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EXPONENTIAL STABILITY CRITERIA OF LINEAR
NON-AUTONOMOUS SYSTEMS WITH MULTIPLE DELAYS

VU NGOC PHAT, PHAN T. NAM

Abstract. In this paper, we study the exponential stability of linear non-

autonomous systems with multiple delays. Using Lyapunov-like function, we
find sufficient conditions for the exponential stability in terms of the solution

of a Riccati differential equation. Our results are illustrated with numerical

examples.

1. Introduction

The topic of Lyapunov stability of linear systems has been an interesting research
area in the past decades. An integral part of the stability analysis of differential
equations is the existence of inherent time delays. Time delays are frequently en-
countered in many physical and chemical processes as well as in the models of
hereditary systems, Lotka-Volterra systems, control of the growth of global econ-
omy, control of epidemics, etc. Therefore, the stability problem of time-delay sys-
tems has been received considerable attention from many researchers (see; e.g.
[5, 6, 10, 12, 14] and references therein). One of the extended stability properties
is the concept of the α-stability, which relates to the exponential stability with a
convergent rate α > 0. Namely, a retarded system

ẋ = f(t, x(t), x(t− h)), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],

is α-stable, with α > 0, if there is a function ξ(.) such that for each φ(.), the solution
x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤ ξ(‖φ‖)e−αt, ∀t ≥ 0,

where ‖φ‖ = max{‖φ(t)‖ : t ∈ [−h, 0]}. This implies that for α > 0, the system
can be made exponentially stable with the convergent rate α. It is well known
that there are many different methods to study the stability problem of time-delay
linear autonomous systems. The widely used method is the approach of Lyapunov
functions with Razumikhin techniques and the asymptotic stability conditions are
presented in terms of the solution of either linear matrix inequalities or Riccati
equations [2, 7, 8]. By using both the time-domain and the frequency-domain
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techniques, the paper [15] derived sufficient conditions for the asymptotic stability
of a linear autonomous system with multiple time delays of the form

ẋ(t) = A0x(t) +
m∑

i=1

Aix(t− hi), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],

(1.1)

where Ai are given constant matrices, h = max{hi : i = 1, 2, . . . ,m}. These
conditions depend only on the eigenvalues of A0 and the norm values of Ai of the
system. For studying the α-stability problem, based on the asymptotic stability of
the linear undelayed part, i.e. A0 is a Hurwitz matrix, the papers [13, 14] proposed
sufficient conditions for the α-stability of system (1.1) in terms of the solution of
a scalar inequality involving the eigenvalues, the matrix measures and the spectral
radius of the system matrices. It is worth noticing that although the approach
used in these papers allows us to derive the less conservative stability conditions,
but it can not be applied to non-autonomous delay systems. The reason is that,
the assumption A0(t) to be a Hurwitz matrix for each t ≥ 0, i.e. Re λ(A(t)) < 0,
for each t, does not implies the exponential stability of the linear non-autonomous
system ẋ = A0(t)x. It is the purpose of this paper to search sufficient conditions for
the α-stability of non-autonomous delay systems. Using the Lyapunov-like function
method, we develop the results obtained in [3, 14] to the non-autonomous systems
with multiple delays. Do not using any Lyapunov stability theorem, we establish
sufficient conditions for the α-stability of system (2.1), which are given in terms
of the solution of a Riccati differential equation (RDE). These conditions do not
involve any stability property of the system matrix A0(t). Although the problem of
solving of RDEs is in general still not easy, various effective approaches for finding
the solutions of RDEs can be found in [1, 4, 9, 16].

The paper is organized as follows. Section 2 presents notations, mathematical
definitions and an auxiliary lemma used in the next section. The sufficient condi-
tions for the α-stability are presented in Section 3. Numerical examples illustrated
the obtained result are also given in Section 3. The paper ends with cited references.

2. Preliminaries

The following notations will be used for the remaining this paper.
R+ denotes the set of all real non-negative numbers; Rn denotes the n-dimensional
space with the scalar product 〈., .〉 and the vector norm ‖.‖;
Rn×r denotes the space of all matrices of dimension (n × r). AT denotes the
transpose of the vector/matrix A; a matrix A is symmetric if A = AT ; I denotes
the identity matrix;
λ(A) denotes the set of all eigenvalues of A; λmax(A) = max{Re λ : λ ∈ λ(A)};
‖A‖ denotes the spectral norm of the matrix defined by

‖A‖ =
√

λmax(AT A);

η(A) denotes the matrix measure of the matrix A given by

η(A) =
1
2
λmax(A + AT ).

C([a, b], Rn) denotes the set of all Rn-valued continuous functions on [a, b];
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Matrix A is called semi-positive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all x ∈ Rn;A is
positive definite (A > 0) if 〈Ax, x〉 > 0 for all x 6= 0;

In the sequel, sometimes for the sake of brevity, we will omit the arguments of
matrix-valued functions, if it does not cause any confusion.

Let us consider the following linear non-autonomous system with multiple delays

ẋ(t) = A0(t)x(t) +
m∑

i=1

Ai(t)x(t− hi), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],

(2.1)

where h = max{hi : i = 1, 2, . . . ,m}, Ai(t), i = 0, 1, . . . ,m, are given matrix func-
tions and φ(t) ∈ C([−h, 0], Rn).

Definition. The system (2.1) is said to be α-stable, if there is a function ξ(.) :
R+ → R+ such that for each φ(t) ∈ C([−h, 0], Rn), the solution x(t, φ) of the
system satisfies

‖x(t, φ)‖ ≤ ξ(‖φ‖)e−αt, ∀t ∈ R+.

The following well-known lemma, which is derived from completing the square,
will be used in the proof of our main result.

Lemma 2.1. Assume that S ∈ Rn×n is a symmetric positive definite matrix. Then
for every P,Q ∈ Rn×n,

〈Px, x〉+ 2〈Qy, x〉 − 〈Sy, y〉 ≤ 〈(P + QS−1QT )x, x〉, ∀x, y ∈ Rn.

3. Main results

Consider the linear non-autonomous delay system (2.1), where the matrix func-
tions Ai(t), i = 0, 1, . . . ,m, are continuous on R+. Let us set

A0,α(t) = A0(t) + αI, Ai,α(t) = eαhiAi(t), i = 1, 2, . . . ,m.

Theorem 3.1. The linear non-autonomous system (2.1) is α-stable if there is a
symmetric semi-positive definite matrix P (t), t ∈ R+ such that

Ṗ (t) + AT
0,α(t)[P (t) + I] + [P (t) + I]A0,α(t)

+
m∑

i=1

[P (t) + I]Ai,α(t)AT
i,α(t)[P (t) + I] + mI = 0.

(3.1)

Proof. Let P (t) ≥ 0, t ∈ R+ be a solution of the RDE (3.1). We take the following
change of the state variable

y(t) = eαtx(t), t ∈ R+,

then the linear delay system (2.1) is transformed to the delay system

ẏ(t) = A0,α(t)y(t) +
m∑

i=1

Ai,α(t)y(t− hi),

y(t) = eαtφ(t), t ∈ [−h, 0],

(3.2)

Consider the following time-varying Lyapunov-like function

V (t, y(t)) = 〈P (t)y(t), y(t)〉+ ‖y(t)‖2 +
m∑

i=1

∫ t

t−hi

‖y(s)‖2ds.
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Taking the derivative of V (.) in t along the solution of y(t) of system (3.2) and
using the RDE (3.1), we have

V̇ (t, y(t))

= 〈Ṗ (t)y(t), y(t)〉+ 2〈P (t)ẏ(t), y(t)〉+ 2〈ẏ(t), y(t)〉+ m‖y(t)‖2 −
m∑

i=1

‖y(t− hi)‖2,

= 〈Ṗ (t)y(t), y(t)〉+ 2〈P (t)A0,α(t)y(t), y(t)〉+ 2
m∑

i=1

〈P (t)Ai,α(t)y(t− hi), y(t)〉

+ 2〈A0,α(t)y(t), y(t)〉+ 2
m∑

i=1

〈Ai,α(t)y(t− hi), y(t)〉

+ m‖y(t)‖2 −
m∑

i=1

‖y(t− hi)‖2,

= 〈Ṗ (t)y(t), y(t)〉+ 2〈(P (t) + I)A0,α(t)y(t), y(t)〉

+ 2
m∑

i=1

〈(P (t) + I)Ai,α(t)y(t− hi), y(t)〉+ m‖y(t)‖2 −
m∑

i=1

‖y(t− hi)‖2,

= −
m∑

i=1

〈[P (t) + I]Ai,α(t)AT
i,α(t)[P (t) + I]y(t), y(t)〉

+ 2
m∑

i=1

〈[P (t) + I]Ai,α(t)y(t− hi), y(t)〉 −
m∑

i=1

〈y(t− hi), y(t− hi)〉

=
m∑

i=1

{−〈[P (t) + I]Ai,α(t)AT
i,α(t)[P (t) + I]y(t), y(t)〉

+ 2〈[P (t) + I]Ai,α(t)y(t− hi), y(t)〉 − 〈y(t− hi), y(t− hi)〉}.
(3.3)

Applying Lemma 2.1 to the above equality, we have

V̇ (t, y(t)) ≤ 0, ∀t ∈ R+.

Integrating both sides of this inequality from 0 to t, we find

V (t, y(t))− V (0, y(0)) ≤ 0, ∀t ∈ R+,

and hence

〈P (t)y(t), y(t)〉+ ‖y(t)‖2 +
m∑

i=1

∫ t

t−hi

‖y(s)‖2ds

≤ 〈P0y(0), y(0)〉+ ‖y(0)‖2 +
m∑

i=1

∫ 0

−hi

‖y(s)‖2ds,

where P0 = P (0) ≥ 0 is any initial condition. Since

〈P (t)y, y〉 ≥ 0,

∫ t

t−hi

‖y(s)‖2ds ≥ 0,∫ 0

−hi

‖y(s)‖2ds ≤ ‖φ‖
∫ 0

−hi

eαsds =
1
α

(1− e−αhi)‖φ‖,
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it follows that

‖y(t)‖2 ≤ 〈P0y(0), y(0)〉+ ‖y(0)‖2 +
1
α

m∑
i=1

(1− e−αhi)‖φ‖.

Therefore, the solution y(t, φ) of the system (3.2) is bounded. Returning to the
solution x(t, φ) of system (2.1) and noting that

‖y(0)‖ = ‖x(0)‖ = φ(0) ≤ ‖φ‖,
we have ‖x(t, φ)‖ ≤ ξ(‖φ‖)e−αt for all t ∈ R+, where

ξ(‖φ‖) := {‖P0‖‖φ‖2 + ‖φ‖2 +
1
α

m∑
i=1

(1− e−αhi)‖φ‖} 1
2 .

This implies system (2.1) begin α-stable and completes the proof. �

Remark. Note that the existence of a semi-positive definite matrix solution P (t) of
RDE (3.1) guarantees the boundedness of the solution of transformed system (3.2),
and hence the exponential stability of the linear non-autonomous delay system
(2.1). Also, the stability of A(t) is not assumed.

Example 3.2. Consider the following linear non-autonomous delay system in R2:

ẋ = A0(t)x + A1(t)x(t− 0.5) + A2(t)x(t− 1), t ∈ R+,

with any initial function φ(t) ∈ C([−1, 0], R2) and

A0(t) =
(

a0(t) 0
0 −7.5

)
, A1(t) =

(
e−0.5a1(t) 0

0 e−0.5
√

3

)
,

A2(t) =
(

e−1a1(t) 0
0 e−1

√
3

)
,

where

a0(t) =
7e−9t − 5

2(1 + e−9t)
, a1(t) =

1√
2(1 + e−9t)

.

We have h1 = 0.5, h2 = 1, m = 2 and the matrix A0(t) is not asymptotically stable,
since Re λ(A(0)) = 0.5 > 0. Taking α = 1, we have

A0,α(t) =
(

a0(t) + 1 0
0 −6.5

)
, A1,α(t) = A2,α(t) =

(
a1(t) 0

0
√

3

)
.

The solution of RDE (3.1) is

P (t) =
(

e−9t 0
0 1

)
≥ 0, ∀t ∈ R+.

Therefore, the system is 1-stable.

For the autonomous delay systems, we have the following α-stability condition
as a consequence.

Corollary 3.3. The linear delay system (2.1), where Ai are constant matrices, is
α-stable if there is a symmetric semi-positive definite matrix P ∈ Rn×n, which is a
solution of the algebraic Riccati equation

AT
0,α[P + I] + [P + I]A0,α +

m∑
i=1

[P + I]Ai,αAT
i,α[P + I] + mI = 0. (3.4)
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Example 3.4. Consider the linear autonomous delay system

ẋ(t) = A0x(t) + A1x(t− 2) + A2x(t− 4), t ∈ R+,

with any initial function φ(t) ∈ C([−4, 0], R2) and

A0 =
(
− 17

6 0
4
3 −3.5

)
, A1 =

(
e−1 0
0 e−1

)
, A2 =

(
e−2 0
0 e−2

)
.

In this case, we have m = 2, h1 = 2, h2 = 4. Taking α = 0.5, we find

A0,α(t) =
(
− 7

3 0
4
3 −3

)
, A1,α(t) = A2,α(t) =

(
1 0
0 1

)
,

and the solution of algebraic Riccati equation (3.4) is

P =
(

1 −1
−1 1

)
≥ 0.

Therefore, the system is 0.5-stable.

Remark. Note that we can estimate the value of V (t, y) as follows. Since

2(P + I)A0,α = AT
0 P + PA0 + A0 + AT

0 + 2α(P + I),

from (3.3) it follows that

V̇ (t, y(t)) = 〈[Ṗ (t) + AT
0 (t)P (t) + P (t)A0(t) + mI]y(t), y(t)〉

+ 〈[A0(t) + AT
0 (t)]y(t), y(t)〉+ 2α〈(P (t) + I)y(t), y(t)〉

+
m∑

i=1

{
2〈[P (t) + I]Ai,α(t)y(t− hi), y(t)〉 − ‖y(t− hi)‖2

}
.

Using Lemma 2.1, we have
m∑

i=1

{
2〈[P + I]Ai,αy(t− hi), y(t)〉 − ‖y(t− hi)‖2

}
≤

m∑
i=1

〈[P + I]Ai,αAT
i,α[P + I]y(t), y(t)〉.

On the other hand, since
m∑

i=1

〈[P (t)+ I]Ai,α(t)AT
i,α(t)[P (t)+ I]y(t), y(t)〉 ≤ m‖P (t)+ I‖2e2αh‖A(t)‖2‖y(t)‖2,

with h = max{h1, h2, . . . , hm}, ‖A(t)‖2 = max{‖A1(t)‖2, ‖A2(t)‖2, . . . , ‖Am(t)‖2},
we obtain

V̇ (t, y(t)) ≤ 〈[Ṗ (t) + AT
0 (t)P (t) + P (t)A0(t) + mI]y(t), y(t)〉

+
[
2η(A0(t)) + 2α‖P (t) + I‖+ m‖P (t) + I‖2e2αh‖A(t)‖2

]
‖y(t)‖2.

Therefore, the α-stability condition of Theorem 3.1 can be given in terms of the
solution of the following Lyapunov equation, which does not involve α:

Ṗ (t) + AT
0 (t)P (t) + P (t)A0(t) + mI = 0. (3.5)

In this case, if we assume that P (t), Ai(t) are bounded on R+ and

η(A0) := sup
t∈R+

η(A0(t)) < +∞, (3.6)
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then the rate of convergence α > 0 can be defined as a solution of the scalar
inequality

η(A0) + α‖PI‖+
m

2
e2αh‖PI‖2‖A‖2 ≤ 0, (3.7)

where
PI = sup

t∈R+
‖P (t) + I‖, ‖A‖2 = sup

t∈R+
‖A(t)‖2.

Therefore, we have the following α-stability condition.

Theorem 3.5. Assume that the matrix functions Ai(t), i = 1, 2, . . . ,m are bounded
on R+ and the conditions (3.6), (3.7) hold. The non-autonomous delay system (2.1)
is α-stable if the Lyapunov equation (3.5) has a solution P (t) ≥ 0, which is bounded
on R+. In this case, the rate of convergence α > 0 is the solution of the inequality
(3.7).

Example 3.6. Consider the linear non-autonomous delay system

ẋ(t) = A0(t)x(t) + A1(t)x(t− 0.5) + A2(t)x(t− 1), t ∈ R+,

with any initial function φ(t) ∈ C([−1, 0], R2) and

A0(t) =
(

0.5− et 1
−1 0.5− et

)
, A1(t) = e−0.2 sin t

(
1
40 0
0 1

40

)
,

A2(t) = e−0.2 cos t

(
1
40 0
0 1

40

)
.

We have m = 2, h1 = 0.5, h2 = 1, η(A0) = −0.5 and ‖A‖ = e−0.2/40. On the other
hand, the solution of Lyapunov equation (3.5) is

P (t) =
(

e−t 0
0 e−t

)
,

and then ‖PI‖ = 2. The rate of convergence found from inequality (3.7) is α = 0.2.
All conditions of Theorem 3.5 hold and hence the system is 0.2-stable.

For the autonomous case, Theorem 3.5 gives the following α-stability condition,
which is similar to that obtained in [3, 14].

Corollary 3.7. The linear delay system (2.1), where Ai(t) are constant matrices,
is α-stable if there is a symmetric semi-positive definite P of the algebraic Lyapunov
equation

AT
0 P + PA0 + mI = 0. (3.8)

In this case, the convergent rate α > 0 is the solution of the scalar inequality

η(A0) + α‖PI‖+
m

2
‖PI‖2e2αh‖A‖2 ≤ 0, (3.9)

where PI = P + I, ‖A‖2 = max{‖Ai‖2, i = 1, 2, . . . ,m}.

Example 3.8. Consider the linear autonomous delay system

ẋ(t) = A0x(t) + A1x(t− 0.5) + A2x(t− 1), t ∈ R+,

with any initial function φ(t) ∈ C([−1, 0], R2) and

A0 =
(
−2 0.5
−1 −4

)
, A1 = A2 = e−0.4

(
1/3 0
0 1/3

)
.



8 V. N. PHAT, P. T. NAM EJDE-2005/58

We have m = 2, h1 = 0.5, h2 = 1 and

η(A0) = −3 + 0.5
√

4.25, ‖A‖2 =
e−0.8

9
.

The solution of the algebraic Lyapunov equation (3.8) is

P =
(

0.5 0
0 0.25

)
,

and then ‖P + I‖ = 1.5. The rate of convergence α = 0.4 satisfies the condition
(3.9). Then, by Corollary 3.7 the system is 0.4-stable.
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