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AN AGE-STRUCTURED MODEL OF CANNIBALISM

ROBERT MAŘÍK, LENKA PŘIBYLOVÁ

Abstract. We investigate the predator-prey model with cannibalism in the
predator population, suggested by Magnusson [5] in 1995. We explore the

model by a theory of bifurcations, based mainly on the results of Bautin.

Among others, we show that the limit cycle appearing in the model due to the
Andronov-Hopf bifurcation may be stable or unstable.

1. Introduction

Magnusson [5] introduced the predator-prey system with age structure and can-
nibalism in the predator population in the form

Ẋ = AY − µaX + γSXY + V CXZ,

Ẏ = λX −AY − µjY − SXY,

Ż = LZ −QZ2 − V ZX,

(1.1)

where X is the population of adult predators, Y the population of juvenile preda-
tors, Z the population of prey, T is the time and the dot denotes derivative with
respect to T .

In model (1.1) the Lotka–Volterra type of interspecific interaction is considered.
The parameters µa and µj describe the natural death rate of the adult and juvenile
predators, respectively. The constant λ is the birth rate of predators and A is
the rate at which juvenile predators mature into adults. The term V XZ describes
the rate at which adult predators kill the prey and the constant C ∈ (0, 1) is an
efficiency of conversion of sources obtained by killing the prey to the increase of the
fitness of population of adult predators. In a similar way, the term SXY is the rate
at which adult predators kill juvenile predators and the corresponding increase of
fitness of adult predators is proportional to this term by the constant γ ∈ (0, 1).

Remark that the population of prey is subjected to the logistic growth in the
absence of predators. Magnusson in [5] used Q = 0 and proved that for suitable
values of parameter S an Andronov-Hopf bifurcation occurs and the increase of
the cannibalism rate can destabilize the system. This result is in the same paper
extended to small values of Q, i.e. for the logistic growth with large carrying
capacity, when the competition in the prey population is not significant.
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Later Kaewmanee and Tang [3] reexamined model (1.1) (with general Q) and
obtained similar results.

As pointed out already in [2], it is usually much easier to show that the Andronov-
Hopf bifurcation appears in a particular model than to distinguish whether the
periodic solution is stable or whether it is unstable and does not describe a state
which may really appear in nature. In both papers [3], [5], authors prove that the
Andronov-Hopf bifurcation takes place, but the stability of the limit cycle is not
analyzed. All authors provide numerical results showing the stable limit cycle and
in this sense some of the results are rough.

The aim of this paper is to continue in the study of dynamical system (1.1) and
to obtain deeper results concerning its stability, topological properties and types
of bifurcations (especially stability and uniqueness of limit cycles using Lyapunov
coefficients and theory developed in [1, 4]). Among others, we focus our attention
to more parameters, not only to the parameter S. In order to make the compu-
tations manageable we consider Q = 0 (as in [5]), i.e., we suppose no intraspecific
competition in the prey population.

The paper is organized as follows. The next chapter recalls some facts concerning
the theory of bifurcations. The Magnusson’s mathematical model is studied in
Section 3. Section 4 contains some numeric results and a discussion about possible
phase portraits for various values of parameters in the model. Among others, we
show that an unstable limit cycle exists for suitable values of parameters.

2. Preliminaries

2.1. Mathematical models. Many problems of natural science can be solved
using mathematical models. Some of deterministic models can be described by
dynamical systems of autonomous differential equations. These systems contain
studied variables and coefficients given by internal attributes of the problem or
by the external conditions. Values of this type (constant according to time) are
parameters, since the studied variables and behavior of the whole dynamical system
depend on them. General mathematical model can be represented by the following
system

ẋ = F (x, α), (2.1)
where x ∈ Rn are studied phase variables, α ∈ Rm are parameters and F is suffi-
ciently smooth.

2.2. Bifurcation diagrams and normal forms. Changing parameters α, the
phase portrait of the system (2.1) changes. There are two possibilities of the change:
the phase portrait stays topologically equivalent to the previous one or not. Gen-
erally the space of parameters can be divided into structurally stable domains with
topologically equivalent phase portraits. This division together with related phase
portraits is called a bifurcation diagram of the system (2.1). Structurally unstable
boundaries correspond with some particular type of bifurcation that can be found
by transforming the system (2.1) to its normal form. Some typical systems (al-
ready in the normal form) describing particular types of bifurcations were studied
as model systems for many types of bifurcations.

2.3. Andronov-Hopf bifurcation. Now let us turn our attention to the bifurca-
tion which will be proved in the age-structured model of cannibalism, the Andronov-
Hopf bifurcation. First of all, recall some basic facts about this bifurcation. This
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bifurcation is related to an existence of a pair of purely imaginary eigenvalues. By
crossing the imaginary axis and changing the real part of eigenvalues from negative
to positive value a stable focus changes to an unstable focus. This change is ac-
companied by a birth of a cycle. The model system for Andronov-Hopf bifurcation

ẋ1 = µx1 − x2 − x1(x2
1 + x2

2)

ẋ2 = x1 + µx2 − x2(x2
1 + x2

2)
(2.2)

possesses a unique stationary point x1 = 0 = x2 for every real µ. The eigenvalues
at this stationary points are λ = µ ± i. Introducing complex-valued variable z =
x1 + ix2 the system (2.2) takes the form ż = (µ+ i)z−z|z|2 which becomes in polar
coordinates to a system

ρ̇ = ρ(µ− ρ2)

φ̇ = 1.
(2.3)

From here it follows that the stationary point is a stable focus for µ < 0 and an
unstable focus for µ > 0. If µ > 0 then a solution ρ =

√
µ presents a limit cycle

around the origin.

Figure 1. Hopf-Andronov bifurcation.

An important problem is whether the limit cycle stable or unstable. One of the
concepts which enables us to decide which of these two possibilities really arises
is the concept of Lyapunov coefficient l1, shortly introduced in the following para-
graphs.

Lemma 2.1. Consider general one-parameter system

ẋ = f(x, µ), x ∈ R2, µ ∈ R (2.4)

which possesses a stationary point x = 0 for every sufficiently small |µ| and let

λ1,2(µ) = ψ(µ)± iω(µ),

where ψ(0) = 0, ω(0) = ω0 > 0, be the eigenvalues of this stationary point.
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There exists an invertible transformation depending on the parameter µ which
converts system (2.4) into the complex form

ż =
(
ψ(µ) + iω(µ)

)
z + c1(µ)z|z|2 +O(|z|4)

Remark 2.2 (stability of limit cycle in Andronov-Hopf bifurcation). The number

l1(µ) =
Re c1(µ)
ω(µ)

− ψ(µ)
Im c1(µ)
ω2(µ)

is called the first Lyapunov coefficient. The sign of l1(0) determines stability or
instability of the limit cycle. A stable limit cycle appears near the equilibrium in
the case l1(0) < 0 for µ close to zero. This process is referred as “supercritical bifur-
cation”, since an equilibrium at stationary point is replaced by small oscillations.
On the contrary, if l1(0) > 0, then “subcritical bifurcation” takes place, since the
stable equilibrium enclosed by an unstable limit cycle changes to an unstable focus.

Bautin [1] introduced the terms “subcritical” and “supercritical” bifurcation
and derived formulas for the first Lyapunov coefficient for systems of two and three
equations with analytical coefficients. These formulas are too long to repeat them
on this place. For some special systems these formulas take simpler forms than
presented in [1].

Another approach which enables to distinguish between the stable and unstable
limit cycle is presented in [2]. In this book the first Lyapunov coefficient is replaced
by the quantity µ2 which is the first nonvanishing term of an infinite series, see [2,
Chapter 1] for more details.

Finally, recall that the period of the limit cycle approaches 2π
ω(0) as the parameter

approaches the critical value.

2.4. Shoshitaishvili theorem.

Lemma 2.3. Let for the system (2.1) be α ∈ R1 and x = 0 be a stationary point
for α = 0 with n0 6= 0 purely imaginary eigenvalues. Then there exists a local
invariant manifold W c(α) in the neighbourhood of zero. The manifold is attractive,
if all other eigenvalues have positive real parts.

The system (2.1) can be restricted to W c(α) for small |α| by a local projection of
W c(α) to T c (generalized eigenspace corresponding to the union of purely imaginary
eigenvalues). On this so-called central manifold, the system (2.1) can be represented
in the new coordinates by a system

u̇ = Φ(u, α), u ∈ Rn0 .

Theorem 2.4 (Shoshitaishvili theorem). The system (2.1) is locally topologically
equivalent to a suspension of the central manifold, which can be represented by a
system

u̇ = Φ(u, α),
ẏ = −y,
ż = z,

where u ∈ Rn0 , y ∈ Rn− and z ∈ Rn+ (n± is the number of eigenvalues with positive
or negative real parts).

For the proof of the above theorem, see [6].
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3. Mathematical model

Let us return our attention to the system (1.1). First of all, we non-dimensionalise
the system and obtain a smaller amount of parameters. Remark that we are inter-
ested especially in the interspecific parameters V and S and from this reason we
perform the transformation which preserves these parameters.

Lemma 3.1. Transformation X = A
γ x, Y = A

γ2 y, Z = A
Cγ z, T = γ

A t transforms
the dynamical system (1.1) with Q = 0 into

ẋ = y −mx+ Sxy + V xz,

ẏ = nx− oy − Sxy,

ż = pz − V xz,

(3.1)

where the dot, ˙ represents d
dt , m = µaγ

A > 0, n = λγ2

A > 0, o = γ
(
1 + µj

A

)
> 0,

p = Lγ
A > 0.

For o 6= 1 and m 6= n, System (3.1) possesses three stationary points S0 =
[x0, y0, z0], S1 = [x1, y1, z1] and S2 = [x2, y2, z2], where

x0 =
p

V
, y0 =

np

oV + pS
, z0 =

(mo− n)V + p(m− n)S
V (oV + pS)

, (3.2)

x1 =
om− n

S(n−m)
, y1 =

1
S
· om− n

o− 1
, z1 = 0, (3.3)

x2 = y2 = z2 = 0. (3.4)

The statements of this lemma follow immediately.
From a practical point of view, the most interesting stationary point is the point

S0.
The absence of prey in the stationary point S1 is explained in [3] and [5] as

the existence of an alternative food for the predator. This alternative food is not
incorporated in our model. However, the existence of an alternative food is not
necessary for real interpretation of the system. Particularly, there are lakes in
nature with predator fishes only. In such ecosystems, the juvenile predators are the
major food for adults.

In fact, the set z = 0 is an invariant set of the system. In this set system (3.1)
becomes

ẋ = y −mx+ Sxy,

ẏ = nx− oy − Sxy
(3.5)

and describes the states with no prey. However, the main aim is to study the steady
states in which all populations are present. Therefore we focus our attention to the
stationary point S0.

3.1. Stationary point S0. We will focus our attention to the stationary point S0.
This point is in the first octant if

(mo− n)V + p(m− n)S > 0. (3.6)

This condition covers three mutually different cases
(1) mo− n > 0, m− n > 0 and V , S are arbitrary positive numbers
(2) mo− n > 0, m− n < 0 and V > S(n−m)p

mo−n

(3) mo− n < 0, m− n > 0 and V < S(n−m)p
mo−n
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The transformation

x′ = x− x0,

y′ = y − y0,

z′ = z − z0

moves the stationary point S0 into the origin in new coordinates. In the new
variables [x′, y′, z′] system (3.1) reads as

ẋ′ = y′ −mx′ + S(x′y′ + x′y0 + y′x0) + V (x′z′ + x′z0 + x0z
′),

ẏ′ = nx′ − oy′ − S(x′y′ + x′y0 + x0y
′),

ż′ = pz′ − V (x′z′ + x′z0 + x0z
′),

(3.7)

where dot is the derivative with respect to t. The Jacobi matrix of system (3.7)
evaluated at the origin is

J(0, 0, 0) =

−m+ Sy0 + V z0 1 + Sx0 V x0

n− Sx0 −o− Sx0 0
−V z0 0 p− V x0


=

 − y0
x0

1 + Sx0 V x0

o y0
x0

−nx0
y0

0
−V z0 0 0

 (3.8)

and the characteristic polynomial of this matrix is

|J(0, 0, 0)− νI| =

∣∣∣∣∣∣
− y0

x0
− ν 1 + Sx0 V x0

o y0
x0

−nx0
y0
− ν 0

−V z0 0 −ν

∣∣∣∣∣∣ = −(ν3 +Aν2 +Bν + C), (3.9)

where

A =
y0
x0

+ n
x0

y0
,

B = n− o
y0
x0

(1 + Sx0) + V 2x0z0,

C = V 2n
x2

0z0
y0

.

Consider the most important case, when the point S0 is in the interior of the
first octant. In this case clearly A > 0 and C > 0. Let us examine the expression
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AB − C. An evaluation shows that

AB − C =
( y0
x0

+ n
x0

y0

)(
n− o

y0
x0

(1 + Sx0) + V 2x0z0

)
− V 2n

x2
0z0
y0

=
y0
x0

(
n− o

y0
x0

(1 + Sx0) + V 2x0z0

)
+ n2x0

y0
− no(1 + Sx0)

=
[
1 + n

(x0

y0

)2][
n− o

y0
x0

− Soy0
] y0
x0

+ V 2y0z0

=
[
1 + n

(x0

y0

)2][
Sy0 − Soy0

] y0
x0

+ V 2y0z0

=
[
1 + n

(x0

y0

)2]y2
0

x0
S(1− o) + V 2y0z0

=
1
x0

[
(y2

0 + nx2
0)S(1− o) + V py0z0

]
.

(3.10)

Hence if o < 1, then AB − C is positive. In this case all real parts of eigenvalues
are negative and the stationary point S0 is stable.

The only possibility which allows the point S0 become to be unstable is for o > 1.
Under this condition the point S0 lies in the first octant if and only if either

mo > m > n,

or
mo > n > m and V > Sp

n−m

mo− n
.

3.2. Case o > 1. We have to write the expression AB −C in terms of parameters
of system (3.1) to obtain correct conclusions concerning the influence of parameters
on stability. (Remember that all x0, y0 and z0 depend on the parameters and hence
(3.10) cannot be used to obtain correct conclusions. This step seems to be omitted
in [3].) A direct computation shows that the expression AB −C can be written in
the form of the product of a positive factor and the three-degree polynomial P (·)
in variable V

S as follows:

AB − C =
pnS3

V (oV + pS)2
P

(V
S

)
, (3.11)

where

P (τ) = (mo−n)τ3+
[
p(m−n)+(1−o)(n+o2)

)
]τ2+2op(1−o)τ+(1−o)p2 . (3.12)

According to the Descarte’s rule of signs, the polynomial P (τ) possesses a unique
positive zero. An evaluation shows that P

(
p n−m

mo−n

)
is negative. Really

P
(
p
n−m

mo− n

)
=p3 (n−m)3

(mo− n)2
+

[
p(m− n) + (1− o)(n+ o2)

] (n−m)2

(mo− n)2
p2

+ 2op(1− o)p
n−m

mo− n
+ (1− o)p2

=(1− o)p2
[
(n+ o2)

(n−m)2

(mo− n)2
+ 2o

n−m

mo− n
+ 1

]
=(1− o)p2

[
n

(n−m)2

(mo− n)2
+

(
o
n−m

mo− n
+ 1

)2]
.

(3.13)

We summarize the above computations in the following theorem.
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Theorem 3.2. Let either mo > m > n or mo > n > m hold. Denote by τk the
unique positive zero of the polynomial (3.12).

(1) If V
S > τk, then all real parts of eigenvalues of Jacobi matrix at S0 are

negative and S0 is a stable singular point in the first octant.
(2) If either

mo > m > n and
V

S
< τk

or
mo > n > m and p

n−m

mo− n
<
V

S
< τk,

then at least one of the eigenvalues of Jacobi matrix at S0 has a positive
real part and S0 is an unstable singular point in the first octant.

(3) If mo > n > m and V
S < p n−m

mo−n , then S0 is a singular point outside the
first octant.

Proof. From the assumptions it follows that o > 1. From equality (3.13) it follows
that τk > p n−m

mo−n . Now Theorem follows from (3.11), (3.13) and from the well
known Ruth–Hurwitz criterion. �

Remark 3.3. Note that if o < 1, then AB−C is always positive and the point S0

is stable. No bifurcation occurs if o < 1.
If n > mo > m, then z0 < 0 for all positive values of V and S and the point z0

lies outside the first octant.
If mo > n > m, then V

S > p n−m
mo−n is a necessary and sufficient condition for

min(x0, y0, z0) > 0.

4. Andronov-Hopf bifurcation of the system (3.1)

In this section we consider system (3.1) with positive parameters m,n, p, S, V
and o > 1 (according to the previous remark). We make a natural assumption
min(x0, y0, z0) > 0.

Corollary 4.1. Let τk be the zero of the polynomial (3.12) for arbitrary fixed
positive parameters m,n, o, p, S. Then Vk = τkS is the critical value of Andronov-
Hopf bifurcation of the system (3.1) for the stationary point S0.

Proof. Follows immediately from the Theorem (3.2), since the characteristic poly-
nomial (3.9) has two purely imaginary eigenvalues, if AB − C = 0 (notice that
A > 0 and C > 0), that is while P (τ) = 0. �

Remark 4.2. Both the supercritical and the subcritical bifurcation types occur in
the system (3.1). The type of Andronov-Hopf bifurcation is determined by the first
Lyapunov coefficient l1, as Remark 2.2 shows. This coefficient can be calculated
numerically for given critical parameters.

For example, let m = 7, n = 3, o = 3, p = 5 and S = 1. The polynomial (3.12)
has a unique zero τk

.= 2.251 and Vk = τk is a critical value of Andronov-Hopf
bifurcation. Following [1, Chapter III], we transfer the stationary point S0 to the
origin and find that l1

.= −1.683π. In this case the supercritical bifurcation takes
place and the existence of a stable limit cycle in the neighborhood of an unstable
focus for V < Vk near Vk is proved. Figure 2 shows parts of two ω-limit trajectories
(with initial conditions [x(0) = 10, y(0) = 1, z(0) = 14] and [x(0) = 1, y(0) =
1.5, z(0) = 2]) converging to the central manifold for V = 1.9. The limit cycle lies
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on the central manifold in the free space between them. This free space arose due
to stoping calculating the trajectories.

Figure 2. A stable limit cycle.

On the other hand, let m = 4, n = 3, o = 3, p = 5 and S = 1. The polynomial
(3.12) has a unique zero τk

.= 4.079 and Vk = τk is a critical value of Andronov-
Hopf bifurcation. Calculating the first Lyapunov coefficient for Vk we get l1

.=
0.317π, so the subcritical bifurcation takes place. In this case, there exists an
unstable limit cycle in the neighborhood of a stable focus for V > Vk near Vk.
Figure 3 shows parts of two trajectories for V = 5.5. One trajectory (with initial
conditions [x(0) = 2, y(0) = 1, z(0) = 2]) is converging to the stable focus S0 on
the central manifold and the other is a stable separatrix (with initial conditions
[x(0) = 2, y(0) = 2, z(0) = 0], z = 0 is an invariant set) of the saddle point in the
origin. These trajectories are very close to each other and they are converging to
the central manifold, so we can suppose that the unstable limit cycle is somewhere
in between on the central manifold (unlike the planar phase space, in the 3d phase
space it is very hard to find the unstable limit cycle by drawing trajectories).

In view of the above computations, we can see that another type of bifurcation
must take place here. Changing parameter m from 7 to 4 and counting the critical
value Vk we got two qualitatively different phase portraits. You can verify that
for m .= 4.254, the critical value Vk

.= 3.792 and l1 = 0. The figure 4 shows the
trajectories near the center (initial conditions [x(0) = 2, y(0) = 2, z(0) = 2], [x(0) =
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Figure 3. An unstable limit cycle.

2, y(0) = −2, z(0) = 2] [x(0) = 2, y(0) = −2, z(0) = 1], [x(0) = 2, y(0) = 1, z(0) =
2], [x(0) = 2, y(0) = 2, z(0) = 0] ).

This is so called generalized Hopf (Bautin) bifurcation and more limit cycles can
arise in the neighbourhood of the stationary point S0.

Conclusion. We investigated the system introduced by Magnusson [5] as a model
of cannibalism. We derived the conditions under which the Andronov-Hopf bifur-
cation takes place. These conditions are derived in terms of the parameters of the
original model and among others, we provide an equation which describes the crit-
ical value for which the bifurcation occurs. Using theory of Bautin we proved that
both subcritical and supercritical bifurcations may take place in this model and
hence the limits cycle enclosing the stationary point need not to be stable. This
phenomenon was not mentioned in any of previous works on this system.
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