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UNIQUE CONTINUATION PROPERTY FOR THE
KADOMTSEV-PETVIASHVILI (KP-II) EQUATION

MAHENDRA PANTHEE

Abstract. We generalize a method introduced by Bourgain in [2] based on
complex analysis to address two spatial dimensional models and prove that if

a sufficiently smooth solution to the initial value problem associated with the

Kadomtsev-Petviashvili (KP-II) equation

(ut + uxxx + uux)x + uyy = 0, (x, y) ∈ R2, t ∈ R,

is supported compactly in a nontrivial time interval then it vanishes identically.

1. Introduction

Let us consider the following initial value problem (IVP) associated with the
Kadomtsev-Petviashvili (KP) equation,

(ut + uxxx + uux)x = αuyy, (x, y) ∈ R2, t ∈ R
u(x, y, 0) = φ(x, y),

(1.1)

where u = u(x, y, t) is a real valued function and α = ±1. This model was de-
rived by Kadomtsev and Petviashvili [16] to describe the propagation of weakly
nonlinear long waves on the surface of fluid, when the wave motion is essentially
one-directional with weak transverse effects along y-axis. Equation (1.1) is known
as KP-I or KP-II equation according as α = 1 or α = −1 and is considered a two
dimensional generalization of the Korteweg-de Vries (KdV) equation

ut + uxxx + uux = 0, x, t ∈ R, (1.2)

which arises in modeling the evolution of one dimensional surface gravity waves
with small amplitude in a shallow channel of water. The KdV model is a widely
studied model and arises in various physical contexts. It has very rich mathematical
structure and can also be solved by using inverse scattering technique.

The next generalization of the KdV model in two space dimension is the Zakharov-
Kuznetsov (ZK) equation

ut + (uxx + uyy)x + uux = 0. (1.3)
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The equation (1.3) derived by Zakharov and Kuznetsov in [28] models the propa-
gation of nonlinear ion-acoustic waves in magnetized plasma. Much effort has been
devoted to study several properties including well-posedness issues and existence
and stability of solitary wave solutions for the ZK model, see for example [1], [7],
[22] and references therein. In particular, the author in [22] considered the follow-
ing question: If a sufficiently smooth real valued solution u = u(x, y, t) to the IVP
associated to (1.3) is supported compactly on a certain time interval, is it true that
u ≡ 0? In some sense, it is a weak version of the unique continuation property
(UCP) which is defined as follows (cf. [23]):

Definition 1.1. Let L be an evolution operator acting on functions defined on
some connected open set Ω of Rn × Rt. The operator L is said to have unique
continuation property (UCP) if every solution u of Lu = 0 that vanishes on some
nonempty open set Ω1 ⊂ Ω vanishes in the horizontal component of Ω1 in Ω.

After Carleman [4] initiated studies of UCP based on the weighted estimates for
the associated solutions, many authors improved and extended Carleman’s method
to address parabolic and hyperbolic operators (see [8] and [20]). As far as we know
the first work dealing with the UCP for a general class of dispersive equations in
one space dimension is due to Saut and Scheurer [23] that also includes the KdV
equation and uses Carleman type estimates. Also, D. Tataru in [26] derived some
Carleman type estimates to prove the UCP for Schrödinger equation. Further,
Isakov in [15] considered UCP for a large class of evolution equations with nonho-
mogeneous principal part. Later, Zhang in [29] obtained a slightly stronger UCP for
the KdV equation than that in [23] using inverse scattering theory. Using Miura’s
transformation Zhang in [29] obtained UCP for the modified KDV (mKdV) equa-
tion as well. Recently, Kenig, Ponce and Vega in [17] considered the generalized
KdV equation and proved UCP for it by deriving new Carleman’s type estimate.
Further, Kenig, Ponce and Vega in [19] obtained much stronger type of UCP for
generalized KdV equation by proving that, if u1, u2 ∈ C(R,Hs(R)) are two solu-
tions of the generalized KdV equation with s > 0 large enough and if there exist
t1 6= t2 and α ∈ R such that u1(x, tj) = u2(x, tj) for any x ∈ (α,∞) or (−∞, α)
for j = 1, 2 then u1 ≡ u2. Bourgain in [2] introduced a new approach to address a
wider class of evolution equations using complex variables techniques. The method
introduced in [2] is more general and can also be applied to models in higher spa-
tial dimensions. Quite recently, Carvajal and Panthee [5, 6] extended the argument
introduced in [2] and [17] to prove the UCP for the nonlinear Schrödinger-Airy
equation. Also, it is worth to mention the works of Iório in [9, 10] and Kenig,
Ponce, Vega in [18] dealing with the UCP for Benjamin-Ono type and nonlinear
Schrödinger equation.

The author in [22] generalized the method introduced in [2] to address a bi-
dimensional (spatial) model and provided with an affirmative answer to the question
posed above for the ZK model. Although, employing this method, one can deduce
UCP for the linear problem almost immediately, the same is not so simple for the
nonlinear problem and is quite involved. The symbol associated with the linear
operator and the appropriate choice of the parameter play important role in the
approach we used. The positive result obtained for the ZK model motivated us
to think for the similar result for the KP equation. Unlike ZK model, there is
singularity in the associated symbol of the linear KP operator. So, one needs to
handle the analysis with utmost care. The structure of the associated symbol has
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also influenced a lot in the well-posedness results for the Cauchy problem for the
KP equation. In this sense, the KP-II equation is much better than the KP-I
equation, see for example [3], [11]–[14], [21], [24], [25] and [27]. The structure of the
associated symbol has also affected our result on UCP for the KP equation. Here,
we are able to handle only the KP-II equation by choosing appropriate parameters,
see Remark 3.1 below. Therefore, from here onwards, we concentrate our work
on KP-II equation (i.e., the IVP (1.1) with α = −1) and obtain UCP for it. More
precisely, using the scheme employed for the Zakharov-Kuznetsov equation we prove
the following theorem.

Theorem 1.2. Let u ∈ C(R;Hs(R2)) be a solution to the IVP associated with the
KP-II equation with s > 0 large enough. If there exists a non trivial time interval
I = [−T, T ] such that for some B > 0

supp u(t) ⊆ [−B,B]× [−B,B], ∀ t ∈ I,

then u ≡ 0.

Remark 1.3. In the context of the KdV equation (1.2), several types unique
continuation properties exist in the recent literature, see for example [17], [19], [23]
and [29]. Since KP equation is known to be a two-dimensional version of the KdV
equation, we believe that the other forms of the UCP as mentioned in the above
references could be proved for the KP equation too, but this needs to be done. As
far as we know, our result in this article is the first UCP for the KP type models.

To prove this theorem, using the principle of Duhamel, we write the IVP asso-
ciated with the KP-II equation in the equivalent integral equation form,

u(t) = S(t)φ−
∫ t

0

S(t− t′)(uux)(t′) dt′, (1.4)

where S(t) given by,

S(t)f(x, y) =
1
2π

∫
R2

ei(t(ξ3− η2

ξ )+xξ+yη)f̂(ξ, η) dξdη, (1.5)

is the unitary group which describes the solution to the linear problem
(ut + uxxx)x + uyy = 0,

u(x, y, 0) = f(x, y).
(1.6)

Significant amount of work has been devoted to address the Cauchy problem
associated with the KP equation, see for example [3], [11]–[14], [21], [24], [25], [27]
and references therein. Here we are not going to deal with this problem. For our
purpose H1-well-posedness of the associated Cauchy problem is enough. Finally,
let us record that the quantities ∫

R2
u2 dx dy, (1.7)

1
2

∫
R2

[
u2

x − (∂−1
x uy)2 − 1

3
u3

]
dx dy, (1.8)

are conserved by the KP-II flow which are useful to get global solution to the
associated Cauchy problem in certain Sobolev spaces.

We organize this article as follows. In Section 2 we establish some basic estimates
needed in the proof of the main result. The proof of the Theorem 1.2 will be
presented in Section 3.
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Before leaving this section let us introduce some notations that will be used
throughout this article. We use f̂ to denote the Fourier transform of f and is
defined as,

f̂(λ) =
1

(2π)n/2

∫
Rn

e−ix·λf(x) dx.

We denote the L2-based Sobolev space of order s by Hs. The various constants
whose exact values are immaterial will be denoted by c. We use the notation A . B
if there exists a constant c > 0 such that A ≤ cB.

2. Basic Estimates

This section is devoted to establish some basic estimates that will play funda-
mental role in our analysis. These estimates are not new and can be found in [2]
and the author’s previous work in [22]. We will not give the details of the proofs
rather we just sketch the idea of the proof. Let us begin with the following result.

Lemma 2.1. Let u ∈ C([−T, T ];Hs(R2)) be a sufficiently smooth solution to the
IVP (1.1). If for some B > 0, suppu(t) ⊆ B := [−B,B] × [−B,B], then for all
λ = (ξ, η), σ = (θ, δ) ∈ R2, we have

|û(t)(λ + iσ)| . ec|σ|B . (2.1)

Where we have used |(x, y)| = max{|x|, |y|}.

Proof. The proof follows using the Cauchy-Schwarz inequality and the conservation
law (1.7) with the argument similar to the one given in the proof of Lemma 2.1 in
[22]. �

For λ = (ξ, η) and λ′ = (ξ′, η′) define

u∗(λ) = sup
t∈I

|û(t)(λ)|, (2.2)

a(λ) = sup
|ξ′|≥|ξ|
|η′|≥|η|

|u∗(λ′)|. (2.3)

Considering φ sufficiently smooth and taking in to account the well-posedness
theory for the IVP (1.1) (see for example, [3]), we have the following result.

Lemma 2.2. Let u ∈ C([−T, T ];Hs(R2)) be a sufficiently smooth solution to the
IVP (1.1) with suppu(t) ⊆ B, t ∈ I, then for some constant B1, we have,

a(λ) .
B1

1 + |λ|4
. (2.4)

Proof. The Cauchy-Schwarz inequality and the conservation law (1.7) yield∫
R2
|u(t)(λ)| dλ ≤ |B|1/2‖u(t)‖L2 . 1. (2.5)

Now, using properties of the Fourier transform and (2.5) we get

|û(t)(λ)| ≤ ‖û(t)‖L∞ ≤ c‖u(t)‖L1 . 1. (2.6)

Therefore,
sup

t
|û(t)(λ)| ≤ c. (2.7)
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From the local well-posedness result (see [3]), we have

‖Dsu(t)‖L∞T L2
xy
≤ c. (2.8)

Since, suppu(t) ⊆ B and

|λ|sû(t)(λ) = D̂su(t)(λ) =
1
2π

∫
R2

Dsu(t)(x, y)e−i(xξ+yη) dxdy,

using the Cauchy-Schwarz inequality and the estimate (2.8) we obtain

|λ|s|û(t)(λ)| ≤ c

∫
R2
|Dsu(t)(x, y)| dxdy ≤ c

( ∫
R2
|Dsu(t)(x, y)|2 dxdy

)1/2

≤ c1.

(2.9)
Therefore,

|û(t)(λ)| ≤ c1

|λ|s
. (2.10)

If we consider s = 4 (which is possible, since we have local well-posedness for
the IVP (1.1), for eg., in H1) and combine (2.7) and (2.10) we get

sup
t
|û(t)(λ)| ≤ B1

1 + |λ|4
. (2.11)

If λ′ is such that |ξ′| ≥ |ξ| and |η′| ≥ |η|, then 1
1+|λ|4 ≥

1
1+|λ′|4 . Hence

a(λ) = sup
|ξ′|≥|ξ|
|η′|≥|η|

sup
t∈I

|û(t)(λ′)| ≤ sup
|ξ′|≥|ξ|
|η′|≥|η|

B1

1 + |λ′|4
≤ B1

1 + |λ|4
,

as required. �

Proposition 2.3. Let u(t) be compactly supported and suppose that there exists
t ∈ I with u(t) 6= 0. Then there exists a number c > 0 such that for any large
number Q > 0 there are arbitrary large |λ|-values such that

a(λ) > c(a ∗ a)(λ), (2.12)

a(λ) > e−
|λ|
Q . (2.13)

Proof. The main ingredient in the proof is the estimate (2.4) in Lemma 2.2. The
argument is similar to the one given in the proof of lemma in page 440 in [2], so we
omit it. �

Using the definition of a(λ) and Proposition 2.3 we choose |λ| large (with |ξ|, |η|
large) and t1 ∈ I such that

|û(t1)(λ)| = u∗(λ) = a(λ) > c(a ∗ a)(λ) + e−
|λ|
Q . (2.14)

Now we prove some estimates for derivative of an entire function. Let us begin
with the following lemma whose proof is given in [2].

Lemma 2.4. Let φ : C → C be an entire function which is bounded and integrable
on the real axis and satisfies

|φ(ξ + iθ)| . e|θ|B , ξ, θ ∈ R.

Then, for λ1 ∈ R+ we have

|φ′(λ1)| . B
(

sup
ξ′≥λ1

|φ(ξ′)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1

|φ(ξ′)|
)∣∣]. (2.15)
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In the sequel we use this lemma to obtain some more estimates which are crucial
in the proof of our main result. The details of the proof of these estimates can be
found in [22]. For the sake of clarity, we mention main ingredients and sketch of
the proof.

Lemma 2.5. Let Φ : C2 → C be an entire function satisfying

|Φ(λ + iσ)| . ec|σ|B λ, σ ∈ R2,

such that for z2 fixed, Φ1(z1) := Φ(z1, z2) and for z1 fixed, Φ2(z2) := Φ(z1, z2) are
bounded and integrable on the real axis. Then for λ1, λ2 ∈ R+ we have

|∇Φ(λ1, λ2)| . B
(

sup
ξ′≥λ1
η′≥λ2

|Φ(ξ′, η′)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1
η′≥λ2

|Φ(ξ′, η′)|
)∣∣]. (2.16)

Proof. Let us take λ′ = (ξ′, η′). First we apply Lemma 2.4 to Φ1 for fixed z2 to get

|Φ′
1(λ1)| . B

(
sup

ξ′≥λ1

|Φ1(ξ′)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1

|Φ1(ξ′)|
)∣∣]. (2.17)

Next, we apply Lemma 2.4 to Φ2 for fixed z1 to obtain

|Φ′
2(λ2)| . B

(
sup

η′≥λ2

|Φ1(η′)|
)[

1 +
∣∣ log

(
sup

η′≥λ2

|Φ2(η′)|
)∣∣]. (2.18)

Now using (2.17), (2.18) and the definition

∇Φ(λ1, λ2) := (Φ′
1(λ1),Φ′

2(λ2)),

we obtain the required result. �

Corollary 2.6. Let σ ∈ R2 be such that

|σ| ≤ B−1
[
1 +

∣∣ log
(

sup
ξ′≥λ1>0
η′≥λ2>0

|Φ(ξ′, η′)|
)∣∣]−1

. (2.19)

Then
sup

ξ′≥λ1
η′≥λ2

|Φ(λ′ + iσ)| ≤ 4 sup
ξ′≥λ1
η′≥λ2

|Φ(λ′)| (2.20)

and

sup
ξ′≥λ1
η′≥λ2

|∇Φ(λ′ + iσ)| . B
(

sup
ξ′≥λ1
η′≥λ2

|Φ(λ′)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1
η′≥λ2

|Φ(λ′)|
)∣∣]. (2.21)

Proof. To prove (2.20), first fix η′ ≥ λ2 and use Corollary 2.9 in [2] and then fix
ξ′ ≥ λ1 and use the same corollary to get

sup
ξ′≥λ1
η′≥λ2

|Φ(ξ′ + iθ, η′ + iδ)| ≤ sup
η′≥λ2

(
2 sup

ξ′≥λ1

|Φ(ξ′, η′ + iδ)|
)

≤ 4 sup
ξ′≥λ1
η′≥λ2

|Φ(λ′)|.

To prove (2.21), we define Φ̃(z) = Φ(z + iσ). Then Φ̃ is an entire function and
satisfies the hypothesis of Lemma 2.5. So, by the same Lemma we get

|∇Φ̃(λ1, λ2)| . B
(

sup
ξ′≥λ1
η′≥λ2

|Φ̃(ξ′, η′)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1
η′≥λ2

|Φ̃(ξ′, η′)|
)∣∣].
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for any λ1, λ2 ∈ R+.
Now the definition of Φ̃ and use of (2.20) imply

|∇Φ(λ1 + iθ, λ2 + iδ)|

. B
(

sup
ξ′≥λ1
η′≥λ2

|Φ(ξ′ + iθ, η′ + iδ)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1
η′≥λ2

|Φ(ξ′ + iθ, η′ + iδ)|
)∣∣]

. 4B
(

sup
ξ′≥λ1
η′≥λ2

|Φ(ξ′, η′)|
)[

1 +
∣∣ log

(
4 sup

ξ′≥λ1
η′≥λ2

|Φ(ξ′, η′)|
)∣∣]

. B
(

sup
ξ′≥λ1
η′≥λ2

|Φ(λ′)|
)[

(1 + log 4) + (1 + log 4)
∣∣ log

(
sup

ξ′≥λ1
η′≥λ2

|Φ(λ′)|
)∣∣]

. B
(

sup
ξ′≥λ1
η′≥λ2

|Φ(λ′)|
)[

1 +
∣∣ log

(
sup

ξ′≥λ1
η′≥λ2

|Φ(λ′)|
)∣∣].

(2.22)

Which yields the desired estimate (2.21). �

Corollary 2.7. Let t ∈ I, Φ(z) = û(t)(z), σ be as in Corollary 2.6 and a(λ) be as
in (2.3). Then, for |σ′| ≤ |σ| fixed, we have

|∇Φ(λ− λ′ + iσ′)| . B
[
a(λ) + a(λ− λ′)

][
1 + | log a(λ)|

]
. (2.23)

Proof. Define Φ̃(z) := Φ(z + iσ′), z = (z1, z2) = (ξ + iθ, η + iδ). First, we use (2.21)
with σ = 0 and then use (2.20) to get the required result. The details of the proof
can be found in [22]. �

3. Proof of the main result

This section is devoted to supply proof of Theorem 1.2. Although the scheme
of the proof is analogous to the one we employed to get similar result for the ZK
equation in [22], one needs to overcome some additional technical difficulties arising
from the structure of the Fourier symbol associated to the linear KP-II equation.

Proof of Theorem 1.2. If possible, suppose u(t) 6= 0 for some t ∈ I. Our aim is to
get a contradiction by using the estimates derived in the previous section.

Let t1, t2 ∈ I, with t1 as in (2.14). Using Duhamel’s principle, we have

u(t2) = S(t2 − t1)u(t1)−
1
2

∫ t2

t1

S(t2 − t′)(u2)x(t′) dt′. (3.1)

Taking Fourier transform in the space variables with λ = (ξ, η) we get

û(t2)(λ) = ei(t2−t1)(ξ
3− η2

ξ )û(t1)(λ)− iξ

2

∫ t2

t1

ei(t2−t′)(ξ3− η2

ξ )û2(t′)(λ) dt′. (3.2)

Let t2 − t1 = ∆t and then make a change of variables s = t′ − t1 to get

û(t2)(λ) = ei∆t(ξ3− η2

ξ )
[
û(t1)(λ)− iξ

2

∫ ∆t

0

e−is(ξ3− η2

ξ ) ̂u2(s + t1)(λ) ds
]
. (3.3)
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Since u(t), t ∈ I has compact support, by Paley-Wiener theorem, û(t)(λ) has ana-
lytic continuation in C2, and we have for σ = (θ, δ)

û(t2)(λ + iσ) = ei∆t{(ξ+iθ)3− (η+iδ)2

ξ+iθ }
[
û(t1)(λ + iσ)

− i(ξ + iθ)
2

∫ ∆t

0

e−is{(ξ+iθ)3− (η+iδ)2

ξ+iθ } ̂u2(s + t1)(λ + iσ) ds
]
.

(3.4)

Since

(ξ + iθ)3 − (η + iδ)2

ξ + iθ
= ξ3 − 3ξθ2 − 1

ξ2 + θ2
(ξη2 − ξδ2 + 2ηθδ)

+ i{3ξ2θ − θ3 − 1
ξ2 + θ2

(2ξηδ − θη2 + θδ2)},

using Lemma 2.1 we get from (3.4)

ce
∆t{3ξ2θ−θ3− 2ξηδ−θ(η2−δ2)

ξ2+θ2 }

≥
∣∣û(t1)(λ + iσ)

∣∣− |ξ + iθ|
2

∫ ∆t

0

e
s{3ξ2θ−θ3− 2ξηδ−θ(η2−δ2)

ξ2+θ2 }∣∣ ̂u2(s + t1)(λ + iσ)
∣∣ ds.

(3.5)

Let us take |λ| = max{|ξ|, |η|} very large such that

ξη > 0 and |ξ| ∼ |η|. (3.6)

Also, let us choose σ = σ(λ) with |σ| = max{|θ|, |δ|} ≈ 0 with

θ∆t < 0 and δ∆t > 0. (3.7)

Moreover, let us suppose the following conditions are satisfied
1
|ξ|

� |θ|, |δ| and
1
|η|

� |θ|, |δ|. (3.8)

With these choices, (3.5) can be written as

e
∆t{3ξ2θ− 2ξηδ−θη2

ξ2+θ2 }
&

∣∣û(t1)(λ + iσ)
∣∣

− |ξ|
∫ ∆t

0

e
s{3ξ2θ− 2ξηδ−θη2

ξ2+θ2 }∣∣ ̂u2(s + t1)(λ + iσ)
∣∣ ds.

(3.9)

Now, taking into consideration of (3.6) and (3.7), the estimate (3.9) yields

e
−|∆t|{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }

&
∣∣û(t1)(λ + iσ)

∣∣− |ξ|∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }∣∣ ̂u2(t1 ± s)(λ + iσ)
∣∣ ds.

(3.10)

Where “+” sign corresponds to ∆t > 0 and ′−′ sign corresponds to ∆t < 0. In
what follows we consider the case ∆t > 0 ( the case ∆t < 0 is similar). Since
e−x < 1 for x > 0, (3.10) can be written as

e
−{3ξ2+ η2

ξ2+θ2 }|θ∆t|

&
∣∣û(t1)(λ + iσ)

∣∣− |ξ|∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }∣∣ ̂u2(t1 + s)(λ + iσ)
∣∣ ds.
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Finally, this last estimate can be written as

e
−{3ξ2+ η2

ξ2+θ2 }|θ∆t|

&
∣∣û(t1)(λ)

∣∣− |ξ|∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }∣∣ ̂u2(t1 + s)(λ)
∣∣ ds

−
∣∣û(t1)(λ + iσ)− û(t1)(λ)

∣∣
− |ξ|

∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }∣∣ ̂u2(t1 + s)(λ + iσ)− ̂u2(t1 + s)(λ)
∣∣ ds

:= I1 − I2 − I3.

(3.11)

Now, we proceed to obtain appropriate estimates for I1, I2 and I3 to arrive at a
contradiction in (3.11). To obtain estimate for I1, we use definition of u∗(λ), i.e.,
(2.2) and the estimate (2.12) to get

|ξ|
∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }∣∣ ̂u(t1 + s)
∣∣ ∗ ∣∣ ̂u(t1 + s)

∣∣(λ) ds

≤ |ξ|(u∗ ∗ u∗)(λ)
∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }
ds

≤ |ξ|(a ∗ a)(λ)
1− e

−|∆t|{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }

3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2

≤ |ξ|(a ∗ a)(λ)
3|ξ||ξθ|

.
a(λ)
3|ξθ|

.

Therefore,

I1 & a(λ)− a(λ)
3|ξθ|

≥ a(λ)
3

. (3.12)

To get estimate for I2, let us define Φ(z) = û(t1)(z), z = (z1, z2) ∈ C2. Now, using
(2.14) one can obtain

|Φ(λ)| = |û(t1)(λ)| = sup
|ξ′|≥|ξ|
|η′|≥|η|

|Φ(λ′)| = a(λ). (3.13)

Let us choose |σ| satisfying

|σ| . B−1
[
1 + | log a(λ)|

]−1
, (3.14)

and use Corollary 2.6 to obtain

I2 . |σ| sup
|ξ′|≥|ξ|
|η′|≥|η|

|∇û(t1)(λ′ + iσ)| . |σ|B a(λ)
[
1 + | log a(λ)|

]
. a(λ) .

1
15

a(λ).

(3.15)
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To obtain estimate for I3, we use Proposition 2.3, Corollary 2.7 and |σ| as in (3.14)
to get ∣∣ ̂u2(t1 + s)(λ + iσ)− ̂u2(t1 + s)(λ)

∣∣
≤

∫
R2

∣∣ ̂u(t1 + s)(λ− λ′ + iσ)− ̂u(t1 + s)(λ− λ′)
∣∣∣∣ ̂u(t1 + s)(λ′)

∣∣ dλ′

≤ |σ|
∫

R2
sup

|σ′|≤|σ|
|∇ ̂u(t1 + s)(λ− λ′ + iσ′)

∣∣ a(λ′) dλ′

≤
∫

R2
[a(λ) + a(λ− λ′)] a(λ′) dλ′

≤ a(λ)c2 + (a ∗ a)(λ)

≤ a(λ)(c2 + c−1) . a(λ).

Therefore,

I3 . |ξ|a(λ)
∫ |∆t|

0

e
−s{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }
ds

= |ξ|a(λ)
1− e

−|∆t|{3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2 }

3ξ2|θ|+ 2|ξηδ|+|θ|η2

ξ2+θ2

≤ |ξ|a(λ)
3|ξ2θ|

.
a(λ)
|ξθ|

<
a(λ)
15

.

(3.16)

Now inserting (3.12), (3.15) and (3.16) in (3.11) and using the estimate (2.13) we
get

e
−{3ξ2+ η2

ξ2+θ2 }|θ∆t|
&

a(λ)
3

− a(λ)
15

− a(λ)
15

=
1
3
a(λ) & e−

|λ|
Q . (3.17)

On the other hand, using (3.6) and (3.8) one can easily deduce

e
−{3ξ2+ η2

ξ2+θ2 }|θ||∆t| ≤ e−|λ||∆t|. (3.18)

Hence, using (3.18) in (3.17), we arrive at

e−|λ||∆t| & e−
|λ|
Q ,

which is a contradiction for |λ| large, if we choose Q large enough such that 1
Q <

|∆t|. �

Remark 3.1. Note that the Fourier symbol associated with the linear KP-I oper-
ator is ξ3 + η2

ξ . In this case we cannot make choice as in (3.6) and (3.7) to obtain
estimate like in (3.10) with term of the form e−|∆t|γ , for some γ > 0. As seen in the
proof of Theorem 1.2, existence of such term in the RHS of (3.10) is very essential
in the argument we employed. It would be interesting to obtain UCP for the KP-I
equation employing some other argument or modification.
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