given in [10] and the condition on controllability
given there is obtained in a more general form.

2. Preliminaries

In this section we set up the problem subject of study in this paper, we give the
tools that will be used in proving the main results which are in next section; this
includes among other things, circulant and Vandermonde matrices.

As in [12], we consider an M × N CNN having MN cells arranged in M rows
and N columns; the cell in position ij will be denoted by cij .

Definition 2.1. The 1-neighborhood of a cell cij , in a CNN is defined as

N ij =
{
ci1j1 : max{|i− i1|; |j − j1|} ≤ 1; 1 ≤ i1 ≤ M, 1 ≤ j1 ≤ N

}
. (2.1)

The dynamics of a CNN has both output feedback and input control mechanisms.
The output feedback depends on the interactive parameters aij(t), continuous func-
tions depending on time t ≥ 0; and the input control on parameters bij(t), which
also continuous functions and both ω-periodic, ω > 0. They are represented as
3×3 matrices (time varying cloning templates), called the feedback and the control
operators, respectively, and given as

Ã(t) = (aij(t))3×3, B̃(t) = (bij(t))3×3, t ≥ 0.

If we consider v ∈ RMN as the state voltage vector (voltage through the array),
then v = (v11, . . . , vMN )T (T means transpose), u = (u11, . . . , uMN )T ∈ RMN the
input (control), y = G(v) the output function,

G : RMN → RMN ; G(v) = (g(v11), g(v12), . . . , g(vMN ))T , g : R → R

is assumed to be differentiable. Also, we impose periodic boundary conditions,
vi1k = vi1(N+k)

vi1k = vi1(N+k)

}
i1 = 0, . . . ,M + 1, k = 0, 1

vki2 = v(M+k)i2

vki2 = v(M+k)i2

}
i2 = 0, . . . , N + 1, k = 0, 1.

(2.2)
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Then the whole equation can be written as

v̇ = −v + A(t)G(v) + B(t)u + I, t ≥ 0 (2.3)

which, after translations, can be put as (I ∈ RMN is a constant vector)

v̇ = −v + A(t)G(v) + B(t)u (2.4)

with

A(t)G(v) = (Ã(t)� Ĝ(v11), . . . , Ã(t)� Ĝ(vMN ))T ,

B(t)u = (B̃(t)� û11, . . . , B̃(t)� ûMN )T ,

G̃(vij) =

g(vi−1j−1) g(vi−1j) g(vi−1j+1)
g(vij−1) g(vij) g(vij+1)

g(vi+1j−1) g(vi+1j) g(vi+1j+1) ,


ûij , the components of control u, are defined accordingly. Note that the above
matrices are well defined because of period boundary conditions. The �-product
of matrices is given as

K � L =
∑
i,j

kij lij ,

where K and L are matrices of the same size. As in [10]; A(t) and B(t) are
MN ×MN block circulant and each block in turn is also circulant.

Following the same procedure as in [10], we find that

A(t) = circ(A1(t), A2(t), 0, . . . , 0, A3(t))

B(t) = circ(B1(t), B2(t), 0, . . . , 0, B3(t))

Ai(t), Bi(t); i = 1, 2, 3 are N ×N–circulant matrices given as

A1(t) = circ(a22(t), a23(t), 0, . . . , 0, a21(t))

A2(t) = circ(a32(t), a33(t), 0, . . . , 0, a31(t))

A3(t) = circ(a12(t), a13(t), 0, . . . , 0, a11(t))

B1(t) = circ(b22(t), b23(t), 0, . . . , 0, b21(t))

B2(t) = circ(b32(t), b33(t), 0, . . . , 0, b31(t))

B3(t) = circ(b12(t), b13(t), 0, . . . , 0, b11(t)).

Because Ã(t) and B̃(t) are ω-periodic so are matrices Ai(t), Bi(t), and consequently,
A(t), and B(t).

In this paper we study the case G(v) = αv, α > 0; that is, the linear case. Then
(2.3), and consequently (2.4) may be written as

v̇ = −v + A(t)v + B(t)u + I,

v̇ = −v + A(t)v + B(t)u

respectively. We rewrite both foregoing equations, respectively, as

v̇ = Â(t)v + B̂(t)u + I, (2.5)

v̇ = Â(t)v + B̂(t)u. (2.6)

We can consider even a more general case than (2.5); that is, when I = I(t) which
means that independent source depends on time (I(t) is assumed to be continuous).
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That may be the case in the design of a particular device. Actually we are able to
prove the following result.

Lemma 2.2. For Â(t) and B̂(t) as in (2.5), I = I(t) continuous function of t,
the equation

v̇ = Â(t)v + B̂(t)u + I(t)
is equivalent to (2.6).

Proof. First we implement the change of variable v = P (t)y (Floquet Transforma-
tion), where P (t) is ω-periodic and invertible such that

Φ(t) = P (t)eCt

is the fundamental matrix of
ẋ = Â(t)x,

C is an n × n-constant matrix ([8]). After some computations we arrive to the
equation

ẏ = Cy + P−1(t)B̂(t)u + P−1(t)I(t) (2.7)
and obtain an equation as (2.6) by making the change of variable

y = z +
∫ t

0

eC(t−s)I(s)ds

in (2.7). �

Remark 2.3. We have shown that even when the current independent source is
time-dependent, the resulting model is worked out in the same way as (2.6).

Definition 2.4. The n× n matrix

Vn =


1 1 1 1
α1 α2 . . . αn

...
... . . .

...
αn−1

1 αn−1
2 . . . αn−1

n

 ≡ Vn(α1, . . . , αn)

is called Vandermonde matrix of order n.

Proposition 2.5. For C(t) = circ(c1(t), c2(t), . . . , cn(t)), an n×n-circulant matrix
depending on time,

det(C(t)) =
n∏

i=1

h(εi)(t); h(x)(t) =
n∑

i=1

ci(t)xi−1

and for k = 1, . . . , n; εk’s are the distinct nth roots of unity, that is,

εk = exp[
2π(k − 1)i

n
].

Proof. We consider Vn ≡ Vn(ε1, . . . , εn), this is a non singular matrix, now it is
easy to show that

C(t)Vn = Vn diag[h(εk)(t)]nk=1.

�

Corollary 2.6. For C(t) = circ(c1(t), c2(t), . . . , cn(t)) as before, its eigenvalues
and eigenvectors are given by

λk(t) = h(εi)(t), 1, εk, . . . , εn−1
k )T , k = 1, . . . , n.
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The proof of the above corollary, follows the fact that in Proposition 2.5,

V −1
n C(t)Vn = diag[h(εk)(t)]nk=1.

Let

p1(x)(t) = a22(t) + a23(t)x + a21(t)xN−1

p2(x)(t) = a32(t) + a33(t)x + a31(t)xN−1

p3(x)(t) = a12(t) + a13(t)x + a11(t)xN−1

q1(x)(t) = b22(t) + b23(t)x + b21(t)xN−1

q2(x)(t) = b32(t) + b33(t)x + b31(t)xN−1

q3(x)(t) = b12(t) + b13(t)x + b11(t)xN−1;

now using Proposition 2.5, Corollary 2.6, and the forms of matrices Ai(t), B1(t),
i = 1, 2, 3 we get that their corresponding eigenvalues are

λi
j(t) = pi(εj)(t), ηi

j(t) = qi(εj)(t), i = 1, 2, 3

respectively.

Lemma 2.7. There are D(t), E(t) block diagonal matrices of size MN × MN
such that

A(t) = (VM ⊗ VN )D(t)(VM ⊗ VN )−1 B(t) = (VM ⊗ VN )E(t)(VM ⊗ VN )−1

with
VN ≡ VN (ε1, . . . , εN ), VM ≡ VM (ω1, . . . , ωM )

Vandermonde matrices of order N and M respectively; ε1, . . . , εN and ω1, . . . , ωM

are the corresponding distinct N th and M th roots of unity.

Remark 2.8. VM ⊗ VN indicates the Kronecker or tensor product of matrices VM

and VN .

Proof. We will show for A(t); the same procedure may be used for B(t). It can be
shown that

A(t) = IM ⊗A1(t) + ΠM ⊗A2(t) + ΠM−1
M ⊗A3(t)

= (VM ⊗ VN )D(t)(VM ⊗ VN )−1

where IM is the identity matrix of size M ,

ΠM = VM diag[ωk]Mk=1V
−1
M ,

D(t) = diag[Dk(t)]Mk=1, for 1 ≤ k ≤ M,

Dk(t) = diag[p1(εj)(t)]Nj=1 + ωk diag[p2(εj)(t)]Nj=1 + ωM−1
k diag[p3(εj)(t)]Nj=1

= diag[p1(εj)(t) + ωkp2(εj)(t) + ωM−1
k p3(εj)(t)]Nj=1.

In the case of B(t), we have

E(t) = diag[Ek(t)]Mk=1, for 1 ≤ k ≤ M,

Ek(t) = diag[q1(εj)(t) + ωkq2(εj)(t) + ωM−1
k q3(εj)(t)]Nj=1.

�
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Remark 2.9. Note that, up to here, the shown results are independent of ω-
periodicity. That is, those are for circulant matrices depending on time whether or
not they are ω-periodic.

3. Main Results

In this section we shall state and prove the main results of the paper, that is,
those concerning the controllability of system (2.6).

Let us assume that matrices A(t) and B(t) given in (2.6) are continuous functions
and

A : [0,+∞) → Rn×n, B : [0,+∞) → Rn×n; n = MN

and, of course ω-periodic as stated before.

Definition 3.1. System (2.6) is controllable in [0, T ] if for any v0, v1 ∈ Rn, there
is u ∈ C([0, T ],Rn) such that the solution v(t) corresponding to control u satisfies

v(0) = v0 and v(T ) = v1.

Our first result is about periodic case and will extend the results given in [10],
which is the constant case, to the periodic case. Here we shall assume that G(v) =
αv, α > 0.

Lemma 3.2. Matrix Y (t) given as

Y (t) = exp
[ ∫ t

t0

(αA(s)− In)ds
]
; t ≥ 0,

where t0 ≥ 0 is a fixed number, In the identity matrix of order n is the fundamental
matrix of the system

Ẏ = (αA(t)− In)Y.

The following Proposition, from [1, Prop. 3.1)] will be used in the proof of our
next Theorem.

Proposition 3.3. Let H(t) and K(t) be n× n matrices, ω-periodic and integrable
over [0, ω], then, the system

Ẋ = H(t)X + K(t)u

is controllable in [0, ω] if and only if the rows of the function Z−1(t)K(t), t ∈ [0, nω]
are linearly independent; where Z(t) is the fundamental matrix of system

Ż = H(t)Z.

Theorem 3.4. Let A(t) and B(t) be ω-periodic matrices which are integrable over
[0, ω]. Then the system (2.4) with G(v) = αv, α > 0 is controllable in [0, ω] if only
if

q1(εj)(t) + ωkq2(εj)(t) + ωM−1
k q3(εj)(t) 6= 0

for any t ∈ [0, nω], 1 ≤ j ≤ N, 1 ≤ k ≤ M ; n = MN and q1, q2, q3 are the
polynomials given in Section 2.

Proof. We use a foregoing proposition; so system (2.4) is controllable if only if

rank[Y −1(t)B(t)] = n, ∀t ∈ [0, nω]
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and Y (t) is the matrix given by Lemma 3.2 (t0 = 0). Now

Y −1(t) = exp
[
−

∫ t

t0

(αA(s)− In)ds
]

= (VM ⊗ VN ) exp
{

diag
[
−

∫ t

t0

D̃(s)ds
]M

k=1

}
(VM ⊗ VN )−1.

Therefore,

Y −1(t)B(t)

= (VM ⊗ VN ) exp
{

diag
[
−

∫ t

t0

D̃(s)ds
]M

k=1

}
diag[Ek(t)]Mk=1(VM ⊗ VN )−1,

hence
rank[Y −1(t)B(t)] = n, t ∈ [0, nω]

if and only if
rank[diag[Ek(t)]Mk=1] = n, t ∈ [0, nω]

if and only if (by using the form of Ek(t) given in Section 2)

q1(εj)(t) + ωkq2(εj)(t) + ωM−1
k q3(εj)(t) 6= 0

for t ∈ [0, nT ], 1 ≤ j ≤ N , 1 ≤ k ≤ M . �

Corollary 3.5. Under the hypothesis of Theorem 3.4 System 2.6 will be uncontrol-
lable if there is t∗ ∈ [0, nω] such that

q1(εj)(t∗) + ωkq2(εj)(t∗) + ωM−1
k q3(εj)(t∗) = 0,

for some 1 ≤ j ≤ N , 1 ≤ k ≤ M .

4. Numerical Simulations

In this section we use our model of CNN in image detection; Ã, B̃ are taken as

Ã =

cos(t) sin(t) cos(t)
sin(t) −20 cos(t) sin(t)
cos(t) sin(t) cos(t)

 , B̃ =

sin(t) cos(t) sin(t)
cos(t) −20 sin(t) cos(t)
sin(t) cos(t) sin(t)

 .

and I = − 3
1000+cos(t) , where t ∈ [0, 2π].

First we consider figure 1, a cameraman as input and some iterations. The size
of the array is 320 × 314. For different values of t and 3 (z = 3) iterations we can
see the contours and a kind of periodicity in the output images which is due to the
periodicity of the matrices involved.

Note that the main features of the input are preserved; of course along the whole
iteration process it maintains different levels of grey. It is remarkable the similarity
between the output images for t = 0 and t = 2π for instance. It is important to
mention that we had taken into account not only notable angles, balso angles as
t = 7π/9 an t = 4π/3.

In figure 2 we have the same input and the same angles in the different iterations;
we change the number of iterations, now z = 5. When we observe the corresponding
output notice the striking similarity between the cases t = 0 and t = 2π in same
fashion as in figure 1.

Our final example is a Chinese character, figure 3, and a 25×35 array, we present
the input image and some iterations with different angles and z = 3 the number
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Input Image

50 100 150 200 250 300

100

200

300

t=0, z=3

50 100 150 200 250 300

100

200

300

t= π/2, z=3

50 100 150 200 250 300

100

200

300

t=7 π/9, z=3

50 100 150 200 250 300

100

200

300

t=4 π/3, z=3

50 100 150 200 250 300

100

200

300

t=2 π, z=3

50 100 150 200 250 300

100

200

300

Figure 1. Input and some iterations by a 330× 314 matrix

input image

50 100 150 200 250 300

100

200

300

t=0, z=5

50 100 150 200 250 300

100

200

300

t= π/2, z=5

50 100 150 200 250 300

100

200

300

t= 7 π/9, z=5

50 100 150 200 250 300

100

200

300

t= 4 π/3, z=5

50 100 150 200 250 300

100

200

300

t= 2 π, z=5

50 100 150 200 250 300

100

200

300

Figure 2. Input and some iterations by a matrix of 330× 314

of iterations. Again we can observe the extraction of particular features along the
iteration process, in a similar fashion to the previous input.
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Departmento de F́ısica y Matemáticas, Núcleo Universitario “Rafael Rangel”, Univer-

sidad de los Andes, Trujillo, Venezuela

E-mail address: teodorolara@cantv.net


