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SOME PROPERTIES OF SHEAF-SOLUTIONS OF SHEAF FUZZY
CONTROL PROBLEMS

NGUYEN DINH PHU, TRAN THANH TUNG

Abstract. In this paper we present some results on the dependence of sheaf-
solutions of sheaf fuzzy control problems on variation of fuzzy controls.

1. Introduction

The problems of differential equations, differential inclusions and control differ-
ential equations have been studying in both theory and application. See [1, 11, 12,
13, 18]. The concept sheaf solution of classical control problems was introduced in
[10]. Instead of studying each solution, one studies sheaf-solution, that means, a set
of solutions. In [14, 15, 16], we presented some results of sheaf-solutions in fuzzy
control problems whose variables are crisp and controls are fuzzy. In this paper,
we study the fuzzy control problems whose variables and controls are fuzzy sets
and the dependence of sheaf-solutions of sheaf fuzzy control problems on variation
of fuzzy controls. The paper is organized as follows: Section 2 reviews some con-
cepts of fuzzy sets, Hausdorff distance and fuzzy diferential equations. The sheaf
fuzzy control problem and some new results of the dependence of sheaf-solutions
on variation of fuzzy controls are presented in Section 3.

2. Preliminaries and notation

We recall some notation and concepts which were presented in detail in [4]-[7],
[9]. Let Kc(Rn) denote the collection of all nonempty, compact, convex subsets of
Rn. Let A,B be two nonempty bounded subsets of Rn. The Hausdorff distance
between A and B is defined as

D[A,B] = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖}. (2.1)

Note that Kc(Rn) with the metric D is a complete metric space. See [17]. It is
known that if the space Kc(Rn) is equipped with the natural algebraic operations of
addition and nonnegative scalar multiplication, then Kc(Rn) becomes a semilinear
metric space which can be embedded as a complete cone into a corresponding
Banach space.

Set En = {u : Rn → [0, 1] : u satisfies (i)–(iv) stated below }
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(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1;
(ii) u is fuzzy convex, that is, for 0 ≤ λ ≤ 1

u(λx1 + (1− λ)x2) ≥ min{u(x1), u(x2)};

(iii) u is upper semicontinuous;
(iv) [u]0 = cl{x ∈ Rn : u(x) > 0} is compact. The element u ∈ En is called a

fuzzy number or fuzzy set.

For 0 < α ≤ 1, the set [u]α = {x ∈ Rn : u(x) ≥ α} is called the α-level set. From
(i)-(iv), it follows that the α-level sets are in Kc(Rn), for 0 ≤ α ≤ 1.
Let us denote

D0[u, v] = sup{D
[
[u]α, [v]α

]
: 0 ≤ α ≤ 1}

the distance between u and v in En, where D
[
[u]α, [v]α

]
is Hausdorff distance

between two sets [u]α, [v]α of Kc(Rn). Then (En, D0) is a complete space. Some
properties of metric D0 are as follows.

D0[u + w, v + w] = D0[u, v],

D0[λu, λv] =| λ | D0[u, v],

D0[u, v] ≤ D0[u, w] + D0[w, v],
(2.2)

for all u, v, w ∈ En and λ ∈ R. Let us denote θn ∈ En the zero element of En as
follows

θn(z) =

{
1 if z = 0̂,

0 if z 6= 0̂,

where 0̂ is the zero element of Rn.
Suppose that Q,G ⊂ El for some positive integer l. Here is some useful notation:

d∗[Q,G] = sup{D0[q, g] : q ∈ Q, g ∈ G},
diam[Q] = sup{D0[q, q′] : q, q′ ∈ Q},

d[Q] = d∗[Q, θl],

(2.3)

where θl is zero element of El which is regarded as a one point set. Let u, v ∈ En.
The set z ∈ En satisfying u = v+z is known as the geometric difference of the sets u
and v and is denoted by the symbol u−v. The mapping F : R+ ⊃ I = [t0, T ] → En

is said to have a Hukuhara derivative DHF (τ) at a point τ ∈ I, if

lim
h→0+

F (τ + h)− F (τ)
h

and lim
h→0+

F (τ)− F (τ − h)
h

exist and are equal to DHF (τ). Here limits are taken in the metric space (En, D0).
If F : I → En is continuous, then it is integrable and∫ t2

t0

F (s)ds =
∫ t1

t0

F (s)ds +
∫ t2

t1

F (s)ds. (2.4)
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If F,G : I → En are integrable, λ ∈ R, then some properties below hold∫ t

t0

(F (s) + G(s))ds =
∫ t

t0

F (s)ds +
∫ t

t0

G(s)ds; (2.5)∫ t

t0

λF (s)ds = λ

∫ t

t0

F (s)ds, λ ∈ R, t0 ≤ t ≤ T ; (2.6)

D0

[ ∫ t

t0

F (s)ds,

∫ t

t0

G(s)ds
]
≤

∫ t

t0

D0

[
F (s), G(s)

]
ds. (2.7)

Let F : I → En be continuous. Then integral
∫ t

t0
F (s)ds is differentiable and

DHG(t) = F (t).
Recently, the study of fuzzy differential equation (FDE)

DHx = f(t, x(t)), x(t0) = x0 ∈ En,

where f ∈ C[R+×En, En], and t ∈ R+, x(t) ∈ En has gained much attention. Some
important results on the existence and comparison of solutions of FDE have been
obtained by Prof. V. Lakshmikantham and other authors in [2, 3], [6]- [8] and [9].

3. Main results

We consider the initial valued problem (IVP) for a fuzzy control differential
equation (FCDE) as follows

DHx = f(t, x(t), u(t)), x(t0) = x0 ∈ En, (3.1)

where f ∈ C[R+×En×Ep, En], t ∈ R+, state x(t) ∈ En and fuzzy control u(t) ∈ Ep.
The function u : I → Ep is integrable, is called an admissible control. Let

U ⊂ Ep be the set of all admissible fuzzy controls. The mapping x ∈ C1[I, En] is
said to be a solution of (3.1) on I if it satisfies (3.1) on I. Since x(t) is continuously
differentiable, we have

x(t) = x0 +
∫ t

t0

DHx(s)ds, t ∈ I.

Thus, we associate with the initial value problem (IVP) (3.1) the function

x(t) = x0 +
∫ t

t0

f(s, x(s), u(s))ds, t ∈ I (3.2)

where the integral is the Hukuhara integral. Observe that x(t) is a solution of (3.1)
if and only if it satisfies (3.2) on I.

In [16], the authors proved the following theorem (which is an adaptation of
Theorems 4.1-4.2 of the set differential equations in [6] to FCDE) on the existence
of solutions of FCDE.

Theorem 3.1 ([16]). Assume that f ∈ C[R+ × En × Ep, En] and

(i) D0

[
f(t, x(t), u(t)), θn

]
≤ g(t, D0[x(t), θn]) for (t, x, u) ∈ I×En×U , where

g ∈ C[I × R+, R+], g(t, w) is nondecreasing in (t, w).
(ii) The maximal solution r(t, w0) of the scalar differential equation

w′ = g(t, w), w(0) = w0 ≥ 0 exists on I.
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Then there exists a solution x(t) = x(t, t0, x0, u(t)) to (3.1) which satisfies

D0[x(t), x0] ≤ r(t, w0)− w0, t ∈ I,

where w0 = D0[x0, θ
n], u(t) ∈ U .

In [10], the author presented the concept of sheaf-solution of a classical control
differential equation. Instead of studying each solution, one studies sheaf-solution,
that means, a set of solutions. In this paper, we use this concept for FCDE.

Definition 3.1. The sheaf-solution (or sheaf-trajectory) of (3.1) which gives at
the time t a set

Ht,u = {x(t) = x(t, x0, u(t))− solution of (3.1) : x0 ∈ H0},
where u(t) ∈ U ⊂ Ep, t ∈ I, H0 ⊂ En.

Ht,u is called a cross− area at (t, u) (or (t, u)-cut) of the above sheaf-solution.
System (3.1) with its sheaf-solutions are called a sheaf fuzzy control problem. For
two admissible controls u(t) and ū(t), we have two sheaf-solutions whose cross-areas
are

Ht,u =
{
x(t) = x(t, x0, u(t))− solution of (3.1) : x0 ∈ H0

}
, (3.3)

H̄t,ū =
{
x̄(t) = x(t, x̄0, ū(t))− solution of (3.1) : x̄0 ∈ H̄0

}
(3.4)

where t ∈ I; u(t), ū(t) ∈ U ; H0, H̄0 ⊂ En. In this paper, instead of comparison two
sheaf-solutions, we compare their cross-areas.

An immediate consequence of Theorem 3.1 for estimate of one sheaf-solution is
the following result.

Corollary 3.1. Under assumptions of Theorem 3.1, one has

d∗[Ht,u,H0] ≤ r(t, w0)− α0

where α0 = inf{D0[x0, θ
n] : x0 ∈ H0} for all u(t) ∈ U .

Now, we consider the following assumption on f : The vector function f : R+ ×
En × Ep → En satisfies the condition

D0

[
f(t, x̄(t), ū(t)), f(t, x(t), u(t))

]
≤ c(t)

[
D0

[
x̄(t), x(t)

]
+ D0[ū(t), u(t)]

]
(3.5)

for all t ∈ I;u(t), ū(t) ∈ U ;x(t), x̄(t) ∈ En, where c(t) is a positive and integrable
on I.

Let C =
∫ T

0
c(t)dt. Because c(t) is integrable on I, it is bounded almost every-

where (a.e) by some positive constant K, that is, c(t) ≤ K a.e. t ∈ I. If we consider
the RHS of assumption (3.5) as a scalar function g, then g depends on states and
controls and the structure of g is simple. The scalar function g is used to estimate
the variation of function f whose value is in En. In the following theorem, we prove
that the solutions of (3.1) depend continuously on variation of controls and initials.

Theorem 3.2. Suppose that f is continuous and satisfies (3.5) and x̄(t), x(t) are
two solutions of (3.1) originating at different initials x̄0, x0 with controls ū(t), u(t),
respectively. Then for every ε > 0 there exists a δ(ε) > 0 such that

D0

[
x̄(t), x(t)

]
≤ ε

if
D0

[
x̄0, x0

]
≤ δ(ε) and D0[ū(t), u(t)] ≤ δ(ε) (3.6)

where t ∈ I; ū(t), u(t) ∈ U .
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Proof. The solutions of (3.1) for controls u(t) and ū(t) originating at the points x0

and x̄0, are equivalent to the following integral forms

x(t) = x0 +
∫ t

t0

f(s, x(s), u(s))ds,

x̄(t) = x̄0 +
∫ t

t0

f(s, x̄(s), ū(s))ds.

Estimating D0[x̄(t), x(t)], using (2.2) and (2.7), we get

D0[x̄(t), x(t)] ≤ D0[x̄0, x0] +
∫ t

t0

D0

[
f(s, x̄(s), ū(s)), f(s, x(s), u(s))

]
ds.

By assumption (3.5), we have

D0[x̄(t), x(t)] ≤ D0[x̄0, x0] +
∫ t

t0

c(s)
[
D0

[
x̄(s), x(s)

]
+ D0

[
ū(s), u(s)

]]
ds

≤ D0[x̄0, x0] +
∫ t

t0

c(s)D0

[
x̄(s), x(s)

]
ds + K

∫ t

t0

D0

[
ū(s), u(s)

]
ds,

(3.7)
then using D0

[
ū(t), u(t)

]
≤ δ(ε) and D0[x̄0, x0] ≤ δ(ε), we obtain

D0[x̄(t), x(t)] ≤ [1 + K(T − t0)]δ(ε) +
∫ t

t0

c(s)D0[x̄(t), x(t)]ds.

By Gronwall’s inequality, we have the estimate

D0[x̄(t), x(t)] ≤ [1 + K(T − t0)]δ(ε) exp(C).

For a given ε > 0, if we choose

0 < δ(ε) ≤ ε

[1 + K(T − t0)] exp(C)

then D0[x̄(t), x(t)] ≤ ε. The proof is complete. �

An immediate consequence of Theorem 3.2 is the following result.

Corollary 3.2. Suppose that f is continuous and satisfies (3.5) and H̄t,ū,Ht,u

are two cross-areas of sheaf-solutions of (3.1) corresponding to H̄0,H0 and controls
ū(t), u(t) ∈ U . Then for every ε > 0 there exists a δ(ε) > 0 such that

d∗
[
H̄t,ū,Ht,u

]
≤ ε

if
d∗

[
H̄0,H0

]
≤ δ(ε) and D0[ū(t), u(t)] ≤ δ(ε)

where t ∈ I; ū(t), u(t) ∈ U .

In Corollary 3.2, we remark that the sheaf-solutions of sheaf fuzzy control prob-
lem concerning fuzzy control differential equation (3.1) depend continuously on
variation of fuzzy controls and initials.

We have some theorems below on comparison two sheaf-solutions in case of
H̄0,H0, U are bounded subsets.
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Theorem 3.3. Suppose that f is continuous and satisfies (3.5) and H0, U are
bounded subsets. Then

d∗
[
H̄t,ū,Ht,u

]
≤

[
diam[H0] + K. diam[U ](T − t0)

]
exp (C)

where H̄t,ū,Ht,u are any cross-areas of sheaf-solutions of (3.1) with H̄0 = H0, for
all t ∈ I; ū(t), u(t) ∈ U .

Proof. Starting as in the proof of Theorem 3.2, we arrive at (3.7) and use (2.3),
then

D0[x̄(t), x(t)] ≤ D0[x̄0, x0] +
∫ t

t0

c(s)
[
D0

[
x̄(s), x(s)

]
+ D0

[
ū(s), u(s)

]]
ds

≤ D0[x̄0, x0] +
∫ t

t0

c(s)D0

[
x̄(s), x(s)

]
ds + K

∫ t

t0

D0

[
ū(s), u(s)

]
ds

≤ diam[H0] +
∫ t

t0

c(s)D0

[
x̄(s), x(s)

]
ds + K. diam[U ](T − t0).

Using Gronwall’s inequality, then the proof is complete. �

The following is result more general than Theorem 3.3.

Theorem 3.4. Suppose that f is continuous and satisfies (3.5) and H̄0,H0, U are
bounded subsets. Then

d∗
[
H̄t,ū,Ht,u

]
≤

[
d∗[H̄0,H0] + K. diam[U ](T − t0)

]
exp (C)

where H̄t,ū,Ht,u are any cross-areas of sheaf-solutions of (3.1), for all t ∈ I; ū(t), u(t) ∈
U .

The proof is similar the proof of Theorem 3.3.
The next comparison result provides an estimate under assumption that the struc-
ture of the scalar function g is more general than the one in (3.5), but g does not
depend on fuzzy controls.

Theorem 3.5. Assume that f ∈ C
[
I × En × Ep, En

]
and

D0

[
f(t, x̄(t), ū(t)), f(t, x(t), u(t))

]
≤ g(t, D0[x̄(t), x(t)]), (3.8)

for (t, x̄(t), ū(t)), (t, x(t), u(t)) ∈ I×En×U , where g ∈ C
[
R+×R+, R+

]
and g(t, w)

is nondecreasing in w for each t ∈ I. Suppose further that the maximal solution
r(t) = r(t, t0, w0) of scalar differential equation

w′ = g(t, w), w(t0) = w0 ≥ 0

exists for t ∈ I. Then, if x̄(t) = x̄(t, t0, x̄0, ū(t)) and x(t) = x(t, t0, x0, u(t)) are any
solutions of (3.1) such that x̄(t0) = x̄0, x(t0) = x0; x̄0, x0 ∈ En existing for t ∈ I,
one has

D0[x̄(t), x(t)] ≤ r(t, t0, w0), t ∈ I, (3.9)

provided D[x̄0, x0] ≤ w0, for all t ∈ I; ū(t), u(t) ∈ U .
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Proof. The solutions of (3.1) for controls u(t) and ū(t) originating at x0, x̄0 are
equivalent to the integral forms

x(t) = x0 +
∫ t

t0

f(s, x(s), u(s))ds,

x̄(t) = x̄0 +
∫ t

t0

f(s, x̄(s), ū(s))ds.

Set m(t) = D0

[
x̄(t), x(t)

]
, so that m(t0) = D0

[
x̄0, x0

]
≤ w0. Using the properties

(2.2), (2.7) of the metric D0, one has

m(t) = D0

[
x̄0 +

∫ t

t0

f
(
s, x̄(s), ū(s)

)
ds, x0 +

∫ t

t0

f
(
s, x(s), u(s)

)
ds

]
≤ D0

[
x̄0 +

∫ t

t0

f
(
s, x̄(s), ū(s)

)
ds, x̄0 +

∫ t

t0

fb(s, x(s), u(s)
)
ds

]
+ D0

[
x̄0 +

∫ t

t0

f
(
s, x(s), u(s)

)
ds, x0 +

∫ t

t0

f
(
s, x(s), u(s)

)
ds

]
= D0

[ ∫ t

t0

f
(
s, x̄(s), ū(s)

)
ds,

∫ t

t0

f
(
s, x(s), u(s)

)
ds

]
+ D0[x̄0, x0]

≤ m(t0) +
∫ t

t0

D0

[
f
(
s, x̄(s), ū(s)

)
, f

(
s, x(s), u(s)

)]
ds.

Then, using (3.8), we obtain

m(t) ≤ m(t0) +
∫ t

t0

g
(
s,D0[x̄(s), x(s)]

)
ds

= m(t0) +
∫ t

t0

g
(
s,m(s)

)
ds, t ∈ I.

(3.10)

Applying [8, Theorem 1.9.2], we conclude that m(t) ≤ r(t, t0, w0), t ∈ I, which
completes the proof. �

In the above theorem we can dispense with the monotone character of g(t, w) if
we employ the theory of differential inequality instead of integral inequalities. This
result and some more results on this direction will be presented in next works.

Corollary 3.3. Under the assumptions of Theorem 3.5, one has

d∗
[
H̄t,ū,Ht,u

]
≤ r(t, t0, w0), t ∈ I,

provided d∗[H̄0,H0] ≤ w0, for all ū(t), u(t) ∈ U .

It is easy to prove this corollary.
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