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ZEROS OF THE JOST FUNCTION FOR A CLASS OF
EXPONENTIALLY DECAYING POTENTIALS

DAPHNE GILBERT, ALAIN KEROUANTON

Abstract. We investigate the properties of a series representing the Jost so-
lution for the differential equation −y′′ + q(x)y = λy, x ≥ 0, q ∈ L(R+).

Sufficient conditions are determined on the real or complex-valued potential q

for the series to converge and bounds are obtained for the sets of eigenvalues,
resonances and spectral singularities associated with a corresponding class of

Sturm-Liouville operators. In this paper, we restrict our investigations to the

class of potentials q satisfying |q(x)| ≤ ce−ax, x ≥ 0, for some a > 0 and c > 0.

1. Introduction

We consider the differential equation

−y′′ + q(x)y = λy for x ≥ 0, (1.1)

where q ∈ L(R+) is real or complex-valued, with the boundary condition

y(0) cos(α) + y′(0) sin(α) = 0 for some α ∈ [0, π). (1.2)

In this paper, we consider the consequences of changes on the potential q rather than
on the boundary condition (1.2) and we therefore restrict ourself to the classical
case α ∈ [0, π). For an analysis of Sturm-Liouville operators with real valued,
exponentially decaying potentials and nonselfadjoint boundary conditions, see for
example [6].

Let z =
√
λ, Im(z) > 0. Since q ∈ L(R+), there exists a unique L2(R+)-solution

χ(x, z) of (1.1) satisfying

χ(x, z) = eizx(1 + o(1)) as x→ +∞,

which is known as the Jost solution [3].
Let φ(x, z2) be the solution of (1.1) satisfying φ(0, z2) = 0, φ′(0, z2) = 1. Then

φ(x, z2) satisfies (1.2) with α = 0 and we have

W0

(
χ(x, z), φ(x, z2)

)
= χ(0, z), Im(z) > 0,

where W0 denotes the Wronskian evaluated at x = 0. Note that φ(x, z2) and χ(x, z)
are linearly dependent if and only if χ(0, z) = 0 for some z such that Im(z) > 0.
The non-zero eigenvalues of the operator L0 associated with (1.1) and the Dirichlet
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boundary condition are therefore of the form λ = z2, where z is a zero of the
Jost function χ(z) = χ(0, z) satisfying Im(z) > 0. If q is real-valued these zeros
are situated on the segment line z = it, 0 < t < +∞, giving rise to negative
eigenvalues.

Moreover, if q is exponentially decaying, i.e. if q satisfies

q(x) = O(e−ax) as x→ +∞ (1.3)

for some a > 0 then, whether q is real or complex-valued, the Jost function χ(z)
can be analytically extended to the half plane {z ∈ C : Im(z) > −a/2} [9, 10,
appendix II] and the part of the expansion in generalised eigenfunctions related to
the continuous spectrum contains a spectral-type function of the form

1
π

( z

χ(z)χ(−z)

)
, z > 0. (1.4)

The expansion in eigenfunctions and generalised eigenfunctions in the case of ex-
ponentially decaying, complex-valued potentials was established by Naimark [9].
If q is real-valued the spectral-type function (1.4) is actually the spectral density
associated with L0 since, in this case, χ(−z) = χ(z) for Im(z) = 0. The latter was
proved by Kodaira [8] for a real-valued potential q.

If we set

χπ/2(x, z) =
d

dx
χ(x, z) and χπ/2(z) = χπ/2(0, z),

then the non-zero eigenvalues of the operator Lα associated with (1.1) and (1.2)
are of the form λ = z2, where z is a zero of χα(z) satisfying Im(z) > 0, with

χα(x, z) = χ(x, z) cos(α) + χπ/2(x, z) sin(α) and χα(z) = χα(0, z). (1.5)

To see this note that χ(x, z) and φα(x, z2) are linearly dependent if and only if
χα(z) = 0 , where φα(x, z2) is a solution of (1.1) satisfying (1.2), more precisely
φα(0, z2) = − sin(α), φ′(0, z2) = cos(α).

If q satisfies (1.3), then χα(z) can be analytically extended to the half-plane
{Im(z) > −a/2} [9, 10, appendix II]. It is then likely that the zeros of χα(z)
situated just below the real axis will affect the behaviour of (1.4) [2, 4, 5]. Such a
zero is called a resonance and, if q is real valued and if the zero is situated on the
semi-axis −it, 0 < t < +∞, it is said to be an antibound state.

For Im(z) = 0, z 6= 0, we also have [10, appendix II]

W0(χα(x, z), χα(x,−z)) = −2iz,

so that χα(z) and χα(−z) cannot vanish at the same time for Im(z) = 0, z 6= 0. If
q is real-valued, then χα(−z) = χα(z) and the equality above implies that χα(z)
cannot vanish for Im(z) = 0, z 6= 0. On the other hand, if q is complex-valued,
then χα(z) can vanish for some z with Im(z) = 0. If z is such a zero of χα(z), then
λ = z2 is called a spectral singularity.

The form of the expansion in generalised eigenfunctions obtained by Naimark
[9, 10, appendix II] depends on whether such spectral singularities do exist. If there
is no spectral singularity, then the expansion takes a form similar to that obtained
by Kodaira [8].

It is to be noted that, for q ∈ L(R+), there are no L2(R+)-solutions of (1.1) for
λ > 0 so that the spectral singularities cannot be associated with L2(R+)-solutions
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of (1.1). Moreover, if q also satisfies (1.3), then the number of spectral singularities
is finite [9, 10, appendix II].

The literature available on the study of eigenvalues, resonances and spectral
singularities is already abundant but we propose here an alternative method that
allows us to view them as a single mathematical object, namely as arising from the
zeros of the Jost function. Our method is relatively simple and allows us, in par-
ticular, to investigate resonance-free regions for exponentially decaying potentials.
More detailed results are obtained on the set of resonances for compactly supported
and super-exponentially decaying potentials in [4, 5] and in [2] for a class of expo-
nentially decaying potentials. The relationship between the Jost function and the
classical Titchmarsh-Weyl function is briefly outlined in section 5.

2. The Series

It was shown by Eastham [1, 2] that, for a real-valued integrable potential q,
the Jost solution χ(x, z) can be represented in the form (2.1). However, it is not
difficult to show that the results below also hold when q is complex-valued and
integrable. We have

χ(x, z) = eixz
(
1 +

∑
n≥1

rn(x, z)
)
, (2.1)

with

r0(x, z) = 1, rn(x, z) =
i

2z

∫ +∞

x

q(t)rn−1(t, z)
(
1− e2iz(t−x)

)
dt, n ≥ 1. (2.2)

Also,
d

dx
χ(x, z) = eixz

(
iz +

∑
n≥1

sn(x, z)
)
, (2.3)

with

sn(x, z) = −1
2

∫ +∞

x

q(t)rn−1(t, z)(1 + e2iz(t−x))dt n ≥ 1. (2.4)

From (2.2) we have

r0(x, z) = 1,

r1(x, z) =
i

2z

∫ +∞

x

q(t)
(
1− e2iz(t−x)

)
dt

so that, for Im(z) > 0,

|r1(x, z)| ≤
1
|z|

∫ +∞

0

|q(t)|dt.

It is readily seen by induction on n that

|rn(x, z)| ≤
(‖q‖1

|z|
)n
, n ≥ 0, x ≥ 0, Im(z) > 0,

where ‖ · ‖1 is the L(R+)-norm, from which it follows that∣∣1 +
∑
n≥1

rn(x, z)
∣∣ ≤ ∑

n≥0

(‖q‖1

|z|
)n
.
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The series in (2.1) therefore converges absolutely and uniformly for x ≥ 0, Im(z) > 0
and |z| > ‖q‖1. Note that we supposed only that q ∈ L(R+). This result is similar
to the one obtained by Rybkin [11, theorem 3.1].

We now investigate the convergence of (2.1) for a class of exponentially decaying
potentials.

3. Main Results

We suppose throughout this section that

|q(x)| ≤ ce−ax, x ≥ 0, (3.1)

holds for some c > 0 and a > 0.
We first consider the case α = 0 and then examine the case α ∈ (0, π). In the

latter case the details get rather cumbersome but, since we are aware of only few
results concerning this case, we mention it anyway.

Let δ > 0 and let

Λa,δ = {z ∈ C : Im(z) > −a/3, |z| > δ}.

Lemma 3.1. Suppose that (3.1) holds and fix δ > 2c/a. Then

|rn(x, z)| ≤ 1
n!

( 2c
|z|a

)n
e−nax, x ≥ 0, Im(z) > −a/3, n ≥ 1

and the series (2.1) converges absolutely and uniformly for x ≥ 0, z ∈ Λa,δ.

Proof. We first prove by induction that

|rn(x, z)| ≤ 1
n!

(
c

|z|a

)n (
a+ Im(z)
a+ 2 Im(z)

)
. . .

(
na+ Im(z)
na+ 2 Im(z)

)
e−nax, n ≥ 1.

According to (2.2) we have r0(x, z) = 1 and, from (2.2) and (3.1),

r1(x, z) ≤
c

2|z|

∫ ∞

x

(
e−at + e−t(a+2 Im(z))+2x Im(z)

)
dt,

which yields

|r1(x, z)| ≤
c

a|z|

(
a+ Im(z)
a+ 2 Im(z)

)
e−ax.

The result is therefore true for n = 1. Suppose that it were true for 1 ≤ k ≤ n− 1,
n ≥ 2. According to (2.2) we have

|rn(x, z)| ≤ 1
2|z|

∫ ∞

x

|q(t)rn−1(t, z)|
(
1 + e−2(t−x) Im(z)

)
dt,

so that, from (3.1) and the induction hypothesis,

|rn(x, z)| ≤ c

2|z|(n− 1)!

(
c

|z|a

)n−1 (
a+ Im(z)
a+ 2 Im(z)

)
× . . .

×
(

(n− 1)a+ Im(z)
(n− 1)a+ 2 Im(z)

) ∫ +∞

x

e−nat(1 + e−2(t−x) Im(z))dt,

which yields

|rn(x, z)|

≤ 1
n!

(
c

|z|a

)n (
a+ Im(z)
a+ 2 Im(z)

)
. . .

(
(n− 1)a+ Im(z)

(n− 1)a+ 2 Im(z)

) (
na+ Im(z)
na+ 2 Im(z)

)
e−nax,
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as required. The lemma is proved when we notice that

0 <
na+ Im(z)
na+ 2 Im(z)

< 2, n ≥ 1, and
2c
|z|a

<
2c
δa

< 1

if Im(z) > −a/3 and |z| > δ > 2c/a. �

We are now in position to identify a region in the z-plane where χ(z) cannot
vanish.

Theorem 3.2. Suppose (3.1) holds and fix δ > 2c/a. Then, for z ∈ Λa,δ,

|χ(z)| ≥ 2− exp
(

2c
δa

)
In particular, if

δ >
2c

a ln(2)
,

then χ(z) cannot vanish inside the set Λa,δ and the operator L0 has
(i) no eigenvalue λ = z2 such that z ∈ Λa,δ ∩ {z : Im(z) > 0},
(ii) no spectral singularity λ = z2 such that z ∈ (−∞, δ) ∪ (δ,+∞),
(iii) no resonance inside Λa,δ ∩ {z : Im(z) < 0}.

Proof. According to lemma 3.1 we have, for z ∈ Λa,δ,

|rn(x, z)| ≤ 1
n!

(
2c
δa

)n

e−nax, x ≥ 0,

so that ∣∣ ∑
n≥1

rn(x, z)
∣∣ ≤ ∑

n≥1

1
n!

(
2c
δa

)n

e−nax = exp
(

2c
δa
e−ax

)
− 1.

Since

|χ(x, z)| = e−x Im(z)
∣∣∣1 +

∑
n≥1

rn(x, z)
∣∣∣ ≥ e−x Im(z)

{
1−

∣∣∣ ∑
n≥1

rn(x, z)
∣∣∣},

we obtain

|χ(z)| ≥ 2− exp
(

2c
δa

)
.

In particular, χ(z) does not vanish if

2− exp
(

2c
δa

)
> 0,

i.e. if
δ >

2c
a ln(2)

,

from which (i), (ii) and (iii) follow. �

Note that, under the hypotheses of theorem 3.2, if λ = z2 is an eigenvalue of L0

then z can only be located on the semi disk {z ∈ C : |z| ≤ δ, Im(z) > 0} and, if q
is real-valued, on the segment line z = it, 0 < t ≤ δ. Also, under the hypotheses
of theorem 3.2, the resonances situated on {z ∈ C : −a/3 < Im(z) < 0} must be
inside the set {z ∈ C : −a/3 < Im(z) < 0, |z| ≤ δ} and the spectral singularities
λ = z2 must satisfy −δ < z < δ.

We now show that a similar situation prevails in the case α 6= 0.
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Lemma 3.3. Suppose that (3.1) holds and fix δ > 2c/a. Then

|sn(x, z)| ≤ |z|
n!

( 2c
|z|a

)n
e−nax, x ≥ 0, Im(z) > −a/3, n ≥ 1

and the series (2.3) converges absolutely and uniformly for x ≥ 0, z ∈ Λa,δ.

Proof. From (2.2), (2.3) and (2.4), we have

d

dx
χ(x, z) = eizx

(
iz +

∑
n≥1

sn(x, z)
)

and

|sn(x, z)| ≤ |z|
2|z|

∫ +∞

x

|q(t)rn−1(t, z)|
(
1 + e−2 Im(z)(t−x)

)
dt, n ≥ 1.

Arguing as in lemma 3.1, we obtain the stated result. �

The bounds we obtain for α ∈ (0, π/2) ∪ (π/2, π) are not as tight as the ones
obtained in theorem 3.2, which is rather natural as, for α ∈ (0, π/2)∪ (π/2, π), it is
possible to find resonances far below the real axis or large eigenvalues, depending on
the value of α. We refer to the first example in the next section for an illustration
of this phenomenon.

Theorem 3.4. Suppose that (3.1) holds and let δ be such that

δ >
2c

a ln(2)
.

Then (i), (ii) and (iii) of theorem 3.2 hold as they stand for the operator Lπ/2

and (i), (ii) and (iii) of theorem 3.2 continue to hold for the operator Lα, α ∈
(0, π/2) ∪ (π/2, π), provided we replace δ by max{δ, δα}, where

δα = | cot(α)|
exp

(
2c
δa

)
2− exp

(
2c
δa

) .
Proof. We first suppose that α = π/2. According to (1.5), (2.3) and lemma 3.3 we
have, for z ∈ Λa,δ,

|χπ/2(z)| ≥ |z| − |z|
{

exp
( 2c
δa

)
− 1

}
= |z|

{
2− exp

( 2c
δa

)}
. (3.2)

It follows that χπ/2(z) cannot vanish inside Λa,δ if δ > 2c/a ln(2), and the first part
of the theorem is proved.
Suppose now that α ∈ (0, π/2) ∪ (π/2, π). From (2.1) and lemma 3.1 we get

|χ(z)| ≤ 1 +
∑
n≥1

|rn(0, z)| ≤ exp
(

2c
δa

)
.

On the other hand, according to (1.5),

|χα(z)| ≥ | sin(α)χπ/2(z)| − | cos(α)χ(z)|

so that, with (3.2), we obtain

|χα(z)| ≥ |z sin(α)|
{
2− exp

( 2c
δa

)}
− | cos(α)| exp

( 2c
δa

)
.
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From the equality above, it is not hard to see that χα(z) > 0 for

|z| > | cot(α)|
exp

(
2c
δa

)
2− exp

(
2c
δa

) ,
from which the last part of the theorem follows. �

Let δ′ = max {δ, δα}. Under the hypotheses of theorem 3.4, the eigenvalues
λ = z2 must be such that z ∈ {z ∈ C : |z| ≤ δ′}, the resonances situated on {z ∈
C : −a/3 < Im(z) < 0} must be inside the set {z ∈ C : −a/3 < Im(z) < 0, |z| ≤ δ′}
and the spectral singularities λ = z2 must satisfy −δ′ < z < δ′.

4. Examples

The case q ≡ 0. Let q ≡ 0 in (1.1). Then the Jost solution is χ(x, z) = eizx so
that

χα(x, z) = cos(α)eizx + iz sin(α)eizx, α ∈ (0, π).

Hence the only zero of χα(z) is
• z = 0 if α = π/2
• zα = i cot(α) if α ∈ (0, π/2) ∪ (π/2, π).

If α ∈ (0, π/2) then Im(zα) > 0, so that λα = − cot2(α) is an eigenvalue and, if
α ∈ (π/2, π), then Im(zα) < 0 so that zα = i cot(α) is a resonance.

If we suppose that α is strictly complex then

zα = − sinh(2 Im(α))
cosh(2 Im(α))− cos(2Re(α))

+ i
sin(2Re(α))

cosh(2 Im(α))− cos(2Re(α))
,

so that λα = z2
α is an eigenvalue if sin(2 Re(α)) > 0, and zα is a resonance if

sin(2Re(α)) < 0 and λα = z2
α is a spectral singularity if sin(2 Re(α)) = 0.

The Jost-Bessel function. If we take q(x) = be−dx in (1.1), with b, d ∈ C and
Re(d) > 0, then it can be proved by induction [7] that, in the notation of (2.1),

χ(x, z) = eizx
{

1 +
∑
n≥1

rn(x, z)
}

= eizx
{

1 +
∑
n≥1

(bd−2e−dx)n

n!

(
1

(1− 2iz/d)
. . .

1
(n− 2iz/d)

) }
.

This formula for the Jost solution is independently confirmed in [2], where it is
noted that when q is real valued, (1.1) is satisfied by the Bessel function

J−2iz/d

{
(2id−1

√
b)e−dx/2

}
,

which is in L2(R+) for Im(z) > 0 (see also [13, §4.14] and [14, §2.13]).
If d > 0 and b > 0, then as in [2] L0 had no eigenvalues and also no antibound
states in the segment line z = it, −d/2 < t < 0.

Taking b = −1 and d = 1, it was shown in [7], using methods we have not
discussed in the present paper, that although L0 has no eigenvalues, it does have
a unique antibound state z0 = it0 such that t0 ∈ (−1/2, 0), more precisely t0 ∈
[−0.139, −0.112].
In order to compare the last of these examples with the results obtained in theorem
3.2, take a = 1 and c = 1 in theorem 3.2. Theorem 3.2 predicts that if δ ≥ 2.9, then
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χ(z) has no zero inside the set {z ∈ C : Im(z) > −1/3, |z| > δ}, so that the estimate
obtained in the last example is consistent with the bound obtained in theorem 3.2.

Note that the bounds obtained in theorem 3.2 with a = 1 and c = 1 also apply,
for example, to the complex valued potential

q(x) =
x− i

x+ i
e(−1+2i)x.

5. Jost function and Titchmarsh-Weyl function

We suppose in the first instance that q ∈ L(R+) is real valued and give a brief
account of the relationship between the Jost function and the Titchmarsh-Weyl
function, since the eigenvalues and more generally the spectrum of the operator
Lα have traditionally been studied using the properties of the Titchmarsh-Weyl
function mα(λ). Let φα(x, λ) be defined as above and let θα(x, λ) be the solution
of (1.1) satisfying

θα(0, λ) = cos(α), θ′α(0, λ) = sin(α).

Since Weyl’s limit-point case applies at +∞, it is known that there exists a unique
linearly independent L2(R+)-solution ψα of (1.1) such that

ψα(x, λ) = θα(x, λ) +mαφα(x, λ), x ≥ 0, Imλ > 0,

which is known as the Weyl solution [13]. The function mα(λ) is analytic in the
upper half plane {λ ∈ C : Im(λ) > 0} and satisfies

Im (mα(λ)) > 0 for Im(λ) > 0,

so that limIm λ→0+mα(λ) exists and is finite Lebesgue almost everywhere. The
eigenvalues of Lα are the poles of mα.

On the other hand, it is readily seen that

χ(x, z) = W0(χ, φα)θα(x, z2) + W0(θα, χ)φα(x, z2), Im(z) > 0,

so that we have formally

ψα(x, z2) =
1

W0(χ, φα)
χ (x, z) .

It follows that

mα(z2) =
W0(θα, χ)
W0(χ, φα)

=
W0(θα, χ)
χα(z)

, Im(z) > 0, Re(z) > 0 (5.1)

and the poles of mα(z2) are the zeros of χα(z). Since W0(θα, χ) and χα(z) are
analytic in the upper half plane {z ∈ C : Im(z) > 0}, we can analytically extend
mα(λ) using (5.1). The extended Titchmarsh-Weyl function is meromorphic on
C \ [0,+∞).

If q ∈ L(R+) is allowed to be complex valued and if Im(q) ≤ 0, a similar situation
prevails [12] and we can construct a Titchmarsh-Weyl function which is analytic on
{λ ∈ C : Im(λ) > 0} and can be analytically extended to a function meromorphic on
C \ [0,+∞). For additional information and references on the relationship between
the Jost solution and the Titchmarsh-Weyl function, we refer to [6].



EJDE-2005/145 ZEROS OF THE JOST FUNCTION 9

References

[1] M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems, Applications of
the Levinson Theorem, London Mathematical Society Monographs New Series, Clarendon

Press, Oxford, 1989.

[2] M. S. P. Eastham, Antibound states and exponentially decaying Sturm-Liouville potentials,
J. London Math. Soc. (2) 65 (2002) 624-638.

[3] G. Freiling, V. Yurko, Inverse Sturm-Liouville Problems and their Applications, Nova Science

Publishers, New York, 2001.
[4] R. Froese, Asymptotic distribution of resonances in one dimension, Journal of Differential

Equations 137 (1997) 251-272.
[5] M. Hitrik, Bounds on scattering poles in one dimension, Comm. Math. Phys. 208 (1999)

381-411.
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