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STEKLOV PROBLEM WITH AN INDEFINITE WEIGHT FOR
THE p-LAPLACIAN

OLAF TORNÉ

Abstract. Let Ω ⊂ RN , with N ≥ 2, be a Lipschitz domain and let 1 <

p < ∞. We consider the eigenvalue problem ∆pu = 0 in Ω and |∇u|p−2 ∂u
∂ν

=

λm|u|p−2u on ∂Ω, where λ is the eigenvalue and u ∈ W 1,p(Ω) is an associated

eigenfunction. The weight m is assumed to lie in an appropriate Lebesgue

space and may change sign. We sketch how a sequence of eigenvalues may
be obtained using infinite dimensional Ljusternik-Schnirelman theory and we

investigate some of the nodal properties of eigenfunctions associated to the

first and second eigenvalues. Amongst other results we find that if m+ 6≡ 0
and

R
∂Ω m dσ < 0 then the first positive eigenvalue is the only eigenvalue

associated to an eigenfunction of definite sign and any eigenfunction associated

to the second positive eigenvalue has exactly two nodal domains.

1. Introduction

Let N ≥ 2 and let Ω ⊂ RN be a bounded domain with a Lipschitz continuous
boundary. Let 1 < p < ∞ and let N−1

p−1 < q < ∞ if p < N and q ≥ 1 if p ≥ N .
Let m ∈ Lq∂Ω) be a weight function which may change sign and denote m± =
max{0,±m}. The Steklov eigenvalue problem is defined by

∆pu = 0 in Ω

|∇u|p−2 ∂u

∂ν
= λm|u|p−2u on ∂Ω

(1.1)

where λ ∈ R is the eigenvalue and u ∈W 1,p(Ω) is an associated eigenfunction. We
are interested in weak solutions of (1.1), i.e. functions satisfying∫

Ω

|∇u|p−2∇u∇ϕdx = λ

∫
∂Ω

m|u|p−2uϕdσ ∀ϕ ∈W 1,p(Ω) (1.2)

where dσ is the N − 1 dimensional Hausdorff measure.
This eigenvalue problem was first introduced in [11] by M. W. Steklov when

p = 2 and m ≡ 1 in which case it appears in a model of an elastic membrane
whose mass is concentrated on the boundary. Various properties of the spectrum
have been considered in the literature in the case when p = 2 and m is nonnegative
(see [3] for a review of some of these results). The case when Ω is a Riemannian
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manifold with boundary and p = 2 and m ≡ 1 has been considered in [7] (see also
references therein).

Eigenvalue problems involving the p-Laplacian have been the topic of many stud-
ies. The classical eigenvalue problem

−∆pu = λm|u|p−2u in Ω

u = 0 or
∂u

∂ν
= 0 on ∂Ω

(1.3)

has attracted considerable attention. Assumingm satisfies appropriate integrability
conditions andm+ 6≡ 0, it has been shown using Ljusternik-Schnirelman theory that
there exists an unbounded sequence of positive eigenvalues. Various properties are
known for the first eigenvalues in the spectrum. Let us recall a few of them. In
the case of the Dirichlet boundary condition it is proved that there exists a first
eigenvalue which is simple and isolated and that it is the only positive eigenvalue
associated to an eigenfunction of constant sign (see [5] and references therein).
Furthermore, there is a second positive eigenvalue and when m ≡ 1 it is shown in
[6] that any associated eigenfunction has exactly two nodal domains. In the case of
the Neumann boundary condition it is shown in [8] that the existence of a nonzero
simple eigenvalue associated to an eigenfunction of definite sign depends on the sign
of

∫
Ω
mdx. A problem in which the eigenvalue appears in the boundary condition

has also been considered in the literature. Indeed consider the problem

∆pu = |u|p−2u in Ω

|∇u|p−2 ∂u

∂ν
= λm|u|p−2u on ∂Ω

(1.4)

Assuming m+ 6≡ 0 the authors of [4] show that there is an unbounded sequence of
positive eigenvalues. Furthermore they show that, as in the Dirichlet case above,
there exists a first positive eigenvalue which is simple and isolated and that it is
the only positive eigenvalue associated to an eigenfunction of constant sign.

Many of the properties of the above mentioned eigenvalue problems carry over
to the Steklov problem. However due to the presence of an indefinite weight, care is
required in some of the proofs. Also, the weight function plays a role in determin-
ing, via the sign of

∫
∂Ω
mdσ, some qualitative properties of the beginning of the

spectrum such as the existence of a nonzero eigenvalue associated to an eigenfunc-
tion of constant sign. In this sense the Steklov problem bears stronger resemblance
to the classical p-Laplacian eigenvalue problem with a Neumann condition than
to (1.4). Some properties and methods of proof which we present below for the
Steklov problem may also be of interest when adapted to the eigenvalue problems
(1.3) and (1.4).

A sequence of Steklov eigenvalues can be obtained as follows. Let

Σ± =
{
u ∈W 1,p(Ω);

1
p

∫
∂Ω

m|u|p dσ = ±1
}

For any integer n ≥ 1 let

C±n = {C ⊂ Σ±; C is symmetric, compact and γ(C) ≥ n}
where γ is the Krasnoselski genus, and let

λ±n = ± inf
C∈C±n

sup
u∈C

1
p

∫
Ω

|∇u|p dx (1.5)
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Theorem 1.1. Let 1 < p <∞ and let m ∈ Lq∂Ω) where q is as above.
(1) If m+ 6≡ 0 then λ+

n given by (1.5) is a nondecreasing and unbounded se-
quence of positive Steklov eigenvalues.

(2) If m− 6≡ 0 then λ−n given by (1.5) is a nonincreasing and unbounded se-
quence of negative Steklov eigenvalues.

Moreover if λ±n = λ±n+j for some integer j ≥ 1 then

γ(
{
u ∈ Σ±; u is an eigenfunction associated to λ±n

}
) ≥ j + 1

This theorem is proved by applying a general result from infinite dimensional
Ljusternik-Schnirelman theory. However it must first be shown that the corre-
sponding Palais-Smale condition is satisfied. This fact is perhaps not obvious since
the functional 1

p

∫
Ω
|∇u|p dx is not necessarily coercive on Σ±, as will be shown by

an example below.
Next we consider qualitative properties of the begining of the spectrum.

Theorem 1.2. Let 1 < p <∞ and let m ∈ Lq∂Ω) where q is as above.
(1) Assume that m+ 6≡ 0 and that

∫
∂Ω
mdσ < 0. Then λ−1 = 0 and λ+

1 > 0
is the first positive Steklov eigenvalue. Moreover λ+

1 is simple and isolated
and it is the only nonzero Steklov eigenvalue associated to an eigenfunction
of definite sign. Also, λ+

2 is the second positive Steklov eigenvalue and λ−2
is the first negative Steklov eigenvalue.

(2) Assume that m− 6≡ 0 and that
∫

∂Ω
mdσ > 0. Then λ+

1 = 0 and λ−1 < 0
is the first negative Steklov eigenvalue. Moreover λ−1 is simple and isolated
and it is the only nonzero Steklov eigenvalue associated to an eigenfunction
of definite sign. Also, λ+

2 is the first positive Steklov eigenvalue and λ−2 is
the second negative Steklov eigenvalue.

(3) Assume that
∫

∂Ω
mdσ = 0. Then λ+

1 = λ−1 = 0 and there does not exist a
nonzero eigenvalue associated to an eigenfunction of definite sign. Also, λ+

2

is the first positive Steklov eigenvalue and λ−2 is the first negative Steklov
eigenvalue.

In each of the above cases any eigenfunction associated to λ+
2 or λ−2 has exactly two

nodal domains. Moreover, if in case (1) there holds m+ ≡ 0 then there does not exist
a positive eigenvalue, however the assertions concerning the negative eigenvalues
remain true. A similar statement holds when m− ≡ 0 in case (2).

Note that λ = 0 is always a Steklov eigenvalue and that the associated eigen-
functions are just the constant functions.

In [13], L. Véron discovered an interesting formula for the first nonzero eigenvalue
in the usual p-Laplacian spectrum on a Riemannian manifold without boundary.
There holds a similar formula for the Steklov problem and it will be used to deduce,
as in [13], some of the assertions in the above theorem. Let us now state the formula.
If ω ⊂ Ω is an open subset, let W 1,p

∗ (ω) denote the subset of W 1,p(Ω) consisting of
functions which are zero almost everywhere in Ω \ ω̄. Let

µ±(ω) = inf
{1
p

∫
Ω

|∇u|p dx; u ∈W 1,p
∗ (ω),

1
p

∫
∂Ω

m|u|p dσ = ±1
}

(1.6)

if this quantity is well defined and µ±(ω) = +∞ if not. Lastly let A denote the set
of pairs (ω, ω̃) where ω and ω̃ are disjoint nonempty opens subsets of Ω.
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Theorem 1.3. Let 1 < p <∞ and let m ∈ Lq∂Ω) where q is as above. If m± 6≡ 0
then we have the characterisation

λ±2 = ± min
(ω,ω̃)∈A

max
{
µ±(ω), µ±(ω̃)

}
(1.7)

Moreover the minimum is achieved if and only if ω and ω̃ are the nodal domains of
some eigenfunction associated to λ±2 .

Let us remark that this formula can be adapted to the eigenvalue problems (1.3)
and (1.4).

2. Existence of eigenvalues

Theorem 1.1 is proved by applying theorem 5.3, page 209 in [9]. Using the as-
sumption m± 6≡ 0, a standard argument shows that λ±n is well defined. It remains
only to show that the relevant Palais-Smale condition is satisfied. Let us first re-
mark that it is not immediately obvious that the Palais-Smale condition holds since
1
p

∫
Ω
|∇u|p dx is not always coercive on Σ+. Indeed, assume p = 2 and

∫
∂Ω
mdσ = 0

and consider a sequence of functions uk ∈ Σ+ such that
∫

∂Ω
muk dσ = 0. Then

the unbounded sequence uk + k lies in Σ+ and 1
p

∫
Ω
|∇(uk + k)|p dx is bounded.

Hence coercivity does not hold. In fact it will follow from the proof of theo-
rem 1.2 in the next section that 1

p

∫
Ω
|∇u|p dx is coercive on Σ± if and only if∫

∂Ω
mdσ 6= 0. Lastly, let us note that the assumption on q ensures that the trace

mapping W 1,p(Ω) → Lpq/(q−1)∂Ω) is compact.

Lemma 2.1. Let W =
{
w ∈W 1,p(Ω);

∫
Ω
w dx = 0

}
. Let φ ∈ W 1,p(Ω)′ be such

that 〈φ, α〉 = 0 for any constant function α. Then there exists a unique w ∈ W
such that −∆pw = φ. Moreover w depends continuously on φ.

Proof. Consider the minimization problem

inf
w∈W

1
p

∫
Ω

|∇w|p dx− 〈φ,w〉

By Poincaré-Wirtinger’s inequality any minimizing sequence is bounded so that the
infimum is achieved by some function w satisfying∫

Ω

|∇w|p−2∇w∇ϕdx = 〈φ, ϕ〉+ η

∫
Ω

ϕ ∀ϕ ∈W 1,p(Ω) (2.1)

where η is a Lagrange multiplier. Since 〈φ, α〉 = 0 for any constant function α,
it follows that η = 0. Thus −∆pw = φ. Uniqueness and continuity follow from
standard estimates. �

For u ∈ W 1,p(Ω) define J(u) = 1
p

∫
Ω
|∇u|p dx and B(u) = 1

p

∫
∂Ω
m|u|p dσ. Also

define Du ∈W 1,p(Ω)′ by Du = J ′(u)− J(u)B′(u). We are now ready to prove the
Palais-Smale condition.

Lemma 2.2 (Palais-Smale condition). Let uk ∈ Σ± be a sequence such that
J(uk) → λ 6= 0 in R and Duk → 0 in W 1,p(Ω)′ as k → ∞. Then uk contains
a convergent subsequence.
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Proof. Let us first show that the sequence uk is bounded. Fix ϕ ∈ W 1,p(Ω) such
that ‖ϕ‖W 1,p(Ω) = 1 and

∫
∂Ω
mϕdσ 6= 0. Since 〈Duk, ϕ〉 → 0 as k → ∞ we have

that∣∣ ∫
∂Ω

m|uk|p−2ukϕdσ
∣∣ =

∣∣∣ 1
J(uk)

( ∫
Ω

|∇uk|p−2∇uk∇ϕdx− 〈Duk, ϕ〉
)∣∣∣ ≤ C

where C > 0 is a positive constant. Now let αk = 1
|Ω|

∫
Ω
uk dx and let ũk = uk−αk.

Since J(ũk) = J(uk) is bounded it follows from the Poincaré-Wirtinger inequality
that the sequence ũk is bounded in W 1,p(Ω). We may write∫

∂Ω

m|uk|p−2ukϕdσ = |αk|p−2αk

∫
∂Ω

m
∣∣ ũk

αk
+ 1

∣∣p−2( ũk

αk
+ 1

)
ϕdσ (2.2)

If the sequence |αk| is not bounded we may assume |αk| → ∞ so that the integral
on the right hand side of (2.2) goes to

∫
∂Ω
mϕdσ 6= 0 and we have a contradic-

tion. Since αk is bounded it follows that the sequence uk is bounded. Using the
compactness property of the trace mapping it follows that uk contains a subse-
quence, again noted uk, such that B′(uk) → B′(u) for some u ∈ W 1,p(Ω). Since
−∆puk = Duk + J(uk)B′(uk) → λB′(u) in W 1,p(Ω)′ it follows from lemma 2.1
that uk − αk → (−∆p)−1(λB′(u)) in W 1,p(Ω). Since αk is bounded we have that
uk converges in the W 1,p(Ω) sense. �

3. Qualitative properties of the first and second eigenvalues

In this section, we prove theorems 1.2 and 1.3. Let us note that all Steklov
eigenfunctions are of class C1,α(Ω) since they are p-harmonic. Moreover, following
the procedure outlined in [10] one may show that u ∈ L∞(Ω). The proof of this
fact is carried out in detail in [12].

The following lemma derives from Picone’s identity (see [1]) and is a standard
tool in this context. A little extra care is required in the proof in the Steklov setting.

Lemma 3.1. Let 1 < p < ∞ and let m ∈ Lq(∂Ω) where q is as above. Let u and
v be two nonnegative Steklov eigenfunctions associated to some eigenvalues λ and
λ̃, respectively. Then

0 ≤ (λ− λ̃)
∫

∂Ω

mup dσ (3.1)

and equality holds if and only if v is a multiple of u.

Proof. We first show that the trace of v satisfies v > 0 on ∂Ω. Let ε > 0. By the
maximum principle of Vazquez v > 0 in Ω so that v

v+ε converges in Lp(Ω) to 1Ω as
ε→ 0. On the other hand ∇ v

v+ε converges to 0 a.e. as ε→ 0. Taking ϕ = 1
(v+ε)p−1

as testing function in equation (1.2) satisfied by v we have

(p− 1)
∫

Ω

|∇v|p

(v + ε)p
dx = λ

∫
∂Ω

m
( v

v + ε

)p−1
dσ

so that

|∇ v

v + ε
|p =

( ε

v + ε

)p |∇v|p

(v + ε)p
≤ |∇v|p

vp
∈ L1(Ω).

By the dominated convergence theorem we have that v
v+ε → 1Ω in W 1,p(Ω). By

continuity of the trace mapping we have that v
v+ε → 1∂Ω in L1∂Ω) as ε→ 0 and it

follows that v > 0 on ∂Ω.
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Now let ε > 0. By Picone’s identity we have

0 ≤
∫

Ω

|∇u|p dx−
∫

Ω

|∇v|p−2∇v∇
( up

(v + ε)p−1

)
dx

= λ

∫
∂Ω

mup dσ − λ̃

∫
∂Ω

m
( v

v + ε

)p−1
up dσ

and equality holds if and only if v is a multiple of u. Going to the limit ε→ 0 and
using the fact that v > 0 on ∂Ω we get the desired inequality. �

Proof of theorem 1.2. We begin by proving the assertions relating to λ±1 . It follows
immediatly from (1.5) that we have

λ±1 = ± inf{
∫

Ω

|∇u|p dx; u ∈W 1,p(Ω),
∫

∂Ω

m|u|p dσ = ±1} (3.2)

Assume first that
∫

∂Ω
mdσ < 0 and m+ 6≡ 0. The minimum λ−1 is achieved by a

constant function so that λ−1 = 0. Now let uk be a minimizing sequence for λ+
1 . Let

αk = 1
|Ω|

∫
Ω
uk dx. By Poincaré-Wirtinger’s inequality the sequence ũk = uk − αk

is bounded and, moreover, we may write

1 = |αk|p
∫

∂Ω

m
∣∣ ũk

αk
+ 1

∣∣p dσ
If the sequence |αk| is not bounded we may assume that |αk| → ∞ so that the
integral goes to

∫
∂Ω
mdσ < 0 and we have a contradiction. Thus αk is bounded

and we have that uk is bounded. It follows that the infimum λ+
1 is achieved. Since

the minimiser cannot be constant we have that λ+
1 > 0 and it is clear that λ+

1 is
the first positive eigenvalue. Now let u be an eigenfunction associated to λ+

1 so
that |u| is a minimiser for (3.2) and is thus an eigenfunction associated to λ+

1 . It
follows from the maximum principle of Vazquez that |u| > 0 in Ω and we conclude
that u has constant sign. Taking λ = λ+

1 in (3.1) we see that no eigenvalue λ̃ > λ+
1

can be associated to a positive eigenfunction. Taking λ = 0 in (3.1) and u ≡ 1
an associated eigenfunction, we see that no eigenvalue λ̃ < 0 can be associated
to a positive eigenfunction. Thus λ+

1 is the only nonzero eigenvalue associated to
an eigenfunction of definite sign. Taking λ = λ̃ = λ+

1 in (3.1) we see that any
eigenfunction v associated to λ+

1 must be a multiple of u, so that λ+
1 is simple.

The case where
∫

∂Ω
mdσ > 0 and m− 6≡ 0 follows from the previous case by

taking −m as weight function.
Now assume that

∫
∂Ω
mdσ = 0 and suppose by contradiction that λ+

1 > 0. If v
is an eigenfunction associated to λ+

1 then |v| is a minimiser in (3.2) and it is thus
also an eigenfunction associated to λ+

1 . However, taking λ̃ = λ+
1 , λ = 0 and u ≡ 1

in (3.1) we see that v is constant, since it must be a multiple of u. But this implies
that λ+

1 = 0 which is a contradiction. In the same way it can be shown that λ−1 = 0.
Now we prove the assertions concerning λ±2 . Since λ+

1 is simple we have

γ
(
{u ∈ Σ+; u is an eigenfunction associated to λ+

1 }
)

= 1

Thus by theorem 1.1 there holds λ+
1 < λ+

2 . Likewise we have λ−2 < λ−1 . Let λ 6= λ±1
be an eigenvalue. Following a similar reasoning to [2] we now show that either
λ ≤ λ−2 or λ+

2 ≤ λ. First assume λ > 0 and let u be an eigenfunction associated to
λ. Since u must change sign we may assume that u is normalized in such a way that
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1
p

∫
∂Ω
m|u+|p dσ = 1

p

∫
∂Ω
m|u−|p dσ = 1 and 1

p

∫
Ω
|∇u+|p dx = 1

p

∫
Ω
|∇u−|p dx = λ.

The set C = {αu+ + βu−; α, β ∈ R such that |α|p + |β|p = 1} is in C+
2 . Thus

λ+
2 ≤ max

|α|p+|β|p=1

1
p

∫
Ω

|∇(αu+ + βu−)|p dx = λ

Similarly if λ < 0 we may show that λ ≤ λ−2 . It remains only to show that any
eigenfunction associated to λ+

2 or λ−2 has exactly two nodal domains. To prove
this we use formula (1.7) which will be proved below. Let u be an eigenfunction
associated to λ±2 . Assume that u has at least three nodal domains ω1, ω2 and ω3

with, say, u > 0 in ω1 and ω2 and u < 0 in ω3. In a similar situation the authors
of [6] show that ∂ω1 ∩ Ω * ∂ω2 ∩ Ω and ∂ω2 ∩ Ω * ∂ω1 ∩ Ω. Their proof relies
on the maximum principle and carries over to the case considered here. It follows
that there exist disjoint open sets ω̃1, ω̃2 ⊂ Ω such that ω1  ω̃1 and ω2  ω̃2. Now
it follows from standard arguments that µ±(ω̃1) < µ±(ω1) and µ±(ω̃2) < µ±(ω2)
thus contradicting (1.7). �

Proof of theorem 1.3. We only prove the formula for λ+
2 since the proof for λ−2 is

similar. Denote
µ = inf

(ω,ω̃)∈A
max{µ+(ω), µ−(ω̃)} (3.3)

Let (ω, ω̃) ∈ A and let ψ and ψ̃ be minimizers for µ+(ω) and µ+(ω̃) respectively, nor-
malized so that 1

p

∫
∂Ω
mψp dσ = 1

p

∫
∂Ω
mψ̃p dσ = 1. The set C = {αψ + βψ̃; α, β ∈

R such that |α|p + |β|p = 1} is in C+
2 . Consequently

λ+
2 ≤ max

|α|p+|β|p=1

1
p

∫
Ω
|∇(αψ + βψ̃)|p dx

= max
|α|p+|β|p=1

|α|pµ+(ω) + |β|pµ+(ω̃)

≤ max{µ+(ω), µ+(ω̃)}

Hence λ+
2 ≤ µ. Now let u be an eigenfunction associated to λ+

2 normalized so that
1
p

∫
∂Ω
m|u+|p dσ = 1

p

∫
∂Ω
m|u−|p dσ = 1. Denote Ω± = {x ∈ Ω; ±u(x) > 0}. We

have that
µ+(Ω±) ≤ 1

p

∫
Ω

|∇u±|p dx = λ+
2

Hence µ ≤ λ+
2 . In fact using Picone’s identity it can be shown that µ+(Ω±) = λ+

2

so that the infimum (3.3) is achieved by the nodal domains of an eigenfunction
associated to λ+

2 . It remains to show that this is the only case in which (3.3) is
achieved. Let (ω, ω̃) ∈ A be such that max{µ+(ω), µ+(ω̃)} = λ+

2 . Let ψ and ψ̃
be minimizers for µ+(ω) and µ+(ω̃) respectively, normalized as usual, and let C
be as above. Then the infimum λ+

2 given by (1.5) is in fact a minimum which is
achieved by C. It is then a straightforward consequence of Ljusternik-Schnirelman
theory that some element of C must be an eigenfunction associated to λ+

2 . Since
any function in C has ω and ω̃ as nodal domains the proof is complete. �
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de Bruxelles, 2002
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