\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 101, pp. 1--21.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/101\hfil BMO estimates near the boundary] {BMO estimates near the boundary for solutions of elliptic systems} \author[A. El Baraka\hfil EJDE-2006/101\hfilneg] {Azzeddine El Baraka} \address{Azzeddine El Baraka \newline University Sidi Mohamed Ben Abdellah \\ FST Fez, BP 2202, Route Immouzer \\ 30000 Fez, Morocco} \email{aelbaraka@yahoo.com} \date{} \thanks{Submitted March 2, 2006. Published August 31, 2006.} \subjclass[2000]{35J45, 35J55} \keywords{Elliptic systems; BMO-Triebel-Lizorkin spaces; Campanato spaces} \begin{abstract} In this paper we show that the scale of Sobolev-Campanato spaces $\mathcal{L}^{p,\lambda,s}$ contain the general BMO-Triebel-Lizorkin spaces $F_{\infty,p}^{s}$ as special cases, so that the conjecture by Triebel regarding estimates for solutions of scalar regular elliptic boundary value problems in $F_{\infty,p}^{s}$ spaces (solved in the case $p=2$ in a previous work) is completely solved now. Also we prove that the method used for the scalar case works for systems, and we give a priori estimates near the boundary for solutions of regular elliptic systems in the general spaces $\mathcal{L}^{p,\lambda,s}$ containing BMO, $F_{\infty,p}^{s}$, and Morrey-Campanato spaces $\mathcal{L}^{2,\lambda}$ as special cases. This result extends the work by the author in the scalar case. \end{abstract} \dedicatory{Dedicated to all the civilian victims of the catalogue of horror in the Middle East} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The aim of this paper is to give the regularity for solutions of regular elliptic systems in the John and Nirenberg space BMO and more generaly in Morrey-Campanato spaces $\mathcal{L}^{2,\lambda}$ and their local versions $bmo$ and $l^{2,\lambda}$. So, this paper is the continuation of \cite{az} where we got the regularity for solutions of a scalar regular elliptic boundary value probem in $\mathcal{L}^{p,\lambda,s}(\Omega)$ spaces containing $\dot {F}_{\infty,p}^{s}$, BMO, $\mathcal{L}^{2,\lambda}$, and their local versions as special cases. Firstly, we mention the well known work for variational systems of Campanato \cite{c3} who obtained some results concerning local and global (under Dirichlet boundary conditions) regularity for solutions $u\in H_{0}^{1} (\Omega,\mathbb{R}^{N})$ of second order linear strongly elliptic systems of the form \[ \sum_{i,j=1}^{n} \int_{\Omega}\langle A_{ij}(x).D_{j}u|D_{i}\phi\rangle dx= \sum_{i=1}^{n} \int_{\Omega}\langle f_{i}(x)|D_{i}\phi\rangle dx \] for any $\phi\in C_{0}^{\infty}(\Omega,\mathbb{R}^{N})$. He showed that if $f\in BMO(\Omega,\mathbb{R}^{nN})$ then $Du\in BMO(\Omega,\mathbb{R}^{nN})$ provided the cofficients $A_{ij}$ are H\"{o}lder continuous in $\overline {\Omega}$ and $\partial\Omega$ is H\"{o}lder differentiable, and he got the a-priori estimate \[ \|Du\|_{BMO}\leq C\|f\|_{BMO} \] An inspection of Campanato's proof gave a refinement of this result for (nonregular) elliptic systems with coefficients just belonging to the class of small multipliers of $BMO(\Omega)$, cf. \cite{a}. In this paper we deal with non-variational and inhomogeneous systems. For instance, let us take the classical regular second order elliptic system \begin{equation} \begin{gathered} Au=f\quad \text{in }\Omega\\ u|_{\Omega}=\varphi\quad \text{on }\partial\Omega\,, \end{gathered} \label{ex} \end{equation} where \begin{itemize} \item $\Omega$ is a regular bounded open set of $\mathbb{R}^{n}$. \item $A=\sum_{|\alpha|\leq2}a_{\alpha}(x)D_{x}^{\alpha},\;a_{\alpha }(x)$ is the $N\times N$ matrix $(a_{\alpha}^{ij}(x))_{i,j=1\dots N}$ with smooth coefficients on $\overline{\Omega}$, here $\alpha=(\alpha_{1},\dots ,\alpha_{n})$ is a multi-index, $|\alpha|=\alpha_{1}+\dots +\alpha_{n}$ is the length of $\alpha$, and $D_{x}^{\alpha}=D_{x_{1}}^{\alpha_{1}}\dots D_{x_{n}}^{\alpha_{n}}$ is the derivation, with $D_{x_{j}}^{\alpha_{j}}=\frac{1}{i^{\alpha_{j}} }\frac{\partial^{\alpha_{j}}}{\partial x_{j}^{\alpha_{j}}}$. \item $u,f,\varphi$ are vector-valued functions in $\mathbb{R}^{N}$. \end{itemize} We prove in this paper that under the proper ellipticity of $A$, if $f\in BMO(\Omega,\mathbb{R}^{N})$ and $\varphi\in BMO^{3/2}(\partial\Omega ,\mathbb{R}^{N})$ then the solution $u$ of the system (\ref{ex}) belongs to $BMO^{2}(\Omega,\mathbb{R}^{N})$, that is $u,Du$ \textit{and} $D^{2}u\in BMO$, and we give the estimate \[ \|u\|_{BMO}+\|Du\|_{BMO}+\| D^{2} u\|_{BMO}\leq C\{\|f\|_{BMO}+\| \varphi\|_{BMO^{3/2}}\} \] In addition, this work generalizes the result of the above example to the elliptic systems in the sense of Douglis and Nirenberg \cite{dn} and to the general spaces $\mathcal{L}^{p,\lambda,s}$ defined in \cite{e4} and \cite{e6}. In \cite{cd} we showed that the Sobolev-Campanato spaces $\mathcal{L}^{p,\lambda,s}$ contain $BMO,\mathcal{L}^{2,\lambda}$ and their local versions $bmo,l^{2,\lambda}$ as special cases. In this paper we give a generalization of some results of \cite{cd} by showing that $\mathcal{L} ^{p,\lambda,s}$ spaces contain the general BMO-Triebel-Lizorkin spaces $F_{\infty,p}^{s}$ as special cases cf. Theorem \ref{TL}. We want to attract attention in this paper that, with the result of Theorem \ref{TL} in mind and the a priori estimates of \cite{az} relative to the scalar case, Triebel's conjecture \cite[section 4.3.4]{tr} previously solved in the case $p=2$ in \cite{az} is completely solved now in the general spaces $F_{\infty,p}^{s}$. We show that the method used for the scalar case in \cite{az} can be adapted for elliptic systems. The plan of the paper is as follows: in the first section we give the main definitions and results (Theorems \ref{141} and \ref{13}), section 2 contains an index theorem for a system of ordinary differential equations needed in the proof. In section 3 we identify the space $\mathcal{L}^{p,\lambda,s}$ for $\lambda=n$ and we give a partial result on the topological dual of $\mathaccent"7017{F}_{\infty,p}^{s}$ (the closure of Schwartz class $\mathcal{S}(\mathbb{R}^{n})$ in BMO-Triebel-Lizorkin spaces $F_{\infty,p}^{s})$, and next we recall some results proved in previous papers concerning intermediate derivatives, compactness, interpolation and traces. Finally, section 4 deals with the proof of the main result: we follow one Peetre's method used in the scalar case \cite{az}. This method was described in the case of Sobolev spaces $H^{s}$ for a class of degenerate elliptic systems in \cite{bc}, and consists in doing a partial Fourier transform with respect to the tangential direction on the system of equations, and reducing the problem to an isomorphism theorem for a system of ordinary differential operators. Thereby we estimate the ``almost tangential derivatives'' of the solution in some vector-valued $L^{p}-$spaces, built on $\mathcal{L} ^{p,\lambda,s}(\mathbb{R}^{n-1})$\ in the sense of Bochner's integrals (Proposition \ref{prop}). Next, we make use of an interpolation lemma to estimate the normal derivatives of the solution. From these BMO estimates we can get again the classical $L^{p}$ estimates \cite{adn} via an interpolation theorem due to Stampacchia \cite{st}. To make the paper self contained, we recall the definitions of the spaces $\mathcal{L}^{p,\lambda,s}$. For this we need a Littlewood-Paley partition of unity: Denote $x=(t,x')\in\mathbb{R}\times \mathbb{R}^{n-1}$ and $\xi=(\tau,\xi')$ its dual variable. Let $\varphi\in C_{0}^{\infty}(\mathbb{R}^{n})$, $\varphi\geq0$ and $\varphi$ equal to $1$ for $|\xi| \leq1$, $0$ for $| \xi| \geq2$. Putting $\theta(\xi)=\varphi(\xi)-\varphi(2\xi)$, we have $\mathop{\rm supp}\theta\subset\{\frac{1}{2}\leq|\xi| \leq2\}$. For $j\in\mathbb{Z}$ we set \[ \dot {\Delta}_{j}u=\theta(2^{-j}D_{x})u,\,\dot {\Delta} _{j}'u=\theta(2^{-j}D_{x'})u \] which means that $\dot {\Delta}_{j}$ and $\dot {\Delta} _{j}'$ are the convolution operators with symbols $\theta(2^{-j}\xi)$ and $\theta(0,2^{-j}\xi')$; and denoting $\psi_{j}(\xi)=\sum _{k\leq j}\theta(2^{-k}\xi)(=\varphi(2^{-j}\xi)$ for $\xi\neq0)$ we set \[ \dot {S}_{j}u=\psi_{j}(D_{x}) u,\,\dot {S} _{j}'u=\psi_{j}( D_{x'})u \] with the same meaning as above. If $j\geq1$ we set also \begin{gather*} [c]{l} \Delta_{j}u=\dot {\Delta}_{j}u,\,\Delta_{j}'u=\dot {\Delta}_{j}'u,\\ S_{j}u=\varphi(2^{-j}D_{x})u,\,S_{j}'u=\varphi(2^{-j}D_{x'})u, \\ S_{0}u=\Delta_{0}u=\varphi(D_{x})u,\,S_{0}'u=\Delta_{0}^{\prime }u=\varphi(D_{x'})u \end{gather*} \begin{remark} \label{ca} \rm For $u\in\mathcal{S}'(\mathbb{R}^{n})$ we have \[ u=\sum_{k\geq0}\Delta_{k}u=\Delta_{0}u+\sum_{k\geq1}\Delta_{k}u=S_{j} u+\sum_{k\geq j+1}\Delta_{k}u\quad \text{for }j\in\mathbb{N}. \] If $0\notin \mathop{\rm supp}\mathcal{F}u$, then \[ u=\sum_{k\in\mathbb{Z}}\dot {\Delta}_{k}u=\dot {S}_{j} u+\sum_{k\geq j+1}\dot {\Delta}_{k}u\quad \text{for }j\in\mathbb{Z}. \] If we remove the condition $0\notin \mathop{\rm supp}\mathcal{F}u$, the above formula remains valid modulo polynomials, cf. \cite[Lemma 2.6]{e6}. \end{remark} \begin{definition}\label{def1} \rm Let $s\in\mathbb{R}$, $\lambda\geq0$ and $1\leq p<+\infty$. The space $\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})$ denotes the set of all tempered distributions $u\in\mathcal{S}'(\mathbb{R}^{n})$ such that \begin{equation} \|u\|_{\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})} =\big\{ \sup_{J,B}\frac{1}{|B|^{\lambda/n}} \sum_{k\geq J^{+}}2^{kps}\| \Delta_{k}u\|_{L^{p}(B)}^{p}\big\} ^{1/p}<+\infty\label{def11} \end{equation} where $J^{+}=\max(J,0),|B| $ is the measure of $B$ and the supremum is taken over all $J\in\mathbb{Z}$ and all balls $B$ of $\mathbb{R}^{n}$ of radius $2^{-J}$. \end{definition} The space $\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})$ equipped with the norm (\ref{def11}) is a Banach space. If $\Omega$ is either $\mathbb{R}_{+}^{n}$ or a bounded $C^{\infty}$-domain in $\mathbb{R}^{n}$, $\mathcal{L}^{p,\lambda,s}(\Omega)$ denotes the space of all restrictions to $\Omega$ of elements of $\mathcal{L}^{p,\lambda,s} (\mathbb{R}^{n})$. To give the homogeneous counterpart of the spaces $\mathcal{L}^{p,\lambda ,s}(\mathbb{R}^{n})$, we recall the notation of \cite[chapter 5]{tr}. Let \[ Z(\mathbb{R}^{n})=\{\varphi\in\mathcal{S}(\mathbb{R}^{n});( D^{\alpha}\mathcal{F}\varphi)(0)=0 \text{ for every multi-index }\alpha\} \] $Z(\mathbb{R}^{n})$ is considered as a subspace of $\mathcal{S(}\mathbb{R} ^{n}\mathcal{)}$ with the same topology, and $Z'(\mathbb{R}^{n})$ is the topological dual of $Z(\mathbb{R}^{n})$. We may identify $Z^{\prime }(\mathbb{R}^{n})$ and $\mathcal{S}'(\mathbb{R} ^{n}\mathcal{)}/\mathcal{P}$, where $\mathcal{P}$ is the set of all polynomials of $\mathbb{R}^{n}$ with complex coefficients. $Z^{\prime }(\mathbb{R}^{n})$ is interpreted as $\mathcal{S}'( \mathbb{R}^{n}\mathcal{)}$ modulo polynomials. \begin{definition} \label{def2} \rm Let $s\in\mathbb{R}$, $\lambda\geq0$ and $1\leq p<+\infty$. The dotted space $\dot {\mathcal{L}}^{p,\lambda,s}(\mathbb{R}^{n})$ denotes the set of all $u\in Z'(\mathbb{R}^{n})$ such that \begin{equation} \|u\| _{\dot {\mathcal{L}}^{p,\lambda,s}(\mathbb{R}^{n} )}=\big\{ \sup_{J,B}\frac{1}{|B| ^{\frac{\lambda} {n}}}\sum_{k\geq J}2^{kps}\| \dot {\Delta}_{k}u\| _{L^{p}(B)}^{p}\big\} ^{1/p}<+\infty\label{def21} \end{equation} where the supremum is taken over all $J\in\mathbb{Z}$ and all balls $B$ of $\mathbb{R}^{n}$ of radius $2^{-J}$. \end{definition} If $P$ is a polynomial of $\mathcal{P}$ and $u\in\mathcal{S}'(\mathbb{R}^{n})$, it follows immediately that \[ \|u+P\|_{\dot {\mathcal{L}}^{p,\lambda,s}(\mathbb{R} ^{n})}=\|u\|_{\dot {\mathcal{L}}^{p,\lambda,s} (\mathbb{R}^{n})} \] This shows that the norm (\ref{def21}) is well defined. Further, the space $\dot {\mathcal{L}}^{p,\lambda,s}(\mathbb{R}^{n})$ equipped with this norm is a Banach space. \begin{remark} \label{rmk4} \rm The supremum in expressions (\ref{def11}) and (\ref{def21}) can be taken over all $J\in\mathbb{Z}$ and all cubes of $\mathbb{R}^{n}$ of sidelength $2^{-J}$. \end{remark} The reader can find the properties of these spaces in \cite{e4,e6,cd}. We recall that the space $\mathcal{L}^{p,\lambda,s}$ coincides with Campanato space $l^{2,\lambda}=\mathcal{L}_{2}^{\frac{\lambda-n}{2}}$ when $s=0,p=2$ and $0\leq\lambda0\}$. We denote $\xi=(\tau,\xi')$ the dual variable of $x=(t,x') \in\mathbb{R}^{n}=\mathbb{R}\times\mathbb{R}^{n-1}$. Consider $L$ the following differential system in the sense of Douglis and Nirenberg \cite{dn}: \begin{equation} L=L(t,x';D_{x'},D_{t})=(L_{ij}(x;D_{x}))_{i,j=1,\dots ,N} \label{sys} \end{equation} where \begin{equation} L_{ij}(x;D_{x})u(x)=L_{ij}u(x)=\sum_{|\alpha| \leq s_{i}+t_{j} }a_{\alpha}^{ij}(x)D_{x}^{\alpha}u(x)\label{sys1} \end{equation} here $\alpha=(\alpha_{1},\dots ,\alpha_{n})$ is a multi-index, $|\alpha |=\alpha_{1}+\dots +\alpha_{n}$ is the length of $\alpha$, and $D_{x}^{\alpha}=D_{x_{1}}^{\alpha_{1}}\dots D_{x_{n}}^{\alpha_{n}}$ is the derivation, with $D_{x_{j}}^{\alpha_{j}}=\frac{1}{i^{\alpha_{j}}}\frac{\partial^{\alpha_{j}} }{\partial x_{j}^{\alpha_{j}}}$. The coefficients $a_{\alpha}^{ij}$ are assumed to be in $C^{\infty}(\overline{\mathbb{R}_{+}^{n}})$ and $s_{i},t_{j}$ are integers which we can suppose satisfying $s_{i}\leq0$ and $t_{j}\geq0$. In the definition of $L_{ij}$, it is to be understood that if $s_{i}+t_{j}<0$ then $L_{ij}=0$. Let $L_{ij}^{0}(x;D_{x})$ represent the principal part of $L_{ij}(x,D_{x})$, which is the sum of the terms in $L_{ij}(x;D_{x})$ which are exactly of the order $s_{i}+t_{j}$. We suppose that $L$ is elliptic in the following classical sense. \begin{itemize} \item[(E1)] For any $(\tau,\xi')\in\mathbb{R}^{n}\setminus\{0\}$, \[ \det(L_{ij}^{0}(0;\xi',\tau))_{i,j=1,\dots ,N}\neq0 \] and the number $m_{+}(\xi')$ of the roots with positive imaginary parts of the polynomial \[ P(\tau)=\det(L_{ij}^{0}(0;\xi',\tau))_{i,j=1,\dots ,N} \] in the complex variable $\tau$, is constant and equals $m_{+}$. \end{itemize} Now we will define the traces. For each $u\in\mathcal{L}^{p,\lambda,s+t_{j} }(\mathbb{R}_{+}^{n})$ we consider $t_{j}$ traces of $u$ defined for $x'\in\mathbb{R}^{n-1}$ by: \[ \gamma_{l}u(x')=D_{t}^{l}u(0,x')\text{ for }l=0,\dots ,t_{j}-1. \] Set $\gamma=(\gamma_{0},\dots ,\gamma_{t_{j}-1})$. We showed in \cite[Theorem 3.1]{az} that the operator $\gamma$ is continuous from $\mathcal{L} ^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n})$ to $\prod_{l=0}^{t_{j} -1}\mathcal{L}^{p,\lambda,s+t_{j}-l-1/p}(\mathbb{R}^{n-1})$. If $m_{+}=0$ there is no boundary conditions for our problem. If $m_{+}>0$, for each $i=1,\dots ,m_{+}$, let $\sigma_{i}$ be an integer $\sigma_{i}\leq -1$. Set \[ (B_{ij}(x',D_{x'})\cdot\gamma)u=\sum_{l=0}^{t_{j} -1}B_{ijl}(x',D_{x'})\gamma_{l}u, \] for $i=1,\dots ,m_{+}$, $j=1,\dots ,N$; where $B_{ijl}(x',D_{x'})$ is a differential operator of degree less than or equal $\sigma_{i}+t_{j}-l$, with smooth coefficients bounded with their derivatives. If $\sigma_{i}+t_{j}-l<0$ we put $B_{ijl}=0$. Denote $B\gamma$ the matrix $B(x',D_{x'})\gamma=(B_{ij} (x',D_{x'})\cdot\gamma)_{i=1,\dots ,m_{+}; j=1,\dots ,N}$. This operator is continuous from $\prod_{j=1} ^{N}\mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n})$ into $\prod _{i=1}^{m_{+}}\mathcal{L}^{p,\lambda,s-\sigma_{i}-1/p}(\mathbb{R} ^{n-1})$. Let $B_{ij}^{0}\cdot\gamma$ represent the principal part of $B_{ij}\cdot\gamma$, which is the sum of the terms in $B_{ij}(x^{\prime },D_{x'})\cdot\gamma$ which are exactly of the order $\sigma_{i} +t_{j}-l$ in $B_{ijl}(x',D_{x'})$. We denote $B^{0} \gamma=B^{0}(x',D_{x'})\gamma=(B_{ij}^{0}\cdot\gamma )_{\substack{i=1,\dots ,m_{+}\\j=1,\dots ,N}}$. We assume that \begin{itemize} \item[(E2)] For any $\xi'\in\mathbb{R}^{n-1},|\xi'|=1$, the problem \begin{gather*} L^{0}(t,0;\xi',D_{t})v(t)=0\\ B^{0}(0,\xi')\gamma v=0 \end{gather*} has only the trivial solution $v=0$ in $\prod_{j=1}^{N}W^{t_{j} ,p}(\mathbb{R}_{+})$. \end{itemize} The first part of our main result is the following theorem. \begin{theorem} \label{141} Let $s$ and $\lambda$ be two nonnegative real numbers and $1\leq p<+\infty$. Under hypotheses (E1) and (E2), for any compact set $K$ of $\overline{\mathbb{R}_{+}^{n}}$, there is a constant $C_{K}>0$, such that for any $u\in\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j} }(\mathbb{R}_{+}^{n})$ with $\mathop{\rm supp}u\subset K$, we get \begin{align*} \|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j} }(\mathbb{R}_{+}^{n})} & \leq C\big\{ \|Lu\|_{\prod_{i=1}^{N}\mathcal{L}^{p,\lambda, s-s_{i}}(\mathbb{R}_{+}^{n})}\\ &\quad +\|B\gamma u\|_{\prod_{i=1}^{m_{+}} \mathcal{L}^{p,\lambda ,s-\sigma_{i}-\frac{1}{p}}(\mathbb{R}^{n-1})} + \|u\|_{\prod_{j=1}^{N}\mathcal{L} ^{p,\lambda,s+t_{j}-1}(\mathbb{R}_{+}^{n})}\big\} \end{align*} This statement remains true if we replace $\mathcal{L}$ by the dotted space $\dot {\mathcal{L}}$. \end{theorem} If $\lambda=n$ we get the estimates in the spaces of BMO-Triebel-Lizorkin $F_{\infty,p}^{s}$ and $\dot {F}_{\infty,p}^{s}$. If $0\leq\lambda0$ such that for any $u\in\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j}}(\Omega)$, we get \begin{align*} &\|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j} }(\Omega)}\\ & \leq C\big\{ \|Lu\|_{\prod_{i=1}^{N}\mathcal{L}^{p, \lambda,s-s_{i}}(\Omega)}+\|B\gamma u\|_{\prod_{i=1}^{m_{+}} \mathcal{L}^{p,\lambda,s-\sigma_{i}-\frac{1}{p}}(\Gamma)} + \|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j}-1}(\Omega)}\big\} \end{align*} \end{theorem} This theorem extends the scalar case work \cite{az}. From this theorem and the interpolation theorem of Stampacchia, cf. \cite{st} or \cite[Theorem 4.6]{g}, we get in the same manner as in \cite{az}, the classical $L^{p}$ estimates for solutions of regular elliptic systems \cite{adn}. \section{A system of ordinary differential equations} Let $L=(L_{ij})_{i,j=1,\dots ,N}$ be a system of ordinary differential operators with constant coefficients defined on $\mathbb{R}_{+}$ by: \[ L_{ij}u=L_{ij}(D_{t})u=\sum_{k=0}^{s_{i}+t_{j}}a_{k}^{ij}D_{t}^{k}u, \quad \text{for }i,j=1,\dots ,N. \] where $a_{k}^{ij}\in\mathbb{C}$ and $u$ is a function of the variable $t\in\mathbb{R}_{+}$. In this section we are interested in the system $Lu(t)=f(t)$, where \[ u=\begin{pmatrix} u_{1}\\ \vdots \\ u_{N} \end{pmatrix}\quad \text{and}\quad f=\begin{pmatrix} f_{1}\\ \vdots \\ f_{N} \end{pmatrix} \] are vectors of functions defined on $\mathbb{R}_{+}$. The operator $L$ is bounded from the space $\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+})$ to $\prod_{i=1}^{N}W^{-s_{i},p}(\mathbb{R}_{+})$. Let $L_{ij}^{0}$ be the principal part of $L_{ij}$. We assume that the polynomial \[ P(\tau)=\det(L_{ij}^{0}(\tau))_{i,j} \] is not vanishing on the real line $\mathbb{R}$. Let $m_{+}$ be the number of the roots of $P(\tau)$ satisfying $\mathop{\rm Im}\tau>0$. \begin{theorem} \label{ODS} Under the above assumption the operator \[ L:\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+})\longrightarrow \prod_{i=1}^{N}W^{-s_{i},p}(\mathbb{R}_{+}) \] is a Fredholm operator and its index is equal to $m_{+}$. \end{theorem} The proof of this theorem is classical see for example \cite{adn, bc}. We study $L$ on a neighborhood of $0$ and next on a neighborhood of $+\infty$. \section{Some preliminary results\label{sec3}} In \cite{cd} we established the connection between $\mathcal{L}^{p,\lambda,s}$ spaces, BMO, Campanato spaces $\mathcal{L}^{p,\lambda}$ and their local versions. Also, we showed directly that for $p=2$ and $\lambda=n$ the space $\mathcal{L}^{2,n,s}$ coincides with the space $F_{\infty,2}^{s}$ itself equals $I^{s}(bmo)$, where $I^{s}$ is the Riesz potential operator. The following theorem shows that the general BMO-Triebel-Lizorkin spaces $F_{\infty,p}^{s}$ are a particular case of $\mathcal{L}^{p,\lambda,s}$ spaces. The definition of the spaces $F_{\infty,p}^{s}$ and their homogeneous version $\dot {F}_{\infty,p}^{s}$ are respectively given in \cite[section 2.3.4]{tr} and \cite[section 5.1.4]{tr}. \begin{theorem} \label{TL} Let $s\in\mathbb{R}$ and $1\leq p<+\infty$. The space $F_{\infty,p}^{s}(\mathbb{R}^{n})$ [respectively $\dot{F}_{\infty,p}^{s}(\mathbb{R}^{n})]$ coincides algebraically and topologically with the space $\mathcal{L}^{p,n,s}(\mathbb{R}^{n})$ [respectively $\dot {\mathcal{L}}^{p,n,s}(\mathbb{R}^{n})]$. \end{theorem} In particular, for $p=2$ we have a result in \cite{cd}. \begin{proof} The proof is a consequence of some results of \cite{fj}. Firstly, we remark that \cite[(5.1) and (5.2)]{fj} gives the homogeneous part of the theorem. To show the inhomogeneous counterpart, we mention the following equivalent norm for $F_{\infty,p}^{s}$ space, cf. \cite[(12.8)]{fj} \begin{equation} \|f\|_{F_{\infty,p}^{s}}\approx\big\{ \sup_{J\geq0,B(2^{-J})} \frac{1}{|B| }{\int_{B}} \sum_{k\geq J}2^{kps}|\Delta_{k}f| ^{p}dx\big\} ^{1/p} \label{fj1} \end{equation} the supremum is taken over all nonnegative integers $J$\ and over all cubes $B$ of $\mathbb{R}^{n}$ of sidelength $2^{-J}$. This equivalence yields the continuous embedding $\mathcal{L}^{p,n,s}(\mathbb{R}^{n})\hookrightarrow F_{\infty,p}^{s}(\mathbb{R}^{n})$. Conversely, let $f\in F_{\infty,p}^{s}(\mathbb{R}^{n})$. Let $B$ a cube of $\mathbb{R}^{n}$ of sidelength $2^{-J}$, with $J$ a negative integer. We divide the cube $B$ into $2^{-nJ}$ nonoverlapping cubes $Q_{i}$ of sidelength equal to $1$. Thus \begin{align*} \frac{1}{|B|}{\int_{B}}\sum_{k\geq0=J^{+}}2^{kps}|\Delta_{k}f| ^{p}dx & \leq 2^{nJ}\sum_{i}\frac{1}{|Q_{i}| }{\int_{Q_{i}}} \sum_{k\geq0}2^{kps}|\Delta_{k}f| ^{p}dx\\ & \leq\sup_{Q}\frac{1}{|Q| }{\int_{Q}} \sum_{k\geq0}2^{kps}|\Delta_{k}f| ^{p}dx \end{align*} the supremum is taken over all cubes $Q$ of sidelength equal to $1$. The last term is obviously bounded from above by the right hand side of (\ref{fj1}). Hence $f\in\mathcal{L}^{p,n,s}(\mathbb{R}^{n})$ and we have the continuous embedding $F_{\infty,p}^{s}(\mathbb{R}^{n})\hookrightarrow\mathcal{L} ^{p,n,s}(\mathbb{R}^{n})$. The proof of Theorem \ref{TL} is complete. \end{proof} Let us denote by $\mathaccent"7017{F}_{\infty,p}^{s}$ (respectively $cmo$) the closure of Schwartz class $\mathcal{S}(\mathbb{R}^{n})$ in BMO -Triebel-Lizorkin spaces $F_{\infty,p}^{s}$ (respectively $bmo=F_{\infty ,2}^{0}$). The following result shed some light on the topological dual of $\mathaccent"7017{F}_{\infty,p}^{s}$. \begin{corollary} Let $s\in\mathbb{R},1\leq p<+\infty$, and $10$ such that \[ {\sum_{j\geq1}}{\sum_{\nu\geq1}} 2^{\nu A}a_{j\nu})^{p}\leq C\sup_{\nu\geq1} {\sum_{j\geq1}}a_{j\nu}^{p} \] holds. \end{lemma} We introduce the following spaces needed in the proof. \begin{definition} \label{def11a}\rm We denote $W^{t_{j},p}(\mathbb{R})$ the classical Sobolev space of all $u\in L^{p}(\mathbb{R})$ satisfying $D_{t}^{k}u\in L^{p}( \mathbb{R})\;$for $1\leq k\leq t_{j}$. By $W^{t_{j},p}(\mathbb{R};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))$ we denote the functions $u$ in $L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s+t_{j}} (\mathbb{R}^{n-1}))$ satisfying $D_{t}^{k}u\in L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s+t_{j}-k} (\mathbb{R}^{n-1}))$ for $k=1,\dots ,t_{j}$. \end{definition} \begin{remark} \label{rmk13} \rm The most convenient norm of $L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda ,s}(\mathbb{R}^{n-1}))$ for this purpose is \[ \|u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda ,s}(\mathbb{R}^{n-1}))}=\{\sup_{J,B}\frac{1}{|B| ^{\frac{\lambda}{n-1}}}\sum_{k\geq J^{+}}2^{ksp}\|\Delta_{k}^{^{\prime }}u\|_{L^{p}(\mathbb{R}\times B)}^{p}\}^{1/p} \] where the supremum is taken over all $J\in\mathbb{Z}$ and all balls $B$ of $\mathbb{R}^{n-1}$ with radius $2^{-J}$. \end{remark} Here are some results proved in \cite{az} regarding intermediate derivatives, compactness and interpolation. \begin{lemma}\label{242} There exists $C>0$ such that for any $\varepsilon>0$ and any $u\in \mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}^{n})$ [respectively $W^{t_{j},p}(\mathbb{R};\mathcal{L}^{p,\lambda,s}(\mathbb{R} ^{n-1}))$] we get for $k=0,\dots ,t_{j}-1$, \[ \|D_{t}^{k}u\|_{\mathcal{L}^{p,\lambda,s+t_{j}-j} (\mathbb{R}^{n})}\leq C\{\varepsilon\|D_{t}^{t_{j}}u\| _{\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})}+\varepsilon^{-\frac{k}{t_{j}-k} }\|u\| _{\mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}^{n})}\} \] [respectively \begin{align*} &\|D_{t}^{k}u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s+t_{j}-j} (\mathbb{R}^{n-1}))}\\ & \leq C\big\{ \varepsilon\|D_{t}^{t_{j}}u\|_{L^{p}( \mathbb{R};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))} +\varepsilon^{-\frac{k}{t_{j}-k}}\|u\|_{L^{p}(\mathbb{R}; \mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}^{n-1}))}\big\}.] \end{align*} We have the same result when we replace $\mathcal{L}$ by $\dot {\mathcal{L}}$. \end{lemma} \begin{lemma} \label{243} Let $s_{1}\leq s_{2}0$ such that for any $\varepsilon >0$, and $u\in\mathcal{L}^{p,\lambda,s_{3}}(\mathbb{R}^{n})$ [respectively $L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s_{3}}(\mathbb{R} ^{n-1}))$] we get \[ \|u\|_{\mathcal{L}^{p,\lambda,s_{2}}(\mathbb{R}^{n})}\leq C\big\{ \varepsilon\|u\|_{\mathcal{L}^{p,\lambda,s_{3} }(\mathbb{R}^{n})}+\varepsilon^{-\frac{s_{2}-s_{1}}{s_{3}-s_{2}}}\| u\|_{\mathcal{L}^{p,\lambda,s_{1}}(\mathbb{R}^{n})}\big\} \] [respectively \begin{align*} &\|u\|_{L^{p}(\mathbb{R};\mathcal{L} ^{p,\lambda,s_{2}}(\mathbb{R}^{n-1}))}\\ &\leq C\big\{ \varepsilon \|u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s_{3} }(\mathbb{R}^{n-1}))} +\varepsilon^{-\frac{s_{2}-s_{1}}{s_{3}-s_{2}}}\| u\|_{L^{p}( \mathbb{R};\mathcal{L}^{p,\lambda,s_{1}}(\mathbb{R} ^{n-1})) }\big\}. ] \end{align*} We have the same result if we replace $\mathcal{L}$ by $\dot {\mathcal{L}}$. \end{lemma} \begin{lemma} \label{2310} Let $\lambda\geq0$ and $1\leq p<+\infty$. Let $m$ be an integer $\geq1$, and $s$ be a real $0$ independent of $u$ such that \[ \|u\|_{\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})} \leq C\big\{ \|D_{t}^{m}u\|_{L^{p}(\mathbb{R};\mathcal{L} ^{p,\lambda,s-m}(\mathbb{R}^{n-1})) }+\|u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s} (\mathbb{R}^{n-1}))}\big\}\,. \] This statement remains true if we replace $\mathcal{L}$ by $\dot {\mathcal{L}}$ provided $-m0$ such that for any $\varphi\in\mathcal{S}(\mathbb{R}^{n})$, there exists $C_{1}>0$ satisfying for any $u\in\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})$ [respectively $L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))$] \[ \|\varphi u\|_{\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})}\leq C_{0}\| \varphi\|_{L^{\infty}(\mathbb{R}^{n}) }\|u\|_{\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n})} +C_{1}\|u\|_{\mathcal{L}^{p,\lambda,s-1}(\mathbb{R}^{n})} \] [respectively \begin{align*} &\|\varphi u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda,s} (\mathbb{R}^{n-1}))}\\ &\leq C_{0}\|\varphi\|_{L^{\infty}( \mathbb{R}^{n})}\|u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda ,s}(\mathbb{R}^{n-1}))}+ C_{1}\|u\|_{L^{p}(\mathbb{R};\mathcal{L}^{p,\lambda ,s-1}(\mathbb{R}^{n-1}))}. ] \end{align*} This statement remains true if we replace $\mathcal{L}$ by $\dot{\mathcal{L}}$. \end{lemma} The characterization of the traces for elements of the spaces involved in this paper is given in the following theorem proved in \cite{az}. \begin{theorem} \label{251} Let $t_{j}$ be an integer $\geq1,l\in\{0,1,\dots ,t_{j}-1\},s\in\mathbb{R} ,\lambda\geq0$ and $1\leq p<+\infty$. For $u\in W_{loc}^{t_{j},p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))$, the series $\sum_{k\geq0}D_{t}^{l}\Delta_{k}'u(0,.)$ converges in $\mathcal{S}'(\mathbb{R}^{n-1})$ and define an element $\gamma_{l}u$ belonging to the space $\mathcal{L}^{p,\lambda,s+t_{j}-l-\frac{1}{p}}(\mathbb{R}^{n-1})$. Further, the map $u\longmapsto\gamma_{l}u$ is a continuous operator from $W_{loc}^{t_{j} ,p}(\mathbb{R}_{+}; \mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))$ to $\mathcal{L}^{p,\lambda,s+t_{j}-l-\frac{1}{p}}(\mathbb{R}^{n-1})$ and there exists an extension operator $R_{l}$ from the space $\mathcal{L}^{p,\lambda ,s+t_{j}-l-\frac{1}{p}}(\mathbb{R}^{n-1})$ to the space $W^{t_{j},p}(\mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))$ such that \[ \gamma_{l}\circ R_{l}=id_{\mathcal{L}^{p,\lambda,s+t_{j}-l-\frac{1}{p} }(\mathbb{R}^{n-1})}. \] In particular, if $s\geq0$, then the operator $\gamma_{l}$ maps $\mathcal{L} ^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n})$ into the space $\mathcal{L}^{p,\lambda ,s+t_{j}-l-\frac{1}{p}}(\mathbb{R}^{n-1})$. We have the same results if we replace $\mathcal{L}$ by $\dot {\mathcal{L}}$. \end{theorem} \begin{remark} \label{rmk18} \rm Let $s>0,\lambda=n$ and $l=0$. In the case $p=2$, Strichartz \cite{str2} showed that the trace $\gamma_{0}$ of functions in $I^{s}(BMO)(=\dot {\mathcal{L}}^{2,n,s}(\mathbb{R}^{n})$ cf. \cite{cd}) must be in the homogeneous H\"{o}lder space $C^{s} (\mathbb{R}^{n})$. In addition, he proved that $\gamma_{0}$ is surjective by showing that the extension operator $R_{0}f(x)=\mathcal{F}^{-1}(e^{-t^{2} |\xi| ^{2}}\mathcal{F}f),x=(t,x')$, maps $C^{s} (\mathbb{R}^{n})$ into $I^{s}(BMO)$. In the case $1\leq p<+\infty$, Frazier and Jawerth \cite[Theorem 11.2]{fj} generalized the last result by showing that the space of traces of functions in $\dot {F}_{\infty,p} ^{s}(\mathbb{R}^{n})(=\dot {\mathcal{L}}^{p,n,s}(\mathbb{R}^{n})$ cf. Theorem \ref{TL} above) is independent of $p$ and coincides with $C^{s}(\mathbb{R}^{n})$ as well. \end{remark} \section{Proof of Theorem \ref{141}} The first step in the proof is the following statement. \begin{proposition} \label{prop} Let $s\in\mathbb{R},\lambda\geq0$ and $1\leq p<+\infty$. Under hypotheses (E1) and (E2), for any compact set $K$ of $\overline{\mathbb{R}_{+}^{n}}$, there is a constant $C_{K}>0$ such that for any $u\in\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+};\mathcal{L}^{p,\lambda,s} (\mathbb{R}^{n-1}))$ with $\mathop{\rm supp}u\subset K$, we get \begin{align*} \|u\|_{\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s} (\mathbb{R}^{n-1}))} &\leq C_{K}\Big\{ \|Lu\|_{\prod_{i=1}^{N}W^{-s_{i},p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))}\\ &\quad + \|B\gamma u\|_{\prod_{i=1}^{m_{+}} \mathcal{L}^{p,\lambda,s-\sigma_{i}-\frac{1}{p}}(\mathbb{R}^{n-1})}\\ &\quad +\|u\|_{\prod_{j=1}^{N}L^{p}(\mathbb{R}_{+};\mathcal{L} ^{p,\lambda,s+t_{j}-1}(\mathbb{R}^{n-1}))}\Big\} \end{align*} We have the same result if we replace $\mathcal{L}$ by $\dot{\mathcal{L}}$. \end{proposition} \begin{proof} It is classical that with the aid of Lemmas \ref{242}, \ref{243} and \ref{244}, and with the freezing technique of the coefficients of $L$, we can restrict ourselves to proving the last proposition for the following homogeneous system of operators with constant coefficients \[ L^{0}=L^{0}(D_{x'},D_{t})=(L_{ij}^{0}(0;D_{x'},D_{t} ))_{i,j=1\dots N}\;and\;B^{0}\gamma=B^{0}(0,D_{x'})\gamma \] where \[ L_{ij}^{0}(0;D_{x'},D_{t})=\sum_{k+| \alpha'| =s_{i}+t_{j}}a_{\alpha}^{ij}( 0)D_{x'}^{\alpha' }D_{t}^{k}. \] With the aid of Theorem \ref{ODS}, we prove as in \cite{lm,bc,az} that under hypotheses (E1) and (E2), for every $\xi'\in\mathbb{R}^{n-1}\setminus\{0\}$, the operator $(L^{0}(\xi',D_{t}),B^{0}(0,\xi ')\gamma)$ is invertible from $\prod_{j=1}^{N} W^{t_{j},p}(\mathbb{R}_{+})$ to $\prod_{i=1} ^{N}W^{-s_{i},p}(\mathbb{R}_{+})\times\mathbb{C}^{m_{+}}$ and if $K_{\xi'}$ denotes its inverse, then the mapping $\xi^{\prime }\longmapsto K_{\xi'}$ is $C^{\infty}$ from $\mathbb{R}^{n-1} \setminus\{0\}$ to $\mathcal{L}( \prod_{i=1}^{N}W^{-s_{i} ,p}(\mathbb{R}_{+}) \times\mathbb{C}^{m_{+}};\prod _{j=1}^{N}W^{t_{j},p}( \mathbb{R}_{+}))$ and for any multi-index $\alpha'$, there exists $C_{\alpha'}>0$ such that for any $\xi'$, $\frac{1}{2}\leq|\xi'|\leq2$, and any $(f,g)\in\prod_{i=1}^{N}W^{-s_{i},p}(\mathbb{R}_{+}) \times\mathbb{C}^{m_{+}}$, \begin{equation} \|D_{\xi'}^{\alpha'}K_{\xi'}(f,g) \|_{\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+}) }\leq C_{\alpha'}\|(f,g)\|_{\prod _{i=1}^{N}W^{-s_{i},p}(\mathbb{R}_{+})\times \mathbb{C}^{m_{+}}}. \label{322} \end{equation} First of all, we will prove that for any integer $M\geq1$ sufficiently large, there exists a constant $C>0$ such that for any ball $B$ of $\mathbb{R}^{n-1}$ of radius $2^{-J},J\in\mathbb{Z}$, centered at $x_{0}'\in \mathbb{R}^{n-1}$, \begin{equation} \begin{aligned} &\|u\|_{\prod_{j=1}^{N}L^{p}(B;W^{t_{j},p}(\mathbb{R}_{+}))} \\ &\leq C\Big\{\|L^{0}u\|_{\prod_{i=1}^{N}L^{p}(2B;W^{-s_{i},p}( \mathbb{R}_{+}))} +\|B^{0}\gamma u\|_{\prod_{i=1}^{m_{+}}L^{p}(2B)} \\ &\quad + |B|^{1/p}{\sum_{\nu\geq-J+1}} 2^{-2\nu M}|F_{\nu}|^{1-\frac{1}{p}}\Big(\| L^{0}u\|_{\prod_{i=1}^{N}L^{p}(F_{\nu};W^{-s_{i},p}(\mathbb{R} _{+}))}\\ &\quad +\|B^{0}\gamma u\|_{\prod_{i=1}^{m_{+} }L^{p}(F_{\nu})}\Big)\Big\} \end{aligned} \label{323} \end{equation} holds for any $u\in\prod_{j=1}^{N}\mathcal{S}(\mathbb{R} ^{n-1};W^{t_{j},p} (\mathbb{R}_{+}))$ whose tangential spectrum (i.e. the support of the tangential Fourier transform of $u$) belongs to the annulus $\frac{1}{2}\leq|\xi'|\leq2$, here $F_{\nu}=\{x'\in\mathbb{R}^{n-1};\;2^{\nu}\leq|x'-x_{0}' |\leq2.2^{\nu}\}$. For this, we apply the operator $(L^{0}(\xi' ,D_{t}),B(0,\xi')\gamma)$ to the relation \[ \mathcal{F}u(.,\xi')=\int e^{-iy'\cdot \xi'}u(.,y')dy' \] to obtain the system \begin{gather*} L^{0}(\xi',D_{t}) \mathcal{F}u(.,\xi^{\prime }) = \mathcal{F}L^{0}u(.,\xi') = \int e^{-iy'\cdot\xi'}(L^{0}u)(.,y^{\prime })dy'\\ B^{0}(0,\xi')\gamma\mathcal{F}u(.,\xi') = \mathcal{F}B^{0}\gamma u(\xi') = \int e^{-iy'\cdot\xi'}(B^{0}\gamma u)(y')dy' \end{gather*} Then we apply $K_{\xi'}$ to this system, \[ \mathcal{F}u(.,\xi')=\int e^{-iy'\cdot \xi'}K_{\xi'}(L^{0}u(.,y'),B^{0}\gamma u(y'))dy' \] Since $u(.,x')=\int e^{ix'\cdot\xi' }\Phi(\xi') \mathcal{F}u(.,\xi')\frac{d\xi'}{(2\pi)^{n-1}}$, $\Phi\in C_{0}^{\infty }(\mathbb{R}^{n-1})$ is equal to $1$ for $\frac{1}{2}\leq |\xi'|\leq2$ and its support belongs to an annulus, we integrate by parts with respect to $\xi'$, then \begin{align*} &u(.,x')\\ &=\iint\frac{e^{i(x'-y')\cdot \xi'}}{(1+|x'-y'|^{2})^{M}} (I-\Delta_{\xi'})^{M}\{\Phi(\xi')K_{\xi'} (L^{0}u(.,y'),B^{0}\gamma u(y'))\}\frac{dy' d\xi'}{(2\pi)^{n-1}}. \end{align*} Inequality (\ref{322}) yields \begin{align*} &\|u(.,x')\|_{\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+})}\\ &\leq C\int_{\mathbb{R}^{n-1}}\frac{1}{(1+|x'-y' |^{2})^{M}}\|(L^{0}u(.,y'),B^{0}\gamma u(y') )\|_{\prod _{i=1}^{N}W^{-s_{i},p}( \mathbb{R}_{+})\times \mathbb{C}^{m_{+}}}dy'\,. \end{align*} We integrate with respect to $x'\in B$, \begin{align*} &\|u\|_{L^{p}(B;\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+}))}\\ &\leq C\Big\{{\int_{x'\in B}} \Big({\int_{y'\in\mathbb{R}^{n-1}}}\frac{1}{(1+|x'-y'|^{2})^{M}}\\ &\quad \times \|(L^{0}u(.,y'),B^{0}\gamma u(y'))\| _{\prod_{i=1}^{N}W^{-s_{i},p}(\mathbb{R} _{+}) \times\mathbb{C}^{m_{+}}}dy'\Big)^{p}dx'\Big\}^{1/p} \end{align*} We decompose $\mathbb{R}^{n-1}=(2B)\cup\bigcup_{\nu \geq-J+1}F_{\nu}$, where $2B=\{ y';\,|y'-x_{0}'|\leq2.2^{-J}\} $ and $F_{\nu}=\{ y';\,2^{\nu}\leq|y'-x_{0}'|\leq2.2^{\nu}$, $\nu\geq-J+1$. Thus \begin{align*} &\|u\|_{L^{p}(B;\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+}))}\\ &\leq C\Big\{ \int_{x'\in B}\Big(\int_{2B}\frac{1}{(1 +|x'-y'|^{2})^{M}}\chi_{2B}(y')\\ &\quad \times \|(L^{0}u(.,y'),B^{0}\gamma u(y'))\|_{\prod_{i=1}^{N} W^{-s_{i},p}(\mathbb{R}_{+})\times\mathbb{C}^{m_{+}}}dy'\Big)^{p}dx' \Big\} ^{1/p} \\ &\quad +C\Big\{ \int_{x'\in B}\Big(\sum_{\nu\geq-J+1}\int_{F_{\nu }}\frac{1}{(1+|x'-y'|^{2})^{M}}\\ &\quad\times \|(L^{0}u(.,y'),B^{0}\gamma u(y'))\|_{\prod_{i=1}^{N} W^{-s_{i},p}(\mathbb{R}_{+})\times\mathbb{C}^{m_{+}}}dy'\Big) ^{p}dx'\Big\} ^{1/p} \end{align*} The first term of the right hand side of the above inequality is an $L^{p}-$ norm of a convolution product of a function of $L^{1}(\mathbb{R} ^{n-1})$ (for $M$ large) and a function of $L^{p}(\mathbb{R}^{n-1})$; on the other hand, for the second term we remark that for $x'\in B\;$and $y'\in F_{\nu},\nu\geq-J+1$, we have $|x'-y'|\sim|x_{0}'-y'|\sim2^{\nu}$. Hence \begin{align*} &\|u\|_{L^{p}(B;\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+}))}\\ &\leq C\{\|L^{0}u\|_{L^{p}(2B;\prod_{i=1}^{N}W^{-s_{i},p}( \mathbb{R}_{+}))}+\|B^{0}\gamma u\| _{_{\prod_{i=1}^{m_{+}}L^{p}(2B)}}\}\\ &\quad +C|B|^{1/p} {\sum_{\nu\geq-J+1}}2^{-2\nu M}{\int_{y'\in F_{\nu}}} \|(L^{0}u(.,y'),B^{0}\gamma u(y'))\|_{\prod_{i=1}^{N}W^{-s_{i} ,p}(\mathbb{R}_{+})\times\mathbb{C}^{m_{+}}}dy'\\ &\leq C\{\|L^{0}u\| _{L^{p}(2B;\prod_{i=1}^{N}W^{-s_{i} ,p}( \mathbb{R}_{+}))}+\|B^{0}\gamma u\| _{_{\prod_{i=1}^{m_{+}}L^{p}(2B)}}\}\\ &\quad +C|B|^{1/p} {\sum_{\nu\geq-J+1}}2^{-2\nu M}|F_{\nu}|^{1-\frac{1}{p}}\\ &\quad\times \Big({\int_{y'\in F_{\nu}}}\|(L^{0}u(.,y'),B^{0}\gamma u(y'))\|_{\prod_{i=1}^{N}W^{-s_{i} ,p}(\mathbb{R}_{+}) \times\mathbb{C}^{m_{+}}}^{p}dy'\Big)^{1/p}. \end{align*} So that inequality (\ref{323}) is proved. Let $u=\begin{pmatrix} u^{1}\\ \vdots \\ u^{N}\end{pmatrix} \in\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R}_{+} ;\mathcal{L}^{p,\lambda,s}( \mathbb{R}^{n-1}))$ with $\mathop{\rm supp} u\subset K$, $K$ is a compact set of $\overline{\mathbb{R}_{+}^{n}}$. For $k\in\mathbb{N},$ we set $u_{k}(x)=\Delta_{k}'u(2^{-k}x)$. If $k\geq1$, then $u_{k}\in \prod_{j=1}^{N}\mathcal{S}(\mathbb{R}^{n-1}; W^{t_{j},p}(\mathbb{R}_{+}))$ and its tangential spectrum (i.e. the support of its tangential Fourier transform) belongs to the annulus $\{\frac{1}{2}\leq|\xi'|\leq2\}$. We have \begin{equation} (L_{ij}^{0}u^{j})_{k}=2^{k(s_{i}+t_{j})}L_{ij}^{0}u_{k} ^{j}\quad \mbox{and}\quad (B_{ij}^{0}\gamma u^{j})_{k}=2^{k(\sigma _{i}+t_{j})}B_{ij}^{0}\gamma u_{k}^{j}\,. \label{324} \end{equation} We apply inequality (\ref{323}) for each $u_{k},k\geq1$, \begin{equation} \begin{aligned} &\|u_{k}\|_{\prod_{j=1}^{N}L^{p}(B;W^{t_{j} ,p}(\mathbb{R}_{+}))}\\ &\leq C\Big\{ \|L^{0} u_{k}\|_{\prod_{i=1}^{N}L^{p}(2B;W^{-s_{i},p}( \mathbb{R}_{+}))}+\|B^{0}\gamma u_{k}\| _{\prod_{i=1}^{m_{+}}L^{p}(2B)}\\ &\quad + |B|^{1/p}{\sum_{\nu\geq-J+1}} 2^{-2\nu M}|F_{\nu}|^{1-\frac{1}{p}}\Big(\|L^{0}u_{k}\| _{\prod_{i=1}^{N}L^{p}(F_{\nu};W^{-s_{i},p}(\mathbb{R} _{+}))}\\ &\quad +\|B^{0}\gamma u_{k}\|_{\prod_{i=1} ^{m_{+}}L^{p}(F_{\nu})}\Big) \Big\} \end{aligned}\label{325} \end{equation} The operator $\Delta_{k}'$ commutes with the derivation and then with the constant coefficients operator $L^{0}$, so with the aid of (\ref{324}) we have \begin{align*} \|u_{k}\|_{\prod_{j=1}^{N}L^{p}(B;W^{t_{j},p}(\mathbb{R}_{+}))} & ={\sum_{j=1}^{N}}\|u_{k}^{j}\|_{L^{p}(B;W^{t_{j},p} (\mathbb{R}_{+}))}\\ & = {\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} \|D_{t}^{r}u_{k}^{j}\|_{L^{p}(B;L^{p}(\mathbb{R}_{+}))}\\ & = {\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} 2^{kn/p}2^{-kr}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k}B)} \end{align*} and \begin{align*} &\|L^{0}u_{k}\|_{\prod_{i=1}^{N}L^{p}(2B;W^{-s_{i},p}(\mathbb{R}_{+}))}\\ &={\sum_{i=1}^{N}}\|(L^{0}u_{k})^{i}\|_{L^{p}(2B;W^{-s_{i},p}( \mathbb{R}_{+}))}\\ &={\sum_{i=1}^{N}} \|{\sum_{j=1}^{N}} 2^{-k(s_{i}+t_{j})}(L_{ij}^{0}u^{j})_{k}\|_{L^{p}( 2B;W^{-s_{i},p}(\mathbb{R}_{+}))}\\ &={\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} 2^{kn/p}\| {\sum_{j=1}^{N}} 2^{-k(s_{i}+t_{j}+r)}\Delta_{k}'D_{t}^{r}(L_{ij}^{0}u^{j})\| _{L^{p}(\mathbb{R}_{+}\times2^{-k+1}B)} \end{align*} and finally \begin{align*} & \|B^{0}\gamma u_{k}\|_{\prod_{i=1}^{m_{+}}L^{p}(2B)}\\ & ={\sum_{i=1}^{m_{+}}}\|(B^{0}\gamma u_{k})^{i}\|_{L^{p}(2B)}\\ &={\sum_{i=1}^{m_{+}}}\|{\sum_{j=1}^{N}} 2^{-k(\sigma_{i}+t_{j})}(B_{ij}^{0}\gamma u^{j})_{k}\|_{L^{p}(2B)}\\ &={\sum_{i=1}^{m_{+}}}2^{k(n-1)/p}\| {\sum_{j=1}^{N}} 2^{-k(\sigma_{i}+t_{j})}\Delta_{k}'B_{ij}^{0}\gamma u^{j}\| _{L^{p}(2^{-k+1}B)} \end{align*} Substituting the above equalities in (\ref{325}) gives \begin{align*} &{\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}}} 2^{-kr}\|\Delta_{k}'D_{t}^{r}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times2^{-k}B)}\\ & \leq C\Big\{{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}}\| {\sum_{j=1}^{N}} 2^{-k(s_{i}+t_{j}+r)}\Delta_{k}'D_{t}^{r}L_{ij}^{0}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k+1}B)}\\ &\quad + {\sum_{i=1}^{m_{+}}} \|{\sum_{j=1}^{N}}2^{-k(\sigma_{i}+t_{j}+1)}\Delta_{k}'B_{ij}^{0}\gamma u^{j}\| _{L^{p}(2^{-k+1}B)}\\ &\quad +|B|^{1/p}{\sum_{\nu\geq-J+1}} 2^{-2\nu M}|F_{\nu}|^{1-\frac{1}{p}} \Big[{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} \| {\sum_{j=1}^{N}} 2^{-k(s_{i}+t_{j}+r)}\Delta_{k}'D_{t}^{r}L_{ij}^{0}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k}F_{\nu})}\\ &\quad + {\sum_{i=1}^{m_{+}}} \|{\sum_{j=1}^{N}} 2^{-k(\sigma_{i}+t_{j}+1)}\Delta_{k}'B_{ij}^{0} \gamma u^{j}\|_{L^{p}(2^{-k}F_{\nu})}]\Big\} \end{align*} Now we replace $u^{j}$ by $2^{k(s+t_{j})}u^{j}$ to get \begin{align*} &{\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k}B)}\\ &\leq C\Big\{{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)}\|{\sum_{j=1}^{N}} \Delta_{k}'D_{t}^{r}L_{ij}^{0}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times2^{-k+1}B)}\\ &\quad + {\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)}\| {\sum_{j=1}^{N}} \Delta_{k}'B_{ij}^{0}\gamma u^{j}\|_{L^{p}(2^{-k+1}B)}\\ &\quad +|B|^{1/p} {\sum_{\nu\geq-J+1}} 2^{-2\nu M}|F_{\nu}|^{1-\frac{1}{p}} \Big[{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)}\| {\sum_{j=1}^{N}} \Delta_{k}'D_{t}^{r}L_{ij}^{0}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times2^{-k}F_{\nu})}\\ &\quad + {\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)}\|{\sum_{j=1}^{N}} \Delta_{k}'B_{ij}^{0}\gamma u^{j}\|_{L^{p}( 2^{-k} F_{\nu})}\Big]\Big\} \end{align*} Hence \begin{align*} &{\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k}B)}\\ &\leq C\Big\{{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k+1}B)}\\ &\quad + {\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)}\|\Delta_{k}'(B^{0}\gamma u)^{i} \|_{L^{p}(2^{-k+1}B)}\\ &\quad +|B|^{1/p} {\sum_{\nu\geq-J+1}} 2^{-2\nu M}|F_{\nu}|^{1-\frac{1}{p}} \Big[{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2^{-k}F_{\nu})}\\ &\quad + {\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)}\|\Delta_{k}'(B^{0}\gamma u)^{i} \|_{L^{p}(2^{-k}F_{\nu})}\Big]\Big\} \end{align*} Set $K=J+k\in\mathbb{Z}$ and $\mu=\nu-k\in\mathbb{Z}$, then the ball $2^{-k}B$ becomes the ball $B_{K}$ of $\mathbb{R}^{n-1}$ of radius $2^{-K}$, the annulus $2^{-k}F_{\nu}$ becomes the annulus $F_{\mu}$ of $\mathbb{R}^{n-1}$, and we deduce \begin{align*} &{\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)p}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq C\Big\{{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)p}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2B_{K})}^{p}\\ &+ {\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)p}\|\Delta_{k}'(B^{0}\gamma u)^{i}\|_{L^{p}(2B_{K})}^{p}\\ &\quad +|2^{k}B_{K}|\Big({\sum_{\mu\geq-K+1}} 2^{(\mu+K)(-2M+(n-1)(1-\frac{1}{p}))}2^{\mu\frac{\lambda}{p}}\\ &\quad\times \Big[{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} \frac{2^{k(s-s_{i}-r)}}{|F_{\mu}| ^{\frac{\lambda}{(n-1)p}} }\| \Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\|_{L^{p}( \mathbb{R}_{+}\times F_{\mu})}\\ &\quad +{\sum_{i=1}^{m_{+}}} \frac{2^{k(s-\sigma_{i}-1/p)}}{|F_{\mu}| ^{\frac{\lambda }{(n-1)p}}}\|\Delta_{k}'(B^{0}\gamma u)^{i}\| _{L^{p}(F_{\mu})}]\Big)^{p}\Big\} \end{align*} A simple calculation yields \begin{align*} &{\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)p}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq C\Big\{{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)p}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2B_{K})}^{p}\\ &\quad + {\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)p}\|\Delta_{k}'(B^{0}\gamma u)^{i}\|_{L^{p}(2B_{K})}^{p}\\ &\quad + 2^{(k-K)(-2N+n-1)p}2^{-K\lambda}( {\sum_{\mu\geq1}} 2^{\mu(-2M+(n-1)(1-\frac{1}{p})+\frac{\lambda}{p})}\\ &\quad \Big[{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} \frac{2^{k(s-s_{i}-r)}}{|F_{\mu-K}| ^{\frac{\lambda}{(n-1)p}} }\| \Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\|_{L^{p}( \mathbb{R}_{+}\times F_{\mu-K})}\\ &\quad + {\sum_{i=1}^{m_{+}}} \frac{2^{k(s-\sigma_{i}-1/p)}}{|F_{\mu-K}| ^{\frac{\lambda }{(n-1)p}}}\|\Delta_{k}'(B^{0}\gamma u)^{i}\| _{L^{p}(F_{\mu-K})}])^{p}\Big\} \end{align*} Set $A_{M}=-2M+(n-1)(1-\frac{1}{p})+\frac{\lambda}{p}$. Multiply by $1/|B_{K}| ^{\frac{\lambda}{n-1}}$ and sum over $j$, $k\geq \max(K^{+},1)$, \begin{align*} &\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq\max(K^{+},1)}}{\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)p}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq C\Big\{ \frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)p}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2B_{K})}^{p}\\ &\quad + \frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)p}\|\Delta_{k}'(B^{0}\gamma u)^{i}\|_{L^{p}(2B_{K})}^{p}\\ &\quad + {\sum_{k\geq K^{+}}}\Big({\sum_{\mu\geq1}} 2^{\mu A_{M}}\Big[{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} \frac{2^{k(s-s_{i}-r)}}{|F_{\mu-K}| ^{\frac{\lambda}{(n-1)p}} }\| \Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\|_{L^{p}( \mathbb{R}_{+}\times F_{\mu-K})}\\ &\quad +{\sum_{i=1}^{m_{+}}} \frac{2^{k(s-\sigma_{i}-1/p)}}{|F_{\mu-K}| ^{\frac{\lambda }{(n-1)p}}}\|\Delta_{k}'(B^{0}\gamma u)^{i}\| _{L^{p}(F_{\mu-K})}\Big]\Big)^{p}\Big\} \end{align*} Now we use Lemma \ref{sup} for the last sum $k\geq K^{+}$, \begin{align*} &\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq\max(K^{+},1)}}{\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)p}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq C\Big\{ \frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)p}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2B_{K})}^{p}\\ &\quad + \frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)p}\|\Delta_{k}'(B^{0}\gamma u)^{i}\|_{L^{p}(2B_{K})}^{p}\\ &\quad +\sup_{\mu\geq1}{\sum_{k\geq K^{+}}} \Big[{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} \frac{2^{k(s-s_{i}-r)p}}{|F_{\mu-K}| ^{\frac{\lambda}{n-1}} }\| \Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\|_{L^{p}( \mathbb{R}_{+}\times F_{\mu-K})}^{p}\\ &\quad +{\sum_{i=1}^{m_{+}}} \frac{2^{k(s-\sigma_{i}-1/p)p}}{|F_{\mu-K}| ^{\frac{\lambda }{n-1}}}\|\Delta_{k}'(B^{0}\gamma u)^{i}\| _{L^{p}(F_{\mu-K})}^{p}\Big]\Big\} \end{align*} On the left hand side of the above inequality we add the terms associated to $k=0$, and since $F_{\mu-K}\subset B_{K-\mu-1}$ we deduce \begin{align*} &\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} 2^{k(s+t_{j}-r)p}\|\Delta_{k}'D_{t}^{r}u^{j}\| _{L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq C\Big\{\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{i=1}^{N}} {\sum_{r=0}^{-s_{i}}} 2^{k(s-s_{i}-r)p}\|\Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\| _{L^{p}(\mathbb{R}_{+}\times2B_{K})}^{p}\\ &\quad + \frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{k\geq K^{+}}}{\sum_{i=1}^{m_{+}}} 2^{k(s-\sigma_{i}-1/p)p}\|\Delta_{k}'(B^{0}\gamma u)^{i}\|_{L^{p}(2B_{K})}^{p}\\ &\quad +\sup_{\mu\geq1}{\sum_{k\geq(K-\mu-1)^{+}}}{\sum_{i=1}^{N}} \Big[{\sum_{r=0}^{-s_{i}}} \frac{2^{k(s-s_{i}-r)p}}{|F_{\mu-K}| ^{\frac{\lambda}{n-1}} }\| \Delta_{k}'D_{t}^{r}(L^{0}u)^{i}\|_{L^{p}( \mathbb{R}_{+}\times B_{K-\mu-1})}^{p}\\ &\quad +{\sum_{i=1}^{m_{+}}} \frac{2^{k(s-\sigma_{i}-1/p)p}}{|F_{\mu-K}| ^{\frac{\lambda }{n-1}}}\|\Delta_{k}'(B^{0}\gamma u)^{i}\| _{L^{p}(B_{K-\mu-1})}^{p}\Big]\Big\}+R_{0}^{K}, \end{align*} where \[ R_{0}^{K}=\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}}} \|\Delta_{0}'D_{t}^{r}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times B_{K})}^{p}\,. \] Taking the supremum over $K$ and $B_{K}$ yields \begin{align*} &{\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}}} \|D_{t}^{r}u^{j}\|_{L^{p}(\mathbb{R}_{+};\mathcal{L} ^{p,\lambda,s+t_{j}-r}(\mathbb{R}^{n-1}))}^{p}\\ &\leq C\Big\{{\sum_{i=1}^{N}}{\sum_{r=0}^{-s_{i}}} \|D_{t}^{r}(L^{0}u)^{i}\|_{L^{p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s-s_{i}-r}(\mathbb{R}^{n-1}))}^{p}\\ &\quad +{\sum_{i=1}^{m_{+}}} \|(B^{0}\gamma u)^{i}\|_{\mathcal{L}^{p,\lambda,s-\sigma _{i}-1/p}(\mathbb{R}^{n-1})}^{p}\Big\} +R_{0}, \end{align*} where \[ R_{0}=\sup_{K,B_{K}}\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}}} \|\Delta_{0}'D_{t}^{r}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times B_{K})}^{p} \] Finally \begin{equation} \label{326} \begin{aligned} \|u\|_{\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R} _{+}; \mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1})) }^{p} & \leq C\Big\{\|L^{0}u\|_{\prod_{i=1}^{N}W^{-s_{i},p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))} ^{p}\\ &\quad + \|B^{0}\gamma u\|_{\prod_{i=1}^{m_{+} }\mathcal{L}^{p,\lambda,s-\sigma_{i}-\frac{1}{p}}(\mathbb{R}^{n-1})} ^{p}\Big\} +R_{0} \end{aligned} \end{equation} To estimate from above the remainder term $R_{0}$, we write \begin{equation} R_{0}^{K}=\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}-1}} \|\Delta_{0}'D_{t}^{r}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times B_{K})}^{p}+\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}}{\sum_{j=1}^{N}} \|\Delta_{0}'D_{t}^{t_{j}}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times B_{K})}^{p} \label{3211} \end{equation} For the first term in $R_{0}^{K}$, we use Lemma \ref{242} to get a constant $C>0$ such that for any $\varepsilon>0$, \begin{equation} \begin{aligned} &\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{j=1}^{N}}{\sum_{r=0}^{t_{j}-1}} \|\Delta_{0}'D_{t}^{r}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq {\sum_{j=1}^{N}} {\sum_{r=0}^{t_{j}-1}} \|D_{t}^{r}u^{j}\|_{L^{p}(\mathbb{R}_{+};\mathcal{L} ^{p,\lambda,s+t_{j}-r-1}(\mathbb{R}^{n-1}))}^{p}\\ &\leq C {\sum_{j=1}^{N}} \Big\{ \varepsilon^{p}\|D_{t}^{t_{j}}u^{j}\|_{L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))}^{p}+ {\sum_{r=0}^{t_{j}-1}} \varepsilon^{-\frac{rp}{t_{j}-r}}\|u^{j}\|_{L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s+t_{j}-1}(\mathbb{R}^{n-1})) }^{p}\Big\} \\ &\leq C {\sum_{j=1}^{N}} \Big\{ \varepsilon^{p}\|u^{j}\| _{W^{t_{j},p}(\mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1})) } ^{p}+C_{\varepsilon}'\|u^{j}\|_{L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s+t_{j}-1}(\mathbb{R}^{n-1})) }^{p}\Big\}. \end{aligned} \label{327} \end{equation} To estimate the second term of $R_{0}^{K}$ we return to the equation $L^{0}u=f$. For each $i=1,\dots ,N$, ${\sum_{j=1}^{N}}L_{ij}^{0}u^{j}=f^{i}$, so ${\sum_{j=1}^{N}}{\sum_{r+|\alpha'| =s_{i}+t_{j}}} a_{r,\alpha'}^{ij}(0)D_{x'}^{\alpha'}D_{t}^{r}u^{j}=f^{i}$, here $f^{i}=(L^{0}u)^{i}$. Thus \[ {\sum_{j=1}^{N}} a_{s_{i}+t_{j},\alpha'}^{ij}(0)D_{t}^{s_{i}+t_{j}} u^{j}=f^{i}-{\sum_{j=1}^{N}} {\sum_{\substack{r+|\alpha'| =s_{i}+t_{j}\\0\leq r\leq s_{i}+t_{j}-1}}} a_{r,\alpha'}^{ij}(0)D_{x'}^{\alpha' }D_{t}^{r}u^{j} \] Applying $D_{t}^{-s_{i}}$ to the both sides gives \begin{equation} {\sum_{j=1}^{N}} a_{s_{i}+t_{j},\alpha'}^{ij}(0)D_{t}^{t_{j}}u^{j} =D_{t}^{-s_{i}}f^{i}-{\sum_{j=1}^{N}} {\sum_{\substack{r'+|\alpha' =t_{j}\\-s_{i}\leq r'\leq t_{j}-1}}} a_{r'+s_{i},\alpha'}^{ij}(0)D_{x' }^{\alpha'}D_{t}^{r'}u^{j} \label{328} \end{equation} The ellipticity condition gives that the constant matrix $A=(a_{s_{i} +t_{j},\alpha'}^{ij}(0))_{i,j}$ is invertible. Let us denote $D_{t}^{T}u$ the vector $(D_{t}^{t_{j}}u^{j})_{j}$, $D_{t}^{-S}f$ the vector $(D_{t}^{-s_{i}}f^{i})_{i}$ and $V$ the vector $(v^{i})_{i}$ where $v^{i}={\sum_{j=1}^{N}} {\sum_{\substack{r'+|\alpha^{\prime }| =t_{j}\\-s_{i}\leq r'\leq t_{j}-1}}} a_{r'+s_{i},\alpha'}^{ij}(0)D_{x' }^{\alpha'}D_{t}^{r'}u^{j}$. From (\ref{328}) we obtain \begin{equation} D_{t}^{T}u=A^{-1}D_{t}^{-S}f-A^{-1}V \label{3214} \end{equation} and then \[ \Delta_{0}'D_{t}^{T}u=A^{-1}\Delta_{0}'D_{t}^{-S} f-A^{-1}\Delta_{0}'V \] For the second term of $R_{0}^{K}$, we write \begin{equation} \begin{aligned} &\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}} {\sum_{j=1}^{N}}\|\Delta_{0}'D_{t}^{t_{j}}u^{j}\|_{L^{p}( \mathbb{R}_{+}\times B_{K})}^{p}\\ &=\frac{1}{|B_{K}|^{\frac{\lambda}{n-1}}}\|\Delta_{0}'D_{t}^{T}u\| _{\prod_{j=1}^{N}L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\\ &\leq C\{\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}}\|\Delta _{0}'D_{t}^{-S}f\|_{\prod_{i=1}^{N}L^{p}( \mathbb{R}_{+}\times B_{K})}^{p}+\frac{1}{|B_{K}| ^{\frac{\lambda}{n-1}}}\|\Delta_{0}'V\|_{\prod _{j=1}^{N}L^{p}(\mathbb{R}_{+}\times B_{K})}^{p}\}\\ &\leq C\{\|D_{t}^{-S}f\|_{\prod_{i=1}^{N}L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))} ^{p}+\|V\|_{\prod_{j=1}^{N}L^{p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s-1}(\mathbb{R}^{n-1}))}^{p}\}\\ &\leq C\{\|f\|_{\prod_{i=1}^{N}W^{-s_{i},p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1})) } ^{p}+\|V\|_{\prod_{j=1}^{N}L^{p}(\mathbb{R}_{+}; \mathcal{L}^{p,\lambda,s-1}(\mathbb{R}^{n-1}))}^{p}\} \end{aligned} \label{329} \end{equation} Now \begin{align*} \|V\|_{\prod_{j=1}^{N}L^{p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s-1}(\mathbb{R}^{n-1}))}^{p} & \leq C {\sum_{j=1}^{N}}{\sum_{\substack{r'+|\alpha'| =t_{j}\\0\leq r'\leq t_{j}-1}}} \|D_{x'}^{\alpha'}D_{t}^{r'}u^{j}\| _{L^{p}(\mathbb{R}_{+};\mathcal{L}^{p,\lambda,s-1}(\mathbb{R} ^{n-1}))}^{p}\\ & \leq C {\sum_{j=1}^{N}}{\sum_{0\leq r'\leq t_{j}-1}} \|D_{t}^{r'}u^{j}\|_{L^{p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s+t_{j}-r'-1}(\mathbb{R}^{n-1}))}^{p} \end{align*} In the same way as for (\ref{327}) there is a constant $C>0$ such that for any $\varepsilon>0$, \begin{equation} \begin{aligned} &\|V\|_{\prod_{j=1}^{N}L^{p}(\mathbb{R}_{+}; \mathcal{L}^{p,\lambda,s-1}(\mathbb{R}^{n-1}))}^{p}\\ &\leq C {\sum_{j=1}^{N}} \Big\{ \varepsilon^{p}\|D_{t}^{t_{j}}u^{j}\|_{L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))}^{p}+ {\sum_{r'=0}^{t_{j}-1}} \varepsilon^{-\frac{r'p}{t_{j}-r}}\|u^{j}\| _{L^{p}(\mathbb{R}_{+};\mathcal{L}^{p,\lambda,s+t_{j}-1}(\mathbb{R} ^{n-1}))}^{p}\Big\} \\ &\leq C {\sum_{j=1}^{N}} \Big\{ \varepsilon^{p}\|u^{j}\|_{W^{t_{j},p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1})) } ^{p}+C_{\varepsilon}'\|u^{j}\|_{L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s+t_{j}-1}(\mathbb{R}^{n-1})) }^{p}\Big\}\,. \end{aligned} \label{3210} \end{equation} Finally (\ref{3211})--(\ref{3210}) give \begin{align*} R_{0} & \leq C\{\|f\|_{\prod_{i=1}^{N}W^{-s_{i} ,p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1})) }^{p}+\varepsilon^{p}\|u\|_{\prod_{j=1}^{N}W^{t_{j} ,p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))}^{p}\\ &\quad + C_{\varepsilon}'\|u\|_{\prod_{j=1}^{N}L^{p}( \mathbb{R}_{+};\mathcal{L}^{p,\lambda,s+t_{j}-1}(\mathbb{R}^{n-1})) }^{p}\} \end{align*} Substituting the above inequality in (\ref{326}) and choosing $\varepsilon>0$ arbitrarily small we get Proposition \ref{prop} for the system $(L^{0},B^{0}\gamma)$. \end{proof} To complete the proof of Theorem \ref{141}, we have to estimate the normal derivatives of the solution. \begin{lemma} \label{normal} Let $s$ and $\lambda$ be two real numbers $\geq0$ and $1\leq p<+\infty$. For any compact set $K$ of $\overline{\mathbb{R}_{+}^{n}}$, there exists a constant $C_{K}>0$ such that for any $\,u\in\prod_{j=1}^{N} \mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n})$ with $\mathop{\rm supp}u\subset K$ we get \begin{equation} \|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j} }(\mathbb{R}_{+}^{n})} \leq C_{K}\{\|Lu\|_{\prod_{i=1}^{N}\mathcal{L}^{p,\lambda,s-s_{i}} (\mathbb{R}_{+}^{n})}+\|u\|_{\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))}\} \label{331} \end{equation} \end{lemma} \begin{proof} As in the proof of Proposition \ref{prop} we can restrict ourselves to the operator $L^{0}$. Firstly let us take $0\leq s<1$. We have \[ \|u^{j}\|_{\mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n} )}=\|D_{t}^{t_{j}}u^{j}\|_{\mathcal{L}^{p,\lambda,s} (\mathbb{R}_{+}^{n})}+{\sum_{\substack{k+|\alpha'| \leq t_{j}\\0\leq k\leq t_{j}-1}}} \|D_{x'}^{\alpha'}D_{t}^{k}u^{j}\| _{\mathcal{L}^{p,\lambda,s}(\mathbb{R}_{+}^{n})} \] The interpolation lemma \ref{2310} gives for $k+|\alpha'|\leq t_{j}$, $0\leq k\leq t_{j}-1$, \begin{equation} \begin{aligned} &\| D_{x'}^{\alpha'}D_{t}^{k}u^{j}\|_{\mathcal{L}^{p, \lambda,s}(\mathbb{R}_{+}^{n})}\\ &\leq C\Big\{ \|D_{x'}^{\alpha'}D_{t}^{k}u^{j}\| _{L^{p}(\mathbb{R}_{+;}\mathcal{L}^{p,\lambda,s}(\mathbb{R} ^{n-1}))}+\|D_{x'}^{\alpha'}D_{t}^{k+1} u^{j}\| _{L^{p}(\mathbb{R}_{+;}\mathcal{L}^{p,\lambda ,s-1}(\mathbb{R}^{n-1}))}\Big\} \\ & \leq C\Big\{ \|D_{t}^{k}u^{j}\|_{L^{p}(\mathbb{R} _{+;}\mathcal{L}^{p,\lambda,s+t_{j}-k}(\mathbb{R}^{n-1})) }+\|D_{t}^{k+1}u^{j}\|_{L^{p}(\mathbb{R}_{+;}\mathcal{L} ^{p,\lambda,s+t_{j}-k-1}(\mathbb{R}^{n-1}))}\Big\} \\ & \leq C\|u^{j}\|_{W^{t_{j},p}(\mathbb{R}_{+;}\mathcal{L} ^{p,\lambda,s}(\mathbb{R}^{n-1}))} \end{aligned} \label{332} \end{equation} To estimate $\|D_{t}^{t_{j}}u^{j}\|_{\mathcal{L}^{p,\lambda ,s}(\mathbb{R}_{+}^{n})}$, we return again to the equation $L^{0}u=f$, (\ref{3214}), to get \[ D_{t}^{T}u=A^{-1}D_{t}^{-S}f-A^{-1}V \] and then with the aid of (\ref{332}), \begin{equation} \begin{aligned} &\|D_{t}^{T}u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda ,s}(\mathbb{R}_{+}^{n})}\\ &={\sum_{j=1}^{N}} \|D_{t}^{t_{j}}u^{j}\|_{\mathcal{L}^{p,\lambda,s} (\mathbb{R}_{+}^{n})}\\ &\leq C\Big \{{\sum_{i=1}^{N}} \|D_{t}^{-s_{i}}(L^{0}u)^{i}\|_{\mathcal{L}^{p,\lambda ,s}(\mathbb{R}_{+}^{n})}+ {\sum_{\substack{k+|\alpha'| =t_{j}\\0\leq k\leq t_{j}-1}}} \|D_{x'}^{\alpha'}D_{t}^{k}u^{j}\| _{\mathcal{L}^{p,\lambda,s}(\mathbb{R}_{+}^{n})}\Big\}\\ & \leq C\Big\{ {\sum_{i=1}^{N}} \|(L^{0}u)^{i}\|_{\mathcal{L}^{p,\lambda,s-s_{i}} (\mathbb{R}_{+}^{n})}+{\sum_{j=1}^{N}} \|u^{j}\|_{W^{t_{j},p}( \mathbb{R}_{+;}\mathcal{L} ^{p,\lambda,s}(\mathbb{R}^{n-1})) }\Big\} \end{aligned} \label{3300} \end{equation} The lemma is proved for $0\leq s<1$. For the general case $s\geq0$, we write $s=q+r$ with $q\in\mathbb{N}$ and $0\leq r<1$, and we do an induction on $q.$This is true for the case $q=0$. Assuming that the estimation (\ref{331}) is true for any $q$, we show that it holds for $q+1$. Let $K$ be a compact set of $\overline{\mathbb{R}_{+}^{n}}$ and $u\in\prod_{j=1}^{N} \mathcal{L}^{p,\lambda,s+1+t_{j}}(\mathbb{R}_{+}^{n})$ with $\mathop{\rm supp}u\subset K$. We remark that $u^{j}\in\mathcal{L}^{p,\lambda,s+1+t_{j}}(\mathbb{R}_{+}^{n})$ if and only if $u^{j}\in\mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n})$ and $D_{x_{k}}u^{j}\in\mathcal{L}^{p,\lambda,s+t_{j}}(\mathbb{R}_{+}^{n})$ for any $1\leq k\leq n-1$, and $D_{t}^{t_{j}}u^{j}\in\mathcal{L}^{p,\lambda ,s+1}(\mathbb{R}_{+}^{n})$. Moreover we have \begin{equation} \begin{aligned} &\|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+1+t_{j} }(\mathbb{R}_{+}^{n})} \\ &\leq C\Big\{ \|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda, s+t_{j}}(\mathbb{R}_{+}^{n})}\\ &\quad + \sum_{k=1}^{n-1}\|D_{x_{k}}u\| _{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j} }(\mathbb{R}_{+}^{n})}+\|D_{t}^{T}u\|_{\prod_{j=1} ^{N}\mathcal{L}^{p,\lambda,s+1}(\mathbb{R}_{+}^{n})}\Big\} \end{aligned} \label{fond1} \end{equation} where $D_{t}^{T}u$ is defined in (\ref{3214}). By the induction hypothesis, \begin{equation} \|u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j} }(\mathbb{R}_{+}^{n})} \leq C_{K}\{\|L^{0}u\|_{\prod_{i=1}^{N}\mathcal{L}^{p,\lambda,s-s_{i}} (\mathbb{R}_{+}^{n})}+\|u\|_{\prod_{j=1}^{N}W^{t_{j},p}(\mathbb{R} _{+};\mathcal{L}^{p,\lambda,s}(\mathbb{R}^{n-1}))}\} \label{334} \end{equation} We substitute in (\ref{334}) $u$ by $D_{x_{k}}u$, $1\leq k\leq n-1$, and the coefficients of $L^{0}$ are constant, so \begin{equation} \begin{aligned} &\|D_{x_{k}}u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+t_{j}} (\mathbb{R}_{+}^{n})}\\ &\leq C_{K}\Big\{\|L^{0}u\|_{\prod_{i=1}^{N}\mathcal{L}^{p,\lambda,s-s_{i} +1}(\mathbb{R}_{+}^{n})}+\|u\|_{\prod_{j=1}^{N} W^{t_{j},p}(\mathbb{R}_{+};\mathcal{L}^{p,\lambda,s+1}(\mathbb{R} ^{n-1}))}\Big\} \end{aligned} \label{335} \end{equation} In the same way as for (\ref{3300}), with $s+1$ instead of $s$, we return to the equation $L^{0}u=f$ to get \begin{equation} \begin{aligned} &\|D_{t}^{T}u\|_{\prod_{j=1}^{N}\mathcal{L}^{p,\lambda,s+1} (\mathbb{R}_{+}^{n})}\\ &\leq C\Big\{{\sum_{i=1}^{N}}\|(L^{0}u)^{i}\|_{\mathcal{L} ^{p,\lambda,s-s_{i}+1}(\mathbb{R}_{+}^{n})}+{\sum_{j=1}^{N}} \|u^{j}\|_{W^{t_{j},p}(\mathbb{R}_{+;}\mathcal{L} ^{p,\lambda,s+1}(\mathbb{R}^{n-1}))}\} \end{aligned}\label{3360} \end{equation} Finally we substitute inequalities (\ref{334}), (\ref{335}) and (\ref{3360}) in (\ref{fond1}) to get (\ref{331}) for $s+1=q+1+r$. \end{proof} Note that Theorem \ref{141} is a consequence of Proposition \ref{prop} and Lemma \ref{normal}. \subsection*{Acknowledgements} the author would like to thank the anonymous referee for his/her valuable comments regarding elliptic systems. \begin{thebibliography}{00} \bibitem{a} P. Acquistapace, \textit{On BMO regularity for linear elliptic systems}, Ann.di Mathematica pura ed applicata (IV), Vol. \textbf{CLXI} (1992), pp. 231-269. \bibitem{adn} S. Agmon - A. Douglis - L. Nirenberg, \textit{Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary condition II}, Comm. Pure Appl. Math., Vol \textbf{XVII} (1964), pp. 35-92. \bibitem{bc} P. Bolley - J. Camus, \textit{Etude d'une classe de syst\`{e}mes d'op\'{e}rateurs elliptiques et d\'{e}g\'{e}n\'{e}r\'{e}s}, Publications des s\'{e}minaires de math\'{e}matiques de l'Universit\'{e} de Rennes I, (1973). \bibitem{c2} S. Campanato, \textit{Equazioni ellittiche del II ordine e spazi }$L^{2,\lambda}$, Ann. math. pura.\ Appl. \textbf{69 }(1965), pp. 321-380. \bibitem{c3} S. Campanato, \textit{Sistemi ellittici in forma divergenza. Regolarit\`{a} all'interno}, Quaderni Sc. Norm. Sup. Pisa (1980). \bibitem{dn} A. Douglis - L. Nirenberg, \textit{Interior estimates for elliptic systems of partial differential equations}, Comm. Pure Appl. Math., Vol. 8, pp. 503-538 (1955). \bibitem{e4} A. El Baraka, \textit{Optimal }BMO\textit{ and } $\mathcal{L}^{p,\lambda}$\textit{ estimates near the boundary for solutions of a class of degenerate elliptic problems}, In: ''\textit{Partial differential equations}, Proc. Conf. Fez (Morocco, 1999). Lecture Notes Pure Appl. Math. 229, New York, Marcel Dekker (2002), 183-193. \bibitem{e6} A. El Baraka, \textit{An embedding theorem for Campanato spaces}, Electron. J. Diff. Eqns., Vol. 2002 (2002), No. 66, pp. 1-17. \bibitem{az} A. El Baraka, \textit{Optimal BMO and $\mathcal{L}^{p,\lambda}$ estimates for solutions of elliptic boundary value problems}, Arab. J. Sci. Eng., Sect. A Sci., Vol. 30 (2005), No. 1, pp. 85-116. at: http://www.kfupm.edu.sa/publications/ajse/articles/301A\_07P.pdf \bibitem{cd} A. El Baraka, \textit{Littlewood-Paley characterization for Campanato spaces}, J. Funct. Spaces Appl., Vol. 4, No. 2 (2006), pp. 193-220. \bibitem{fj} M. Frazier - B. Jawerth, \textit{A discrete transform and applications to distribution spaces, }J. Funct. Anal., 93, N$^{0}$ 1, (1990), pp. 34-170. \bibitem{g} M. Giaquinta, \textit{Introduction to regularity theory for nonlinear elliptic systems,} Birkh\"{a}user, (1993). \bibitem{lm} J. L. Lions - E. Magenes, \textit{Probl\`{e}mes aux limites non homog\`{e}nes,} Dunod, Tome 1, (1968). \bibitem{st} G. Stampacchia, \textit{The spaces $L^{p,\lambda},N^{p,\lambda}$ and interpolation} Ann. Sc. Norm. Sup. Pisa (3), 19, (1965). \bibitem{str2} R. S. Strichartz, \textit{Traces of BMO-Sobolev spaces}, Proc. Amer. Math. Soc. 83, 3, (1981) 509-513. \bibitem{tr}H. Triebel, \textit{Theory of function spaces}, Birkh\"{a}user, (1983). \bibitem{tr2}H. Triebel, \textit{Theory of function spaces II}, Birkh\"{a}user, (1992). \bibitem{y} A. Youssfi, \textit{Regularity properties of commutators and BMO-Triebel-Lizorkin spaces}, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 795--807. \end{thebibliography} \end{document}