\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2005(2005), No. 77, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2005 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2005/77\hfil A property of Sobolev spaces] {A property of Sobolev spaces on complete Riemannian manifolds} \author[O. Milatovic\hfil EJDE-2005/77\hfilneg] {Ognjen Milatovic} \address{Ognjen Milatovic \hfill\break Department of Mathematics and Statistics\\ University of North Florida \\ Jacksonville, FL 32224, USA} \email{omilatov@unf.edu} \date{} \thanks{Submitted June 25, 2005. Published July 8, 2005.} \subjclass[2000]{58J05} \keywords{Complete Riemannian manifold; Sobolev space} \begin{abstract} Let $(M,g)$ be a complete Riemannian manifold with metric $g$ and the Riemannian volume form $d\nu$. We consider the $\mathbb{R}^{k}$-valued functions $T\in [W^{-1,2}(M)\cap L_{\rm loc}^{1}(M)]^{k}$ and $u\in [W^{1,2}(M)]^{k}$ on $M$, where $[W^{1,2}(M)]^{k}$ is a Sobolev space on $M$ and $[W^{-1,2}(M)]^{k}$ is its dual. We give a sufficient condition for the equality of $\langle T, u\rangle$ and the integral of $(T\cdot u)$ over $M$, where $\langle\cdot,\cdot\rangle$ is the duality between $[W^{-1,2}(M)]^{k}$ and $[W^{1,2}(M)]^{k}$. This is an extension to complete Riemannian manifolds of a result of H.~Br\'ezis and F.~E.~Browder. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction and main result}\label{S:main} \subsection*{The setting}\label{SS:setting} Let $(M,g)$ be a $C^{\infty}$ Riemannian manifold without boundary, with metric $g=(g_{jk})$ and $\dim M=n$. We will assume that $M$ is connected, oriented, and complete. By $d\nu$ we will denote the Riemannian volume element of $M$. In any local coordinates $x^1,\dots,x^n$, we have $d\nu=\sqrt{\det (g_{jk})}\,dx^1 dx^2\dots dx^n$. By $L^{2}(M)$ we denote the space of real-valued square integrable functions on $M$ with the inner product \[ (u,v)=\int_{M}(uv)\,d\nu. \] Unless specified otherwise, in all function spaces below, the functions are real-valued. In what follows, $C^{\infty}(M)$ denotes the space of smooth functions on $M$, $C_{c}^{\infty}(M)$ denotes the space of smooth compactly supported functions on $M$, $\Omega^{1}(M)$ denotes the space of smooth 1-forms on $M$, and $L^2(\Lambda^{1}T^*M)$ denotes the space of square integrable 1-forms on $M$. By $W^{1,2}(M)$ we denote the completion of $C_{c}^{\infty}(M)$ in the norm \[ \|u\|_{W^{1,2}}^{2}=\int_{M}|u|^{2}\,d\nu+ \int_{M}|du|^{2}\,d\nu, \] where $d:C^{\infty}(M)\to \Omega^{1}(M)$ is the standard differential. \begin{remark}\label{R:sobolev-spaces} \rm It is well known (see, for example, Chapter 2 in~\cite{Aubin}) that if $(M,g)$ is a complete Riemannian manifold, then $W^{1,2}(M)=\{u\in L^{2}(M)\colon du\in L^{2}(\Lambda^1 T^*M)\}$. \end{remark} By $W^{-1,2}(M)$ we denote the dual space of $W^{1,2}(M)$, and by $\langle\cdot,\cdot\rangle$ we will denote the duality between $W^{-1,2}(M)$ and $W^{1,2}(M)$. In what follows, $[C_{c}^{\infty}(M)]^{k}$, $[L^2(M)]^{k}$, $[L^{2}(\Lambda^1 T^*M)]^{k}$ and $[W^{1,2}(M)]^{k}$ denote the space of all ordered $k$-tuples $u=(u_1,u_2,\dots, u_k)$ such that $u_j\in C_{c}^{\infty}(M)$, $u_j\in L^2(M)$, $u_j \in L^{2}(\Lambda^1 T^*M)$, $u_j\in W^{1,2}(M)$, respectively, for all $1\leq j\leq k$. For $u\in [W^{1,2}(M)]^{k}$, we will use the following notation: \begin{gather}\label{E:du-definition} du:=(du_1,du_2,\dots, du_k), \\ \label{E:norm-u-definition} |u|:= (u_{1}^{2}+u_2^{2}+\cdots + u_{k}^{2})^{1/2}, \\ \label{E:norm-du-definition} |du|:=(|du_1|^2+|du_2|^2+\cdots + |du_k|^2)^{1/2}, \end{gather} where $|du_j|$ denotes the length of the cotangent vector $du_j$. The space $[W^{1,2}(M)]^{k}$ is the completion of $[C_{c}^{\infty}(M)]^{k}$ in the norm \[ \|u\|^2_{[W^{1,2}(M)]^{k}}=\int_{M}|u|^2\,d\nu+\int_{M}|du|^2\,d\nu, \] where $|u|$ and $|du|$ are as in~(\ref{E:norm-u-definition}) and~(\ref{E:norm-du-definition}) respectively. \begin{remark} \rm As in Remark \ref{R:sobolev-spaces}, if $(M,g)$ is a complete Riemannian manifold, then $[W^{1,2}(M)]^{k}=\{u\in [L^{2}(M)]^{k}\colon du\in [L^{2}(\Lambda^1 T^*M)]^{k}\}$. \end{remark} \subsection*{Assumption (H1)} Assume that \begin{enumerate} \item $u=(u_1,u_2,\dots,u_k)\in [W^{1,2}(M)]^{k}$ and \item $T=(T_1,T_2,\dots, T_k)$, where $T_1, T_2, \dots, T_k\in W^{-1,2}(M) \cap L^{1}_{\rm loc}(M)$. \end{enumerate} Here, the notation $T_j\in W^{-1,2}(M) \cap L^{1}_{\rm loc}(M)$ means that $T_j$ is a.e.~defined function belonging to $L^{1}_{\rm loc}(M)$ such that \[ \phi\mapsto \int_{M}T_j\phi\,d\nu, \quad \phi\in C^{\infty}_{c}(M), \] extends continuously to $W^{1,2}(M)$. For a.e.~$x\in M$, denote \begin{gather}\label{E:product-Tu-definition} (T\cdot u)(x):=\sum_{j=1}^{k} T_j(x)u_j(x), \\ \label{E:duality-Tu-definition} \langle T,u \rangle := \sum_{j=1}^{k}\langle T_j,u_j\rangle, \end{gather} where $\langle\cdot,\cdot\rangle$ on the right hand side of~(\ref{E:duality-Tu-definition}) denotes the duality between $W^{-1,2}(M)$ and $W^{1,2}(M)$. We now state our main result. \begin{theorem}\label{T:main} Assume that $(M,g)$ is a complete Riemannian manifold. Assume that $u=(u_1,u_2,\dots,u_k)$ and $T=(T_1,T_2,\dots, T_k)$ satisfy the assumption (H1). Assume that there exists a function $f\in L^{1}(M)$ such that \begin{equation}\label{E:assumption-g} (T\cdot u)(x)\geq f(x), \quad\text{a.e. on }M. \end{equation} Then $(T\cdot u)\in L^{1}(M)$ and \[ \langle T, u\rangle= \int_{M} (T\cdot u)(x)\, d\nu(x). \] \end{theorem} In the following Corollary, by $W^{1,2}(M,\mathbb{C})$, $W^{-1,2}(M,\mathbb{C})$ and $L_{\rm loc}^{1}(M,\mathbb{C})$ we denote the complex analogues of spaces $W^{1,2}(M)$, $W^{-1,2}(M)$ and $L_{\rm loc}^{1}(M)$. By $\langle\cdot,\cdot\rangle$ we denote the Hermitian duality between $W^{-1,2}(M,\mathbb{C})$ and $W^{1,2}(M,\mathbb{C})$. \begin{corollary}\label{C:complex-case} Assume that $(M,g)$ is a complete Riemannian manifold. Assume that $T\in W^{-1,2}(M,\mathbb{C})\cap L_{\rm loc}^{1}(M,\mathbb{C})$ and $u\in W^{1,2}(M,\mathbb{C})$. Assume that there exists a real-valued function $f\in L^1(M)$ such that \[ \operatorname{Re}(T\bar{u}) \geq f,\quad\text{a.e. on }M. \] Then $\operatorname{Re} (T\bar{u})\in L^1(M)$ and \[ \operatorname{Re} \langle T, u\rangle=\int_{M} \operatorname{Re}(T\bar{u})\,d\nu. \] \end{corollary} \begin{remark} \rm Theorem \ref{T:main} and Corollary \ref{C:complex-case} extend the corresponding results of H.~Br\'ezis and F.~E.~Browder~\cite{Brezis-Browder-78} from ${\mathbb{R}}^{n}$ to complete Riemannian manifolds. The results of~\cite{Brezis-Browder-78} were used, among other applications, in studying self-adjointness and $m$-accretivity in $L^2({\mathbb{R}}^{n}, \mathbb{C})$ of Schr\"odinger operators with singular potentials; see, for example, H.~Br\'ezis and T.~Kato~\cite{Brezis-Kato79}. Analogously, Theorem~\ref{T:main} and Corollary~\ref{C:complex-case} can be used in the study of self-adjoint and $m$-accretive realizations (in the space $L^2(M,\mathbb{C})$) of Schr\"odinger-type operators with singular potentials, where $M$ is a complete Riemannian manifold, as well as in the study of partial differential equations on complete Riemannian manifolds. \end{remark} \section{Proof of~Theorem~\ref{T:main}} We will adopt the arguments of H.~Br\'ezis and F.~E.~Browder~\cite{Brezis-Browder-78} to the context of a complete Riemannian manifold. In what follows, $F\colon {\mathbb{R}}^{k}\to {\mathbb{R}}^{l}$ is a $C^{1}$ vector-valued function $F(y)=(F_1(y),F_2(y),\dots, F_l(y))$. By $dF(y)$ we will denote the derivative of $F$ at $y=(y_1,y_2,\dots, y_k)$. \begin{lemma} \label{L:chain-rule-smooth} Assume that $F\in C^{1}({\mathbb{R}}^{k}, {\mathbb{R}}^{l})$, $F(0)=0$, and for all $y\in {\mathbb{R}}^{k}$, \[ |dF(y)|\leq C \] where $C\geq 0$ is a constant. Assume that $u=(u_1,u_2,\dots,u_k)\in [W^{1,2}(M)]^{k}$. Then $(F\circ u) \in [W^{1,2}(M)]^{l}$, and the following holds: \begin{equation}\label{E:chain-rule-smooth} d(F\circ u)= \sum_{j=1}^{k} \frac{\partial F}{\partial u_j}d u_j, \end{equation} where \begin{equation}\label{E:notations} \frac{\partial F}{\partial u_j}=\Big(\frac{\partial F_1}{\partial y_j}(u), \frac{\partial F_2}{\partial y_j}(u),\dots, \frac{\partial F_l}{\partial y_j}(u)\Big). \end{equation} (Here the notation $\frac{\partial F_s}{\partial y_j}(u)$, where $1\leq s\leq l$, denotes the composition of $\frac{\partial F_s}{\partial y_j}$ and $u$. The notation $d(F\circ u)$ denotes the ordered $l$-tuple $(d(F_1\circ u), d(F_2\circ u), \dots, d(F_l\circ u))$, where $d(F_s\circ u)$, $1\leq s\leq l$, is the differential of the scalar-valued function $F_s\circ u$ on $M$. \end{lemma} \begin{proof} Let $u\in [W^{1,2}(M)]^{k}$. By definition of $[W^{1,2}(M)]^{k}$, the weak derivatives $du_j$, $1\leq j\leq k$, exist and $du_j\in L^2(M)$. By Lemma 7.5 in~\cite{Gilbarg-Trudinger}, it follows that for all $1\leq s\leq l$, the following holds: \[ d(F_{s}\circ u)=\sum_{j=1}^{k} \frac{\partial F_s}{\partial u_j}d u_j, \] where \[ \frac{\partial F_s}{\partial u_j}= \frac{\partial F_s}{\partial y_j}(u). \] This shows~(\ref{E:chain-rule-smooth}). Since $dF$ is bounded and since $du_j\in L^2(\Lambda^1T^*M)$, it follows that $d(F_{s}\circ u)\in L^2(\Lambda^1T^*M)$ for all $1\leq s\leq l$. Thus $d(F\circ u)\in [L^2(\Lambda^1T^*M)]^{l}$. Moreover, since $u\in [W^{1,2}(M)]^{k}$ and \[ |F_s\circ u|=|F_s(u)- F_s(0)|\leq C_1|u|, \] where $C_1\geq 0$ is a constant and $|u|$ is as in~(\ref{E:norm-u-definition}), it follows that $(F_s\circ u)\in L^2(M)$ for all $1\leq s\leq l$. Thus $(F\circ u) \in [L^2(M)]^{l}$. Therefore, $(F\circ u)\in [W^{1,2}(M)]^{l}$, and the Lemma is proven. \end{proof} \begin{lemma}\label{L:product-rule} Assume that $u$, $v\in W^{1,2}(M)\cap L^{\infty}(M)$. Then $(uv)\in W^{1,2}(M)$ and \begin{equation}\label{E:product-rule} d(uv)=(du)v+u(dv). \end{equation} \end{lemma} \begin{proof} By the remark after the equation (7.18) in~\cite{Gilbarg-Trudinger}, the equation~(\ref{E:product-rule}) holds if the weak derivatives $du$, $dv$ exist and if $uv\in L_{\rm loc}^{1}(M)$ and $((du)v+u(dv))\in L_{\rm loc}^{1}(M)$. By the hypotheses of the Lemma, these conditions are satisfied, and, hence,~(\ref{E:product-rule}) holds. Furthermore, since $u$, $v\in W^{1,2}(M)\cap L^{\infty}(M)$, we have $(uv)\in L^2(M)$. By hypotheses of the Lemma and by (\ref{E:product-rule}) we have $d(uv)\in L^2(M)$. Thus $(uv)\in W^{1,2}(M)$, and the Lemma is proven. \end{proof} In the next lemma, the statement ``$f\colon \mathbb{R}\to \mathbb{R}$ is a piecewise smooth function" means that $f$ is continuous and has piecewise continuous first derivative. \begin{lemma}\label{L:chain-rule-piecewise-smooth} Assume that $f\colon \mathbb{R}\to \mathbb{R}$ is a piecewise smooth function with $f(0)=0$ and $f'\in L^{\infty}(\mathbb{R})$. Let $S$ denote the set of corner points of $f$. Assume that $u\in W^{1,2}(M)$. Then $(f\circ u)\in W^{1,2}(M)$ and \[ d(f\circ u)=\begin{cases} f'(u)\,du & \text{for all $x$ such that } u(x) \notin S\\ 0 & \text{for all $x$ such that }u(x)\in S \end{cases} \] \end{lemma} \begin{proof} By the remark in the second paragraph below the equation (7.24) in~\cite{Gilbarg-Trudinger}, the Lemma follows immediately from Theorem 7.8 in~\cite{Gilbarg-Trudinger}. \end{proof} The following Corollary follows immediately from Lemma~\ref{L:chain-rule-piecewise-smooth}. \begin{corollary}\label{C:absolute-value} Assume that $u\in W^{1,2}(M)$. Then $|u|\in W^{1,2}(M)$ and \[ d|u|=\begin{cases} f'(u)\, du & \text{for all $x$ such that }u(x)\neq 0\\ 0 & \text{for all $x$ such that }u(x)=0\ \end{cases}, \] where $f(t)=|t|$, $t\in\mathbb{R}$. \end{corollary} \begin{remark}\label{R:absolute-value} \rm Let $f(t)=|t|$, $t\in\mathbb{R}$. Let $c$ be a real number. By Lemma 7.7 in~\cite{Gilbarg-Trudinger} and by Corollary~\ref{C:absolute-value}, we can write $d|u|=h(u)du$ a.e. on $M$, where \[ h(t)= \begin{cases} f'(t)& \text{for all }t\neq 0\\ c & \text{otherwise}. \end{cases} \] \end{remark} \begin{lemma} \label{L:minimum} Assume that $u$, $v\in W^{1,2}(M)$ and let \[ w(x):=\min\{u(x), v(x)\}. \] Then $w\in W^{1,2}(M)$ and \[ |dw|\leq \max\{|du|, |dv|\},\quad\text{a.e. on }M, \] where $|du(x)|$ denotes the norm of the cotangent vector $du(x)$. \end{lemma} \begin{proof} We can write \[ w(x)=\frac{1}{2}(u(x)+v(x)-|u(x)-v(x)|). \] Since $u$, $v\in W^{1,2}(M)$, by Corollary~\ref{C:absolute-value} we have $|u-v|\in W^{1,2}(M)$, and, thus, $w\in W^{1,2}(M)$. By Remark \ref{R:absolute-value}, we have \begin{equation}\label{E:w-through-h} dw(x)=\frac{1}{2}(du(x)+dv(x)-(h(u-v))\cdot(du(x)-dv(x))), \quad\text{a.e. on }M, \end{equation} where $h$ is as in Remark~\ref{R:absolute-value}. Considering $dw(x)$ on sets $\{x\colon u(x)>v(x)\}$, $\{x\colon u(x)0$. Let $u=(u_1,u_2,\dots, u_k)$ be in $[W^{1,2}(M)]^{k}$, let $v=(v_1,v_2,\dots, v_k)$ be in $[W^{1,2}(M)\cap L^{\infty}(M)]^{k}$, and let \[ w:=\left((|u|^2+a^2)^{-1/2}\min\{(|u|^2+a^2)^{1/2}-a, (|v|^2+a^2)^{1/2}-a\}\right)u, \] where $|u|$ is as in~(\ref{E:norm-u-definition}). Then $w\in [W^{1,2}(M)\cap L^{\infty}(M)]^{k}$ and \[ |dw|\leq 3\max\{|du|,|dv|\},\quad\text{a.e. on }M, \] where $|du|$ is as in~(\ref{E:norm-du-definition}). \end{lemma} \begin{proof} Let $\phi=(|u|^2+a^2)^{-1/2}u$. Then $\phi=F\circ u$, where $F\colon {\mathbb{R}}^{k}\to {\mathbb{R}}^{k}$ is defined by \[ F(y)=(|y|^2+a^2)^{-1/2}y, \quad y\in{\mathbb{R}}^k. \] Clearly, $F\in C^{1}({\mathbb{R}}^{k},{\mathbb{R}}^{k})$ and $F(0)=0$. It easily checked that the component functions \[ F_s(y)=(|y|^2+a^2)^{-1/2}y_s \] satisfy \[ \frac{\partial F_s}{\partial y_j}=\begin{cases} -(|y|^2+a^2)^{-3/2}y_{s}y_j & \text{for }s\neq j \\ (|y|^2+a^2)^{-3/2}(|y|^2-y_{j}^{2}+a^2) & \text{for }s=j. \end{cases} \] Therefore, for all $1\leq s,j\leq k$, we have \[ \big|\frac{\partial F_s}{\partial y_j}(y)\big|\leq \frac{1}{a}, \] and, hence, $F$ satisfies the hypotheses of Lemma~\ref{L:chain-rule-smooth}. Thus, by Lemma~\ref{L:chain-rule-smooth} we have $(F\circ u)=\phi \in [W^{1,2}(M)]^{k}$. We now write the formula for $d\phi=(d\phi_1,d\phi_2,\dots, d\phi_k)$. We have \begin{equation}\label{E:d-phi} d\phi=(|u|^2+a^2)^{-3/2}\Big((|u|^2+a^2)du-\Big(\sum_{j=1}^{k}u_jdu_j \Big)u\Big), \end{equation} where $du$ is as in~(\ref{E:du-definition}). By (\ref{E:d-phi}), using triangle inequality and Cauchy-Schwarz inequality, we have \begin{equation}\label{E:estimate-d-phi} \begin{aligned} |d\phi| &\leq (|u|^2+a^2)^{-3/2}\Big((|u|^2+a^2)|du| +\big|\sum_{j=1}^{k}u_jdu_j\big||u|\Big)\\ &\leq (|u|^2+a^2)^{-3/2}\left((|u|^2+a^2)|du|+|u||du||u|\right)\\ &\leq (|u|^2+a^2)^{-3/2}\left((|u|^2+a^2)|du|+(|u|^2+a^2)|du|\right)\\ &= 2 (|u|^2+a^2)^{-1/2}|du|, \quad\text{a.e. on }M, \end{aligned} \end{equation} where $|du_j|$ is the norm of the cotangent vector $du_j$, and $|u|$ and $|du|$ are as in (\ref{E:norm-u-definition}) and (\ref{E:norm-du-definition}) respectively. Let \[ \psi:=\min\{(|u|^2+a^2)^{1/2}-a, (|v|^2+a^2)^{1/2}-a\}. \] Then \[ (|u|^2+a^2)^{1/2}-a=G\circ u\quad\text{ and }\quad(|v|^2+a^2)^{1/2}-a=G\circ v, \] where \[ G(y)=(|y|^2+a^2)^{1/2}-a,\quad y\in{\mathbb{R}}^{k}. \] Clearly, $G\in C^{1}({\mathbb{R}}^{k},{\mathbb{R}})$ and $G(0)=0$, and \[ \frac{\partial G}{\partial y_j}=(|y|^2+a^2)^{-1/2}y_j, \] It is easily seen that there exists a constant $C_2\geq 0$ such that $|dG(y)|\leq C_2$ for all $y\in{\mathbb{R}}^{k}$. Hence, by Lemma~\ref{L:chain-rule-smooth} we have $(G\circ u)\in W^{1,2}(M)$ and $(G\circ v)\in W^{1,2}(M)$. Thus, by Lemma \ref{L:minimum} we have $\psi\in W^{1,2}(M)$, and \[ |d\psi|\leq \max\big\{\big|d((|u|^2+a^2)^{1/2}-a)\big|, \big|d((|v|^2+a^2)^{1/2}-a)\big|\big\}, \quad\text{a.e. on }M. \] Using triangle inequality and Cauchy-Schwarz inequality, we have \begin{equation}\label{E:du-norm-estimate} \begin{aligned} |d((|u|^2+a^2)^{1/2}-a)| & = \big|(|u|^2+a^2)^{-1/2}\big(\sum_{j=1}^{k}u_jdu_j\big)\big|\\ &\leq (|u|^2+a^2)^{-1/2} |u||du| \\ &\leq |du|, \end{aligned} \end{equation} where $|u|$ and $|du|$ are as in~(\ref{E:norm-u-definition}) and~(\ref{E:norm-du-definition}) respectively. As in (\ref{E:du-norm-estimate}), we obtain \[ |d((|v|^2+a^2)^{1/2}-a)| \leq |dv|. \] Therefore, we get \begin{equation}\label{E:norm-estimate-psi} |d\psi|\leq\max\{|du|,|dv|\}, \quad\text{a.e. on }M, \end{equation} where $|d\psi|$ is the norm of the cotangent vector $d\psi$, and $|du|$ and $|dv|$ are as in~(\ref{E:norm-du-definition}). By definition of $\phi$ we have $\phi\in [L^{\infty}(M)]^{k}$ and, by definition of $\psi$ we have \[ \psi \leq (|v|^2+a^2)^{1/2}-a. \] Thus, \begin{equation}\label{E:bounded-psi} \psi\leq |v|, \end{equation} where $|v|$ is as in~(\ref{E:norm-u-definition}). Since $v\in [L^{\infty}(M)]^{k}$, we have $\psi\in L^{\infty}(M)$. We have already shown that $\phi \in [W^{1,2}(M)]^{k}$ and $\psi \in W^{1,2}(M)$. By Lemma~\ref{L:product-rule} (applied to the components $\psi\phi_j$, $1\leq j\leq k$, of $\psi\phi$) we have $w=\psi\phi\in [W^{1,2}(M)]^{k}$ and \begin{equation}\label{E:product-estimate} d(\psi\phi)=(d\psi)\phi+\psi(d\phi). \end{equation} By (\ref{E:product-estimate}), (\ref{E:estimate-d-phi}) and (\ref{E:norm-estimate-psi}), we have a.e. on $M$: \begin{align*} |dw| &= |(d\psi)\phi+\psi(d\phi)| \\ &\leq |d\psi||\phi|+|\psi||d\phi| \\ &\leq \left(\max\{|du|,|dv|\}\right) |\phi| + 2 (|u|^2+a^2)^{-1/2}|du||\psi| \\ &\leq \max\{|du|,|dv|\} + 2|du| \\ &\leq 3\max\{|du|,|dv|\}, \end{align*} where the third inequality holds since $|\phi|\leq 1$ and $|\psi|(|u|^2+a^2)^{-1/2}\leq 1$. This concludes the proof of the Lemma. \end{proof} \begin{lemma}\label{L:bounded-compact-supp} Let $T=(T_1,T_2,\dots, T_k)$ and $u=(u_1,u_2,\dots, u_k)$ be as in the hypotheses of~Theorem~\ref{T:main}. Additionally, assume that $u$ has compact support and $u\in [L^{\infty}(M)]^{k}$. Then the conclusion of Theorem~\ref{T:main} holds. \end{lemma} \begin{proof} Since the vector-valued function $u=(u_1,u_2,\dots,u_k)\in [W^{1,2}(M)]^{k}$ is compactly supported, it follows that the functions $u_j$ are compactly supported. Thus, using a partition of unity we can assume that $u_j$ is supported in a coordinate neighborhood $V_j$. Thus we can use the Friedrichs mollifiers. Let $\rho_j>0$ and $(u_{j})^{\rho_j}:= J^{\rho_j}u$, where $J^{\rho_j}$ denotes the Friedrichs mollifying operator as in Section 5.12 of~\cite{bms}. Then $(u_{j})^{\rho_j}\in C_{c}^{\infty}(M)$, and, as $\rho_j\to 0+$, we have $(u_j)^{\rho_j}\to u_j$ in $W^{1,2}(M)$; see, for example, Lemma 5.13 in~\cite{bms}. Thus \begin{equation}\label{E:weak-convergence-smooth} \langle T_j,(u_{j})^{\rho_j}\rangle \to \langle T_j,u_{j}\rangle,\quad\text{as }\rho_j\to 0+, \end{equation} where $\langle\cdot,\cdot\rangle$ is as on the right hand side of~(\ref{E:duality-Tu-definition}). Since $(u_{j})^{\rho_j}\in C_{c}^{\infty}(M)$ and $T_j\in L_{\rm loc}^{1}(M)$, we have \begin{equation}\label{E:equality-mollifiers} \langle T_j,(u_{j})^{\rho_j}\rangle = \int_{M}(T_j\cdot (u_j)^{\rho_j})\,d\nu. \end{equation} Next, we will show that \begin{equation}\label{E:limit-u-rho-j} \lim_{\rho_j\to 0+}\int_{M}(T_j\cdot (u_j)^{\rho_j})\,d\nu=\int_{M}(T_ju_j)\,d\nu. \end{equation} Since $u_j\in L^{\infty}(M)$ is compactly supported, by properties of Friedrichs mollifiers (see, for example, the proof of Theorem 1.2.1 in \cite{Friedlander-Joshi}) it follows that \begin{itemize} \item[(i)] there exists a compact set $K_j$ containing the supports of $u_j$ and $u_{j}^{\rho_j}$ for all $0<\rho_j<1$, and \item[(ii)] the following inequality holds for all $\rho_j>0$: \begin{equation}\label{E:friedrichs-L-infty} \|u_{j}^{\rho_j}\|_{L^{\infty}}\leq \|u_j\|_{L^{\infty}}. \end{equation} \end{itemize} Since $(u_j)^{\rho_j}\to u_j$ in $L^2(M)$ as $\rho_j\to 0+$, after passing to a subsequence we have \begin{equation}\label{E:friedrichs-ae} (u_{j})^{\rho_j}\to u_j \quad \text{ a.e. on }M, \quad\text{as }\rho_j\to 0+. \end{equation} By (\ref{E:friedrichs-L-infty}) we have \begin{equation}\label{E:friedrichs-T-u-j-rho} |T_j(x)(u_j)^{\rho_j}(x)|\leq |T_j(x)|\|u_j\|_{L^{\infty}},\quad \text{a.e. on }M. \end{equation} Since $T_j\in L_{\rm loc}^1(M)$, it follows that $T_j\in L^1(K_j)$. By (\ref{E:friedrichs-ae}), (\ref{E:friedrichs-T-u-j-rho}) and since $T_j\in L^1(K_j)$, using dominated convergence theorem, we have \begin{equation}\nonumber \lim_{\rho_j\to 0+}\int_{M}(T_j\cdot (u_j)^{\rho_j})\,d\nu=\lim_{\rho_j\to 0+}\int_{K_j}(T_j\cdot (u_j)^{\rho_j})\,d\nu=\int_{K_j}(T_ju_j)\,d\nu=\int_{M}(T_ju_j)\,d\nu, \end{equation} and~(\ref{E:limit-u-rho-j}) is proven. Now, using (\ref{E:weak-convergence-smooth}), (\ref{E:equality-mollifiers}), (\ref{E:limit-u-rho-j}) and the notations (\ref{E:product-Tu-definition}) and (\ref{E:duality-Tu-definition}), we get \begin{equation}\label{E:smooth-compact} \begin{aligned} \langle T, u \rangle &= \sum_{j=1}^{k} \langle T_j, u_{j}\rangle \\ &= \sum_{j=1}^{k} \lim_{\rho_j\to 0+}\langle T_j, (u_{j})^{\rho_j}\rangle \\ &= \sum_{j=1}^{k} \lim_{\rho_j\to 0+} \int_{M}(T_j\cdot (u_j)^{\rho_j})\,d\nu \\ &= \sum_{j=1}^{k} \int_{M}(T_ju_j)\,d\nu \ = \ \int_{M} (T\cdot u)\,d\nu. \end{aligned} \end{equation} This concludes the proof of the Lemma. \end{proof} \begin{proof}[Proof of Theorem~\ref{T:main}] Let $u\in [W^{1,2}(M)]^{k}$. By definition of $[W^{1,2}(M)]^{k}$ in Section~\ref{S:main}, there exists a sequence $v^{m}\in [C_{c}^{\infty}(M)]^{k}$ such that $v^m\to u$ in $[W^{1,2}(M)]^{k}$, as $m\to +\infty$. In particular, $v^{m}\to u$ in $[L^2(M)]^{k}$, and, hence, we can extract a subsequence, again denoted by $v^m$, such that $v^m\to u$ a.e. on $M$. Define a sequence $\lambda^m$ by \[ \lambda^m:=\Big(|u|^{2}+\frac{1}{m^2}\Big)^{-1/2} \min\Big\{\Big(|u|^{2}+\frac{1}{m^2}\Big)^{1/2}-\frac{1}{m}, \Big(|v^m|^{2}+\frac{1}{m^2}\Big)^{1/2}-\frac{1}{m}\Big\}, \] where $v^m$ is the chosen subsequence of $v^m$ such that $v^m\to u$ a.e. on $M$, as $m\to+\infty$. Clearly, $0\leq \lambda^m \leq 1$. Define \begin{equation}\label{E:w-m} w^m:=\lambda^m u. \end{equation} We know that $u\in [W^{1,2}(M)]^{k}$ and $v^m\in [C_{c}^{\infty}(M)]^{k}$. Thus, by Lemma~\ref{L:key-lemma}, for all $m=1,2,3,\dots$, we have $w^m\in [W^{1,2}(M)\cap L^{\infty}(M)]^{k}$, and \begin{equation}\label{E:derivatives-brezis-browder-78} |d(w^m)|\leq 3\max\{|du|, |d(v^m)|\}, \end{equation} where $|du|$ is as in~(\ref{E:norm-u-definition}). Furthermore, for all $m=1,2,3,\dots$, we have \begin{equation}\label{E:estimate-w-m} |w^{m}(x)|\leq |u(x)|, \end{equation} where $|\cdot|$ is as in~(\ref{E:norm-u-definition}). Since $u\in [L^2(M)]^{k}$, by (\ref{E:estimate-w-m}) it follows that $\{w^m\}$ is a bounded sequence in $[L^2(M)]^{k}$. Since $v^m\to u$ in $[W^{1,2}(M)]^{k}$, it follows that the sequence $\{v^m\}$ is bounded in $[W^{1,2}(M)]^{k}$. In particular, the sequence $\{d(v^m)\}$ is bounded in $[L^2(\Lambda^1T^*M)]^{k}$. Hence, by (\ref{E:derivatives-brezis-browder-78}) it follows that $\{d(w^m)\}$ is a bounded sequence in $[L^2(\Lambda^1T^*M)]^{k}$. Therefore, $\{w^m\}$ is a bounded sequence in $[W^{1,2}(M)]^{k}$. By Lemma V.1.4 in~\cite{Kato66} it follows that there exists a subsequence of $\{w^m\}$, which we again denote by $\{w^m\}$, such that $w^m$ converges weakly to some $z\in [W^{1,2}(M)]^{k}$. This means that for every continuous linear functional $A\in [W^{-1,2}(M)]^{k}$, we have \[ A(w_m)\to A(z),\quad\text{as }m\to+\infty. \] Since \[ [W^{1,2}(M)]^{k}\subset [L^2(M)]^{k} \subset [W^{-1,2}(M)]^{k}, \] it follows that $w^m\to z$ in weakly $[L^2(M)]^{k}$. We will now show that, as $m\to +\infty$, $w^m\to u$ in $[L^2(M)]^{k}$. By definition of $w^m$ in~(\ref{E:w-m}) it follows that $w^m\to u$ a.e. on $M$. Since $u\in [L^2(M)]^{k}$, using (\ref{E:estimate-w-m}) and dominated convergence theorem we get $w^m\to u$ in $[L^2(M)]^{k}$, as $m\to+\infty$. In particular, $w^m\to u$ weakly in $[L^2(M)]^{k}$. Therefore, by the uniqueness of the weak limit (see, for example, the beginning of Section III.1.6 in~\cite{Kato66}), we have $z=u$. Therefore, $w^m\to u$ weakly in $[W^{1,2}(M)]^{k}$. Thus, since $T\in [W^{-1,2}(M)]^{k}$, we have \begin{equation}\label{E:t-w-m-weak-convergence} \langle T, w^m\rangle \to \langle T , u\rangle, \quad\text{as }m\to+\infty. \end{equation} By the definition of $\lambda^m$ and~(\ref{E:w-m}) it follows that \begin{equation}\label{E:w-m-compact-support} |w^m(x)|\leq |v^m(x)|. \end{equation} Since $v^m\in [C_{c}^{\infty}(M)]^k$, by (\ref{E:w-m-compact-support}) it follows that the functions $w^m$ have compact support. We have shown earlier that $w^m\in [W^{1,2}(M)\cap L^{\infty}(M)]^{k}$. Thus, by Lemma~\ref{L:bounded-compact-supp}, the following equality holds: \begin{equation}\label{E:t-w-m} \langle T, w^m \rangle = \int_{M} (T\cdot w^m)\,d\nu. \end{equation} Let $f$ be as in the hypotheses of the Theorem. Then \begin{equation}\label{E:inequality-T} T\cdot w^m=T\cdot(\lambda^mu)=\lambda^m(T\cdot u)\geq \lambda^m f\geq -|f|. \end{equation} By (\ref{E:inequality-T}) it follows that $T\cdot w^m+|f|\geq 0$. Consider the sequence $T\cdot w^m+|f|$. Since $f\in L^1(M)$ and $(T\cdot w^m)\in L^1(M)$, by Fatou's lemma we get \begin{equation}\label{E:application-fatou} \int_{M}\liminf_{m\to+\infty}(T\cdot w^m+|f|)\,d\nu \leq \liminf_{m\to+\infty}\int_{M} (T\cdot w^m+|f|)\,d\nu. \end{equation} Since $w^m\to u$ a.e. on $M$ as $m\to+\infty$, we have $T\cdot w^m\to T\cdot u$ a.e. on $M$ as $m\to+\infty$. Thus, by (\ref{E:application-fatou}) we have \[ \int_{M} (T\cdot u +|f|)\,d\nu\leq \int_{M} |f|\,d\nu + \liminf_{m\to+\infty}\int_{M} (T\cdot w^m)\,d\nu, \] and, hence, by (\ref{E:t-w-m}) and~(\ref{E:t-w-m-weak-convergence}) we have \begin{align*} \int_{M} (T\cdot u +|f|)\,d\nu &\leq \int_{M} |f|\,d\nu + \liminf_{m\to+\infty}\int_{M} (T\cdot w^m)\,d\nu \\ &= \int_{M} |f|\,d\nu + \liminf_{m\to+\infty}\langle T, w^m\rangle\\ & = \int_{M} |f|\,d\nu + \langle T ,u\rangle. \end{align*} Since $f\in L^1(M)$, we have $(T\cdot u +|f|)\in L^1(M)$, and, hence, $(T\cdot u)\in L^1(M)$. We have \[ |T\cdot w^{m}|=|\lambda^m(T\cdot u)|\leq |T\cdot u|, \] and by definition of $w^m$, we get, as $m\to+\infty$, \[ T\cdot w^{m}\to T\cdot u, \quad\text{a.e. on }M. \] Using dominated convergence theorem, we get \begin{equation}\label{E:limit-integrals} \lim_{m\to+\infty} \int_{M} (T\cdot w^m)\,d\nu=\int_{M} (T\cdot u)\,d\nu \end{equation} By (\ref{E:limit-integrals}),~(\ref{E:t-w-m}) and~(\ref{E:t-w-m-weak-convergence}), we get \[ \langle T, u\rangle= \int_{M} (T\cdot u)\, d\nu. \] This concludes the proof of the Theorem. \end{proof} \begin{proof}[Proof of Corollary \ref{C:complex-case}] Let $T_1=\operatorname{Re} T$ and $T_2=\operatorname{Im} T$. Let $u_1=\operatorname{Re} u$ and $u_2=\operatorname{Im} u$. Then $\operatorname{Re} \langle T, u\rangle=\langle T_1, u_1\rangle + \langle T_2, u_2\rangle$ and $\operatorname{Re} (T\cdot \bar{u})= T_1u_1+T_2u_2$. Thus,~Corollary~\ref{C:complex-case} follows from Theorem~\ref{T:main}. \end{proof} \begin{thebibliography}{99} \bibitem{Aubin} T.~Aubin, \emph{Some Nonlinear Problems in Riemannian Geometry}, Springer-Verlag, Berlin, 1998. \bibitem{bms} M.~Braverman, O.~Milatovic, M.~Shubin, Essential self-adjointness of Schr\"odinger type operators on manifolds, \emph{Russian Math. Surveys}, \textbf{57}(4) (2002), 641--692. \bibitem{Brezis-Browder-78} H.~Br\'ezis, F.~E.~Browder, Sur une propri\'et\'e des espaces de Sobolev, \emph{C. R. Acad. Sci. Paris Sér. A-B}, \textbf{287}, no. 3, (1978), A113--A115. (French). \bibitem{Brezis-Kato79} H.~Br\'ezis, T.~Kato, Remarks on the Schr\"odinger operator with singular complex potentials, \emph{J. Math. Pures Appl.}, \textbf{58}(9) (1979), 137--151. \bibitem{Friedlander-Joshi} G. Friedlander, M.~Joshi, \emph{Introduction to the Theory of Distributions}, Cambridge University Press, 1998. \bibitem{Gilbarg-Trudinger} D.~Gilbarg, N.~S.~Trudinger, \emph{Elliptic Partial Differential Equations of Second Order}, Springer, New York, 1998. \bibitem{Kato66} T.~Kato, \emph{Perturbation Theory for Linear Operators}, Springer-Verlag, New York, 1980. \end{thebibliography} \end{document}