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DIRICHLET FORMS FOR GENERAL WENTZELL BOUNDARY
CONDITIONS, ANALYTIC SEMIGROUPS, AND COSINE

OPERATOR FUNCTIONS

DELIO MUGNOLO, SILVIA ROMANELLI

Dedicated to Angelo Favini with great admiration and friendship on his 60-th birthday

Abstract. The aim of this paper is to study uniformly elliptic operators with
general Wentzell boundary conditions in suitable Lp-spaces by using the ap-

proach of sesquilinear forms. We use different tools to re-prove analiticity and

related results concerning the semigroups generated by the above operators. In
addition, we make some complementary observations on, among other things,

compactness issues and characterization of domains.

1. Introduction

Favini, G.R. Goldstein, J.A. Goldstein, Romanelli [13] investigated the heat
equation in an open bounded domain Ω of Rn governed by the elliptic operator
A := ∇·(a∇) with general Wentzell boundary condition

Au + β
∂u

∂ν
+ γu = 0 on ∂Ω, (1.1)

where ν is the outer unit normal, and the boundary ∂Ω is C2. Under the assumption
that a = (aij) = (αδij) (here δij stands for the identity matrix in Rn) is a diagonal
n×n matrix, with real valued coefficient 0 < α ∈ C1(Ω), β, γ ∈ C1(∂Ω), with β > 0,
γ ≥ 0 they have considered the realizations Ap of A in the spaces X p := Lp(Ω, dµ),
1 ≤ p < ∞, where dµ := dx|Ω ⊕ αdσ

β |
∂Ω . The boundary condition can be rewritten

as
∇ · (a∇u) +

β

α

(
α

∂u

∂ν

)
+ γu = 0 on ∂Ω,

and α∂u
∂ν is the conormal derivative of u with respect to α. We refer to [19] for a

derivation of such boundary conditions.
Here, dx is the Lebesgue measure on Ω and αdσ

β denotes the natural surface
measure dσ on ∂Ω with weight α

β . One of the main results of [13] was that the
operator Ap, 1 < p < ∞, generates an analytic, contraction semigroup on X p, and
it is self-adjoint for p = 2.
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On the other hand, Favini, G.R. Goldstein, J.A. Goldstein and Romanelli [16]
also studied a generalization of the above problem to nonlinear boundary condi-
tions obtaining, in particular, smoothing and other optimal regularity properties of
solutions. Once one specializes to consider the linear case, these are in fact optimal
ultracontractive results.

Arendt, Metafune, Pallara, Romanelli [5] introduced the sesquilinear form

Q
((

u
u|∂Ω

)
,

(
v

v|∂Ω

))
:=

∫
Ω

(a∇u)·∇vdx +
∫

∂Ω

γuvdσ (1.2)

on X 2 and showed that the operator associated with such a form is the same A2

considered above, provided that α = β ≡ 1 and ∂Ω is Lipschitz. Thus, they could
deduce generation and regularity results (also in C(Ω)) by properties of Q (see also
[36], in the case of the space C[0, 1]).

In a similar order of ideas, Vogt and Voigt [35] investigated the form Q on
a slightly different, weighted product Hilbert space that formally covers the case
when the coefficient a may vanish. They proved that Q is Dirichlet even under
weaker assumptions on a, β, γ, and ∂Ω. However, the setting in [35] is very general,
so that the identification of the operator associated with Q is not easy to perform.

The approach by operator matrices followed by Engel [9] and by Xiao and Liang
[38] has recently revealed that an elliptic operator in non-divergence form with
(1.1) generates a cosine operator function (hence an analytic semigroup) in the
space C[0, 1] (see also [6]).

Likewise, Engel and Fragnelli [10] have shown that a uniformly elliptic second
order operator in divergence form with (1.1) generates an analytic semigroup in the
space C(Ω).

The aim of the present paper is twofold: First we use the theory of Dirichlet
sesquilinear forms as presented, e.g., in [7] and [30], in order to deduce results
concerning regularity and ultracontractivity of solutions that had already been
obtained in [16] in a nonlinear context; second, to present some slight improvements
to the known theory. We consider the operator associated with Q and show that
the family of X p semigroups, 1 < p < ∞, to which the semigroup on X2 extends are
analytic with an angle estimate that improves that obtained in [15]. We then extend
to the uniformly elliptic case a compactness result obtained in [5], which in turn
allows to apply the Perron-Frobenius theory. In addition we obtain some results on
uniform convergence to a positive projection onto the subspace of constant functions
or to 0, depending on the coefficients on the boundary.

Note that if a and ∂Ω are smooth enough, then the operator associated with Q
can be described rather explicitly, cf. Theorem 3.12: as it has already been shown
in [16], such an operator matrix is in fact the realization of the uniformly elliptic
operator ∇· (a∇) with general Wentzell boundary conditions (1.1). Of course, all
the properties we show for semigroups and cosine operator functions actually have
a counterpart for solutions to suitable first and second order Cauchy problems.

Much more can be said in the special case of a strictly positive coefficient γ
on the boundary. In this framework, in a similar order of ideas as in the recent
monographs [2] and [30], Section 4 supplies a treatment of many related results
as estimates for ultracontractivity (particular case of those obtained in [16] but
slightly sharper than those in [5]) and spectral properties.
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2. General Framework

Let Ω be a bounded open domain of Rn with Lipschitz boundary ∂Ω and 1 ≤
p ≤ ∞. Following [13] (see also [5]), we introduce the product spaces defined by

X p := Lp(Ω; C)× Lp(∂Ω; C), 1 ≤ p ≤ ∞.

Observe that X p can be identified with the space Lp(Ω, dµ), equipped with the
norm

‖ · ‖Xp :=
(
‖ · ‖p

Lp(Ω) + ‖ · ‖p
Lp(∂Ω)

)1/p

if 1 ≤ p < ∞,

or else
‖ · ‖X∞ := ‖ · ‖L∞(Ω) ∨ ‖ · ‖L∞(∂Ω).

(Here dµ := dx|Ω ⊕ dσ|∂Ω, with dx the Lebesgue measure on Ω and dσ the natural
surface measure on ∂Ω.) Thus, the general theory of Lebesgue spaces yields

X p ↪→ X q for all 1 ≤ q ≤ p ≤ ∞. (2.1)

Moreover, each X p is a Banach lattice, and its positive cone is the product of the
positive cones of Lp(Ω) and Lp(∂Ω).

Let us consider X 2 = L2(Ω) × L2(∂Ω). If we equip it with the canonical inner
product

〈u, v〉X 2 :=
〈(

u
w

)
,

(
v
z

)〉
X 2

:= 〈u, v〉L2(Ω) + 〈w, z〉L2(∂Ω) ,

then X 2 becomes a Hilbert space. We also define the linear subspace

V :=
{(

u
w

)
∈ H1(Ω)×H1/2(∂Ω) : w = u|∂Ω

}
of X 2 = L2(Ω)× L2(∂Ω). We emphasize that V is not a product space.

Lemma 2.1. The linear subspace V is dense in X 2.

Proof. It suffices to apply Lemma 5.6, with X1 = H1(Ω), X2 = L2(Ω), Y1 =
H1/2(∂Ω), and Y2 = L2(∂Ω). Then the boundary trace operator L is bounded from
H1(Ω) onto H1/2(∂Ω), cf. [24, Thm. 1.8.3]. The claim follows due to the density
of the imbeddings ker(L) = H1

0 (Ω) ↪→ L2(Ω) and H1/2(∂Ω) ↪→ L2(∂Ω). �

Remark 2.2. Observe that

〈u, v〉V =
〈(

u
u|∂Ω

)
,

(
v

v|∂Ω

)〉
V

:= 〈u, v〉H1(Ω) + 〈u|∂Ω, v|∂Ω〉H1/2(∂Ω) , (2.2)

defines an inner product on V. With respect to it, V becomes a Hilbert space.

Lemma 2.3. The norm ‖ · ‖V on the Hilbert space V defined by (2.2) is equivalent
to that defined by

|‖u‖|2 =
∣∣∣∥∥∥(

u
u|∂Ω

) ∥∥∥∣∣∣2 := ‖∇u‖2
L2(Ω) + ‖u‖2

L2(∂Ω), u ∈ V.

Proof. Due to the boundedness of the boundary trace operator from H1(Ω) to
H1/2(∂Ω), it is enough to apply the inequality

‖u‖
L

2n
n−1 (Ω)

≤ C(‖∇u‖L2(Ω) + ‖u‖L2(∂Ω)). (2.3)

Such an inequality holds for all u ∈ H1(Ω) by [26, Cor. 4.11.2], cf. also [25] for
more general results in this context. �
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3. Main results

Throughout this paper we impose the following conditions on the coefficients a
and γ.

Assumption 3.1. (1) a = (aij) is a symmetric matrix of real valued H1
loc(Ω)-

functions such that the ellipticity condition

c1|ξ|2 ≤ Re
n∑

i,j=1

aij(x)ξiξj ≤ C1|ξ|2

holds for suitable constants 0 < c1, C1 and all ξ ∈ Cn, a.e. x ∈ Ω.
(2) γ ∈ L∞(∂Ω) is real valued and such that 0 ≤ γ ≤ C2 a.e. for a suitable

constant C2.

We define a sesquilinear form Q with form domain D(Q) := V on the Hilbert
space X 2 by

Q(u, v) = Q
((

u
u|∂Ω

)
,

(
v

v|∂Ω

))
:=

∫
Ω

(a∇u)·∇vdx +
∫

∂Ω

γuvdσ.

Our main aim is to show that Q (which is sesquilinear by definition, and densely
defined by Lemma 2.1) is associated to a submarkovian semigroup. This is a con-
sequence of the following.

Theorem 3.2. The densely defined sesquilinear form Q is symmetric, positive,
and closed, i.e.,

• Q(u, v) = Q(v, u) for all u, v ∈ V,
• Q(u, u) ≥ 0 for all u ∈ V,
• V is complete for the form norm

‖u‖Q :=
√
Q(u, u) + ‖u‖2

X 2

=
(∫

Ω

(a∇u)·∇udx +
∫

Ω

|u|2dx +
∫

∂Ω

(1 + γ)|u|2dσ

)1/2

.

Proof. The fact that the coefficients a and γ are real-valued yields that Q is sym-
metric.

To show the positivity of Q, take u =
(

u
u|∂Ω

)
∈ V and observe that

Q(u, u) =
∫

Ω

(a∇u) · ∇udx +
∫

∂Ω

γ|u|2dσ ≥ 0,

due to the positivity of a and γ.

Further, for all u =
(

u
u|∂Ω

)
∈ V one has by assumption

‖u‖2
Q ≥ c1‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω) + ‖u‖2

L2(∂Ω)

and
‖u‖2

Q ≤ C1‖∇u‖2
L2(Ω) + ‖u‖2

L2(Ω) + (1 + C2)‖u‖2
L2(∂Ω).

Taking into account Lemma 2.3, we conclude that the form norm of Q is equivalent
to ‖ · ‖V , with respect to which the space V is complete. Thus, Q is closed. �
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Remark 3.3. (1) Observe that the form Q is, in fact, also continuous, i.e.,

|Q(u, v)| ≤ M‖u‖V‖v‖V
for all u, v ∈ D(Q), where M := C1 ∨ C2 < ∞.

To see this, take into account Remark 2.2 and Lemma 2.3. By the Cauchy–
Schwartz inequality and the hypotheses on a one has∣∣ n∑

i,j=1

aij(x)ξiηj

∣∣ ≤ ( n∑
i,j=1

aij(x)ξiξj

)1/2( n∑
i,j=1

aij(x)ηiηj

)1/2

for all ξ, η ∈ Cn and a.e. x ∈ Ω. It follows that

|Q(u, v)| =
∣∣∣∣∫

Ω

(a∇u)·∇vdx +
∫

∂Ω

γuvdσ

∣∣∣∣
≤

∫
Ω

|(a∇u)·∇v|dx +
∫

∂Ω

|γuv|dσ

≤
∫

Ω

(
(a∇u)·∇u

)1/2 (
(a∇v)·∇v

)1/2
dx +

∫
∂Ω

|γuv|dσ

≤
∫

Ω

C
1/2
1 |∇u|C1/2

1 |∇v|dx +
∫

∂Ω

C2|u||v|dσ

= C1 〈|∇u|, |∇v|〉L2(Ω) + C2 〈|u|, |v|〉L2(∂Ω)

≤ C1‖∇u‖L2(Ω)‖∇v‖L2(Ω) + C2‖u‖L2(∂Ω)‖v‖L2(∂Ω)

≤ M
(
‖u‖H1(Ω) + ‖u‖L2(∂Ω)

) (
‖v‖H1(Ω) + ‖v‖L2(∂Ω)

)
= M‖u‖V‖v‖V .

(2) The form Q is also local, i.e., Q(u, v) = 0 for all u, v ∈ V such that supp(u) ∩
supp(v) is a µ-null set.

Thus, one can associate to Q an operator A2 on X 2, given by

D(A2) :=
{
u ∈ V : ∃z ∈ X 2 s.t. Q(u, v) = 〈z, v〉X 2 ∀v ∈ V

}
,

A2u := −z.

By [7, Thm. 1.2.1], such an operator is self-adjoint and dissipative. In fact, the
following holds.

Proposition 3.4. The operator A2 associated with Q generates a cosine operator
function with associated phase space V × X 2.

Proof. Due to the bounded perturbation theorem for cosine operator functions (see
Lemma 5.3), the claim follows if we show that A2 +IX 2 generates a cosine operator
function with the same associated phase space. Define now the form

Q̃(u, v) := Q(u, v) + 〈u, v〉X 2 , u, v ∈ V.

on X 2. It is apparent that Q̃ is sesquilinear, densely defined, symmetric, and closed.
Moreover, it is bounded below by 1, and the associated operator is exactly A2+IX 2 .
Thus, the claim follows by [4, Prop. 7.1.3]. �

Remark 3.5. Favini, G.R. Goldstein, J.A. Goldstein, Romanelli [13, Theorem 3.1]
showed that if Ω has boundary C2, a ∈ C1(Ω), a > 0 in Ω, and Γ = {z ∈ ∂Ω :
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a(z) > 0} 6= ∅, then the closure of the realization on L2(Ω, dx)⊕ L2(Γ, a dσ
β ) of the

operator A := ∇ · (a∇) with general Wentzell boundary condition

Au + β
∂u

∂ν
+ γu = 0 on Γ

is self-adjoint and dissipative, hence it generates a cosine operator function. There
β, γ were assumed to be in C1(∂Ω), with β > 0 and γ ≥ 0 on ∂Ω. Recently, Favini,
G.R. Goldstein, J.A. Goldstein, Obrecht, and Romanelli [15] have extended this
result to the case of a more general elliptic operator of the type

A :=
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
with general Wentzell boundary condition given by

Au + β
∂au

∂ν
+ γu = 0 on Γ.

Here ∂au
∂ν denotes the conormal derivative of u with respect to a = (aij).

Since A2 is self-adjoint and dissipative, it also generates a strongly continuous
semigrop T2 that is contractive and analytic of angle π

2 . In fact, much more can be
said about T2.

Theorem 3.6. The semigroup T2 on X 2 associated with Q is sub-Markovian, i.e.,
it is real, positive, and contractive on X∞.

Proof. By [30, Prop. 2.5, Thm. 2.7, and Cor. 2.17], we need to check that the
following criteria are verified:

• u ∈ V ⇒ u ∈ V and Q(Re u, Im u) ∈ R,
• u ∈ V, u real-valued ⇒ |u| ∈ V and Q(|u|, |u|) ≤ Q(u, u),
• 0 ≤ u ∈ V ⇒ 1 ∧ u ∈ V and Q(1 ∧ u, (u− 1)+) ≥ 0.

It is clear that u ∈ H1(Ω) if u ∈ H1(Ω), hence if u =
(

u
u|∂Ω

)
∈ V, then also

u =
(

u
u|∂Ω

)
∈ V. Moreover, Q(Re u, Im u) is the sum of two integrals. Since all the

integrated functions are real-valued, it follows that Q(Re u, Im u) ∈ R.
To check the second condition let u ∈ H1(Ω). Then |u||∂Ω = |u|∂Ω|. Moreover

∇|u| = (signu)∇u (see [17, § 7.6]). Hence

Q(|u|, |u|) =
∫

Ω

(a∇u)·∇u dx +
∫

∂Ω

γ|u|2 dσ = Q(u, u).

Finally, as in the point (d) in the proof of [5, Thm. 2.3] we see that if 0 ≤ u ∈
H1(Ω), then 1 ∧ u ∈ H1(Ω) and ∇· (1 ∧ u) = 1{u<1}∇u, while ∇ ((u− 1)+) =
1{u>1}∇u, i.e., ∇·(1 ∧ u) and ∇ ((u− 1)+) are disjointly supported. Further, if

u =
(

u
u|∂Ω

)
∈ V, then

1 ∧ u =
(

1 ∧ u
(1 ∧ u)|∂Ω

)
∈ V and (u− 1)+ =

(
(u− 1)+

((u− 1)+)|∂Ω

)
.

It follows that if (x, z) ∈ supp(u ∧ 1) ∩ supp ((u− 1)+), then necessarily u(z) = 1,
and the claim follows by positivity of the coefficient γ. �
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Remark 3.7. Let γ, γ̃ be functions on Ω and ∂Ω satisfying the Assumptions 3.1.
Denote by Qγ , Qγ̃ the form Q with coefficients γ and γ̃, respectively, and by Tγ , Tγ̃

the associated sub-Markovian T2-semigroups. Then D(Qγ) = D(Qγ̃) = V. Also,
V is an ideal of itself by [30, Prop. 2.20]. Assume now that γ(z) ≤ γ̃(z) for a.e.
z ∈ ∂Ω. A direct computation shows that

Qγ(u, v) ≤ Qγ̃(u, v)

for all 0 ≤ u, v ∈ V, and it then follows from [30, Thm. 2.24] that Tγ̃ is dominated
by Tγ in the sense of positive semigroups, i.e.,

|Tγ̃(t)f| ≤ Tγ(t)|f| for all f ∈ X 2, t ≥ 0.

The more general case of non-positive γ will be treated later on in this section
(see Corollaries 3.14 and 3.21).

Lemma 3.8. The semigroup T2 on X 2 associated with Q is ultracontractive, i.e.,
it satisfies the estimate

‖T2(t)f‖X∞ ≤ Mµt−
µ
4 ‖f‖X 2 for all t ∈ (0, 1], f ∈ X 2, (3.1)

for

µ ∈


[2n− 2,∞), if n ≥ 3,

(2,∞), if n = 2,

[1,∞), if n = 1,

and some constant Mµ.

Proof. By [7, Cor. 2.4.3] it suffices to show that

‖u‖2

X
2µ

µ−2
≤ Mµ‖u‖2

Q (3.2)

for some µ > 2 and some constant Mµ.
Take n ≥ 3 and recall that by the usual Sobolev imbedding theorem we obtain

‖u‖
L

2µ
µ−2 (Ω)

≤ M1‖u‖
L

2n
n−2 (Ω)

≤ M2

(
‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω)

) 1
2

, u ∈ H1(Ω),
(3.3)

where we have set µ = 2n − 2, cf. [17, (7.30)]. On the other hand, by [29, Theo-
rem 2.4.2] there holds

‖u‖
L

2n−2
n−2 (∂Ω)

≤ M3

(
‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω)

) 1
2

, u ∈ H1(Ω);

or rather,

‖u‖
L

2µ
µ−2 (∂Ω)

≤ M3

(
‖∇u‖2

L2(Ω) + ‖u‖2
L2(Ω)

) 1
2

, u ∈ H1(Ω). (3.4)

Combining (3.3) and (3.4) yields the claimed inequality for µ = 2n− 2, due to the
Assumption 3.1.(1). Taking into account (2.1) yields (3.2) for µ > 2n− 2.

If n ≤ 2, then again by [17, (7.30)] and by [29, Theorem 2.4.6] the inequalities
(3.3) and (3.4) prevail for arbitrary µ, (3.2) holds again for µ > 2 and the claim
follows.
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Consider finally the case n = 1, µ ∈ [1, 2]. In this case it is more convenient to
use a criterion based on a Nash-type inequality. In fact, by [7, Cor. 2.4.7] it suffices
to show that for all 0 ≤ u ∈ V there holds

‖u‖X 2 ≤ Mµ‖u‖
µ

µ+2
Q · ‖u‖

2
µ+2

X 1 , (3.5)

for all µ ≥ 1 and some constant Mµ. Recall the inequality

‖u‖
L

2
2−3τ (0,1)

≤ M4

(
‖u′‖L2(0,1) + ‖u‖L1(0,1)

)τ · ‖u‖1−τ
L1(0,1), (3.6)

which is valid for all τ ∈ [0, 2
3 ] and some constant M4, cf. [26, Thm. 1.4.8.1]. Take

now µ ∈ [1, 2] and set τ := µ
µ+2 , so that 2

2−3τ = 2µ+4
4−µ ≥ 2. It follows by (3.6) that

‖u‖L2(0,1) ≤ M5

(
‖u′‖L2(0,1) + ‖u‖L2(0,1)

) µ
µ+2 · ‖u‖

2
µ+2

L1(0,1). (3.7)

Finally, observe that in the case n = 1 we have Lp(∂Ω) = C2, 1 ≤ p ≤ ∞, so that
all the norms on Lp(∂Ω) are equivalent. This and (3.7) yield (3.5). �

Remark 3.9. Following Varopoulos ([34, § 0.1], cf. also [2, § 7.3.2]) the number

dim(T2) := inf{µ > 0 : (3.2) is valid for some Mµ}
is sometimes called the dimension of the semigroup T2. Hence, we have shown that

dim(T2) ≤

{
2n− 2, if n ≥ 2,

1, if n = 1.

Observe that this improves an analogous result in [5], where in the case n = 1 it has
only been shown that dim(T2) ≤ 2. Moreover, under slightly stronger assumptions
on the coefficients a, γ, it was shown in [16] that the dimension of T2 is always n.

Due to the boundedness of Ω, the following holds by [7, Thm. 1.4.1, Thm. 2.1.4,
and Thm. 2.1.5] and [30, Thm. 3.13].

Corollary 3.10. The semigroup T2 extends to a family of compact, contractive,
real, positive one-parameter semigroups Tp on X p, 1 ≤ p ≤ ∞. Such semigroups
are strongly continuous if p ∈ [1,∞), and analytic of angle π

2 − arctan |p−2|
2
√

p−1
for

p ∈ (1,∞).
Moreover, the spectrum of Ap is independent of p, where Ap denotes the gener-

ator of Tp. All the eigenfunctions of A2 are of class X∞.

Remark 3.11. (1) As a direct consequence of the ultracontractivity of T2, it follows
by [7, Lemma 2.1.2] that T2 has an integral kernel K such that

0 ≤ K(t,x,y) ≤ M2
µt−µ/2 for all t > 0, a.e. x,y ∈ Ω, (3.8)

where µ and Mµ are the same parameters that appear in (3.1).
(2) Since the operator A is self-adjoint and dissipative, its spectrum is contained

in the negative halfline. Moreover, by the above corollary the spectral bounds of
all operators Ap, p ∈ [1,∞), agree. Since the growth bound of a positive semigroup
on an Lp-space agrees with the spectral bound of its generator (see [37, Thm. 1]),
we conclude that s(A) is the common growth bound of all the semigroups Tp,
p ∈ [1,∞). Observe that, as an application of the abstract spectral theory for
so-called one-sided coupled operator matrices developed by K.-J. Engel in [8], such
a spectral bound can in several concrete cases be explicitely computed (see [23, § 9]
for a one-dimensional example).
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We still need to identify the operator associated with Q.

Theorem 3.12. Let ∂Ω ∈ C∞ and aij ∈ C∞(Ω), 1 ≤ i, j ≤ n. Then the operator
A2 associated with the Dirichlet form Q is given by

D(A2) =
{(

u
w

)
∈ H

3
2 (Ω)×H1(∂Ω) : w = u|∂Ω and ∇·(a∇u) ∈ L2(Ω)

}
,

A2 =
(
∇·(a∇) 0
−〈a∇, ν〉 −γI

)
.

Here 〈a∇u, ν〉 denotes the conormal derivative of u with respect to a, which is
well defined (in the sense of traces) as an element of L2(∂Ω) for u ∈ H

3
2 (Ω) due to

the regularity of a, cf. [24, § 2.7].

Proof. Observe first that we only need to prove the claim for γ ≡ 0, since(
∇·(a∇) 0
−〈a∇, ν〉 −γI

)
=

(
∇·(a∇) 0
−〈a∇, ν〉 0

)
+

(
0 0
0 −γI

)
,

where the second addend on the right-hand side is a bounded operator that does
not affect the domain of the first one.

The operator associated with Q is, by definition,

D(B) :=
{
u ∈ V : ∃z ∈ X 2 s.t. Q(u, v) = 〈z, v〉X 2 ∀v ∈ V

}
,

Bu := −z.

To see that A2 ⊂ B, observe first that D(A2) ⊂ V. Take u =
(

u
u|∂Ω

)
and

v =
(

v
v|∂Ω

)
in V and apply the Gauss–Green formula to obtain

Q(u, v) =
∫

Ω

(a∇u)·∇vdx

= −
∫

Ω

∇·(a∇u)vdx +
∫

∂Ω

〈a∇u, ν〉vdσ

=
〈(

−∇·(a∇u)
〈a∇u, ν〉

)
,

(
v

v|∂Ω

)〉
X 2

= 〈−A2u, v〉X 2 .

Conversely, let u =
(

u
u|∂Ω

)
∈ D(B) and repeat the above computation to obtain

that ∇·(a∇u) is well defined as an element of L2(Ω) and that u has a conormal
derivative (in the sense of traces) in L2(∂Ω). Thus, by [24, Thm. 2.7.4] we deduce
that u ∈ H

3
2 (Ω). Since the second entry of the vector u is the trace of a function of

class H
3
2 (Ω), it follows by usual boundary regularity results that u|∂Ω ∈ H1(∂Ω),

and hence u ∈ D(A2). �

Remark 3.13. The strong regularity assumption on ∂Ω and on the coefficient a
in Theorem 3.12 is solely necessary in order to apply the results in [24] on the
regularity of solutions to a Neumann-type problem.

We are now in the position to discuss the complete second order operators.



10 D. MUGNOLO, S. ROMANELLI EJDE-2006/118

Corollary 3.14. Under the assumptions of Theorem 3.12, let b ∈
(
L2(Ω)

)n, c ∈
L2(Ω), and γ̃ ∈ L2(∂Ω). Then the operator Ã2 defined by

Ã2 :=
(
∇·(a∇) + b·∇+ cI 0

−〈a∇, ν〉 −γ̃I

)
with domain D(Ã2) := D(A2) generates a cosine operator function with associated
phase space V × X 2, hence also an analytic semigroup of angle π

2 on X 2.

Proof. Write Ã2 as
Ã2 = A2 + B2,

where

B2 :=
(

b·∇+ cI 0
0 (γ − γ̃)I

)
.

Since by assumption b ·∇ + cI is bounded from H1(Ω) to L2(Ω) and (γ − γ̃)I is
bounded on L2(∂Ω) it is clear that B2 is bounded from V to X 2. Now the claim
follows by Lemma 5.3. �

In the introduction we have claimed that the operator matrix associated with
the sesquilinear form Q, i.e., A2, is in fact a realization of a second order elliptic
operator in divergence form with general Wentzell boundary conditions. Recalling
that D(A2

2) is a core for A2, this is made clear in the following.

Corollary 3.15. Under the assumptions of Theorem 3.12, let b ∈
(
L2(Ω)

)n, c ∈

L2(Ω), and γ̃ ∈ L2(∂Ω). Then for all u such that
(

u
u|∂Ω

)
is in the domain of Ã2

2

there holds
∇·(a(z)∇u(z)) + b(z)·∇u(z) + c(z)u(z)

+〈a(z)∇u(z), ν(z)〉+ γ̃(z)u(z) = 0 for all z ∈ ∂Ω. (3.9)

This is equivalent to the notion of of weak solution given in [13].

Proof. Take u such that
(

u
u|∂Ω

)
=: u ∈ D(Ã2

2). Then by definition(
∇·(a∇u) + b·∇u + cu
−〈a∇u, ν〉 − γ̃u|∂Ω

)
:=

(
ũ
w̃

)
= Ã2u ∈ D(Ã2) = D(A2),

and by Theorem 3.12 there holds ũ|∂Ω = w̃. This yields (3.9). �

Remark 3.16. Take u ∈ L2(Ω) such that
(

u
u|∂Ω

)
is in the domain of Ã2

2. By

the above corollary u is a function in H3/2(Ω) such that the homogeneous boundary
condition (3.9) holds. Such boundary condition is expressed by means of a boundary
differential operator of order 2, hence by usual boundary regularity results we obtain
that u ∈ H3(Ω). By induction one can in fact see that

C∞
c (Ω)× C∞(∂Ω) ⊂ D(Ã∞2 ) ⊂ C∞(Ω)× C∞(∂Ω).

Since the semigroup T̃2 generated by Ã2 is analytic, its smoothing effect yields

T̃2(t)
(
X 2

)
⊂ D(Ã∞2 ) ⊂

{
D(Ã2

2)
C∞(Ω)× C∞(∂Ω)

for all t > 0.
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Thus, in view of Corollary 3.15 and Remark 3.16 we finally conclude that the ini-
tial value problem for the heat equation with general Wentzell boundary conditions
is well-posed.

Corollary 3.17. Under the assumptions of Theorem 3.12, let b ∈
(
L2(Ω)

)n, c ∈
L2(Ω), and γ̃ ∈ L2(∂Ω). Then for all f ∈ L2(Ω) and all g ∈ L2(∂Ω) the initial-
boundary value problem

u̇(t, x) = ∇·(a∇u(t, x)) + b(x)·∇u(t, x) + c(x)u(t, x), t > 0, x ∈ Ω,

∇·(a(z)∇u(t, z)) + b(z)·∇u(t, z) + c(z)u(t, z)

+〈a(z)∇u(t, z), ν(z)〉+ γ̃(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = f(x), x ∈ Ω,

u(0, z) = g(z), z ∈ ∂Ω,

admits a unique classical solution u, and u(t, ·) is of class C∞ for all t > 0.

The well-posedness of the wave equation with general Wentzell boundary con-
ditions follows immediately from the self-adjointness result of [14], as explained in
Goldstein’s book [21]. We state it now for completeness. A similar result in the
one-dimensional case but on all Xp spaces, 1 ≤ p < ∞, has been obtained in [27].

Corollary 3.18. Under the assumptions of Theorem 3.12, let further b ∈
(
L2(Ω)

)n,
c ∈ L2(Ω), and γ̃ ∈ L2(∂Ω). Then for all f ∈ H2(Ω) and g ∈ H1(Ω) the second
order initial-boundary value problem with dynamical boundary conditions

ü(t, x) = ∇·(a∇u(t, x)) + b(x)·∇u(x) + c(x)u(x), t ≥ 0, x ∈ Ω,

ü(t, z) = −〈a(z)∇u(t, z), ν(z)〉 − γ̃(z)u(t, z), t ≥ 0, z ∈ ∂Ω,

u(0, x) = f(x), u̇(0, x) = g(x), x ∈ Ω.

admits a unique classical solution u. If further f, g ∈ C∞
c (Ω), then u(t, ·) is of class

C∞ for all t ≥ 0, and in fact it satisfies the general Wentzell boundary conditions
∇·(a(z)∇u(t, z)) + b(z)·∇u(t, z) + c(z)u(t, z)

+〈a(z)∇u(t, z), ν(z)〉+ γ̃(z)u(t, z) = 0, t ≥ 0, z ∈ ∂Ω.
(3.10)

Let us finally identify the generators of the semigroups Tp on X p. We thus answer
a question that was adressed in [18, § 7.6].

Theorem 3.19. Let ∂Ω ∈ C∞ and aij ∈ C∞(Ω), 1 ≤ i, j ≤ n. Then for all
p ∈ [1,∞] the generator Ap of the semigroup Tp is given by

D(Ap) =
{(

u
w

)
∈ W 2− 1

p ,p(Ω)×W
3
2−

1
p ,p(∂Ω) :

w = u|∂Ω and ∇·(a∇u) ∈ Lp(Ω)
}

,

Ap =
(
∇·(a∇) 0
−〈a∇, ν〉 −γI

)
.

Proof. Let us prove the claim for p > 2. We have already remarked that X p ↪→ X q

for all 1 ≤ q ≤ p ≤ ∞. Moreover, it follows by the ultracontractivity of T2 that
X p is invariant under T2(t) for all p > 2 and t > 0. Thus, by [11, Prop. II.2.3] the
generator of Tp is the part of A2 in X p. The claimed expressions of Ap and D(Ap)
then follow as consequences of usual results on traces, cf. [1, Thm. 7.53].
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Take now some p with 1 ≤ p < 2. By [7, Thm. 1.4.1] one has that the adjoint
semigroup of (Tp(t))t≥0 on Xp is actually (Tq(t))t≥0 on Xq, where p−1 + q−1 = 1.
Set

Dp =
{(

u
w

)
∈ W 2− 1

p ,p(Ω)×W
3
2−

1
p ,p(∂Ω) :

w = u|∂Ω and ∇·(a∇u) ∈ Lp(Ω)
}

.

Consider the operator Ap whose action on Dp is given by

Apu =
(

∇·(a∇)u
−〈a∇u, ν〉 − γu

)
.

Reasoning as in the proof of Theorem 3.12 one can see that its adjoint is actuallyAq,
p−1 + q−1 = 1. Then, since the generator of the pre-adjoint semigroup (Tp(t))t≥0

on Xp of (Tq(t))t≥0 on Xq is the pre-adjoint operator Ap of Aq it follows that Ap

with domain D(Ap) = Dp generates the C0-semigroup (Tp(t))t≥0 on Xp, and the
claim follows. �

Remark 3.20. A semigroup T on a Banach lattice X is called Markovian if it
is real, positive, and T (t)1 = 1 for all t ≥ 0. One thus sees that a semigroup is
Markovian if and only if it is real, positive, and its generator A satisfies A1 = 0. It
follows from Theorem 3.19 that for all p ∈ [1,∞], Ap1 = 0 if and only if γ ≡ 0.

Corollary 3.21. Fix p ∈ [1,∞). Under the assumptions of Theorem 3.19, let
further b ∈ (L∞(Ω))n, c ∈ L∞(Ω), and γ̃ ∈ L∞(∂Ω). Then the operator Ãp defined
by

Ãp :=
(
∇·(a∇) + b·∇+ cI 0

−〈a∇, ν〉 −γ̃I

)
with domain D(Ãp) := D(Ap) generates an analytic semigroup on X p.

Proof. Write Ãp as
Ãp = Ap + Bp,

where

Bp :=
(

b·∇+ cI 0
0 (γ − γ̃)I

)
.

Observe that by assumption b ·∇ + cI and (γ − γ̃)I are compact operators from
W 1+ε,p(Ω) to Lp(Ω) and from W ε,p(∂Ω) to Lp(∂Ω), respectively, for all ε > 0.
Hence it is clear that Bp is a relatively Ap-compact perturbation, and the claim
follows by [11, Cor. 2.17]. �

Remark 3.22. Our approach based on positive forms and sub-Markovian semi-
groups also allows to tackle some nonautonomous Cauchy problems, at least in
the one-dimensional case. In fact, we have shown in Corollary 3.10 and Theorem
3.19 that the operator matrix Ap generates for all p ∈ [1,∞) a strongly continuous
semigroup of contractions. This essentially follows from the Assumptions 3.1 on
the coefficients a and γ. If we allow for more general, time-dependent coefficients,
we are led to introduce a family of operators on X p defined by

Ap(t) :=
(
∇·(a(t)∇) 0
−〈a(t)∇, ν〉 −γ(t)I

)
, t ≥ s,
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for fixed s ∈ R, with joint domain D(Ap(t)) := D(Ap). We restrict ourselves to the
one-dimensional case and, instead of the Assumptions 3.1, we impose the following.

(1) a(t) is a real valued C∞[0, 1]-function such that c1 ≤ a(t, x) ≤ C1 holds for
suitable constants 0 < c1, C1, and all t ≥ s, x ∈ [0, 1].

(2) γ1(t), γ2(t) are real numbers such that 0 ≤ γi(t) ≤ C2 for a suitable constant
C2 and each t ≥ s, i = 1, 2.

(3) The mapping t 7→ a(t, ·) is continuously differentiable.
(4) The mappings t 7→ γi(t) are continuously differentiable, i = 1, 2.

We can now consider the temporally inhomogeneous problem

u̇(t, x) = (au′)′(t, x), t ≥ s, x ∈ (0, 1),

u̇(t, j) = (−1)j+1a(t, j)u′(t, j)− γj(t)u(t, j) = 0, t ≥ s, j = 1, 2,

u(s, x) = f(x), x ∈ [0, 1],

and rewrite it in an abstract form as
u̇(t) = Ap(t)u(t), t ≥ s,

u(s) = f ∈ X p,
(3.11)

for some s ≥ 0. Due to the above assumptions on the coefficients, all the operators
Ap(t), t ≥ 0, have joint domains and further the family (Ap(t))t≥0 is stable in the
sense of [32, Def. 4.3.1]. We can thus apply the Kato-Tanabe theory of hyperbolic
nonautonomous problems and, by virtue of the results in [32, § 4.4], deduce well-
posedness (in a suitable sense) for (nACP). We refer to [22] and [32] for more
details on the theory of fundamental solutions to nonautonomous Cauchy problems.
Asymptotic issues could also be investigated (e.g., by means of the methods recently
surveyed in [31]), but this goes beyond the scope of this paper.

Proposition 3.23. Let Ω be connected. Then the positive semigroup Tp on Xp,
p ∈ [1,∞), is irreducible.

Proof. Since the irreducibility of T2 is inherited by all semigroups Tp on Xp, 1 ≤
p < ∞ (a consequence of Corollary 3.10 and [2, Theorem 7.2.2]), we only consider
the case p = 2 and show that [30, Cor. 2.11] applies. Indeed, by Lemma 3.6 and
Remark 3.3, the form Q is densely defined, positive, continuous, closed, and local.

We have to prove that if U is an open subset of Ω× ∂Ω such that

(χU · f) ∈ V for all f ∈ V, (3.12)

then either µ(U) = 0 or µ
(
(Ω×∂Ω)\U

)
= 0. Here µ denotes the measure introduced

at the beginning of Section 2, i.e., the direct sum of the Lebesgue measure λ on Ω
and the Hausdorff measure σ on ∂Ω.

Take then U = V ×W open subset of Ω×∂Ω such that (3.12) holds. By definition

χU =
(

χV

χW

)
. (3.13)

Now V is an open subset of Ω and by (3.12) we deduce that

(χV · f) ∈ H1(Ω) for all f ∈ H1(Ω).

Recall now that the Laplace operator with Neumann boundary conditions (whose
associated form has domain H1(Ω)) is irreducible, cf. [30, Thm. 4.4.5]. Hence,
again by [30, Cor. 2.11] we deduce that λ(V ) = 0 or λ(Ω \ V ) = 0. Since V is an
open set, λ(V ) = 0 can only happen if V is empty, so that also U = ∅ and µ(U) = 0.
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Let us now consider the case of λ(Ω\V ) = 0. Observe that the constant function
f = 1 belongs to V, so that by (3.12), (3.13), and the definition of V we deduce that
χV ∈ H1(Ω) and χW is its trace on ∂Ω. On the other hand, since λ(Ω \V ) = 0 one
sees that the characteristic function χV is identically 1 a.e. in Ω. Consequently,
the trace of χV is identically 1 σ-a.e. on ∂Ω. Summing up, χW turns out to be
identically 1 σ-a.e. on ∂Ω, so that W = ∂Ω up to a set of σ-measure zero. We
conclude that the claim follows since µ

(
(Ω×∂Ω)\U

)
= λ(Ω\V )+σ(∂Ω\W ) = 0. �

Due to the irreducibility of the semigroup, we can then apply known results (see,
e.g., [2, § 3.5.1]) and draw the following conclusion.

Corollary 3.24. Let Ω be connected. Then there exists a strictly positive rank-1
projection P such that

‖e−s(A)Tp(t)− P‖ ≤ Me−εt, t ≥ 0,

for some constant M ≥ 0, ε > 0.

If in particular the coefficient γ ≡ 0, then we have seen in Remark 3.20 that 0
is the spectral bound of all generators Ap, p ∈ [1,∞), and by [28, C-IV.2.10 and
C-III.3.5.(d)] we obtain the following.

Corollary 3.25. Let Ω be connected and γ ≡ 0. Then for the semigroup Tp on Xp,
p ∈ [1,∞) the following assertions hold.

(1) The limit Pf := limt→∞ Tp(t)f exists for every f ∈ Xp.
(2) P is a strictly positive projection onto kerA, the one-dimensional subspace

of Xp spanned by the constant 1 function χ.
(3) There exists M ≥ 1 such that

‖Tp(t)− P‖ ≤ Meλ2t, t ≥ 0,

where λ2 is the largest nonzero eigenvalue of the generator A.

Again, we stress that the second largest eigenvalue of A can be explicitly com-
puted in some concrete cases, cf. [23, § 9], thus obtaining an estimate for the
semigroup’s rate of convergence (in norm!) toward a projection.

More results on the asymptotic behaviour of the semigroups Tp will be obtained
in the next section.

4. The case γ 6≡ 0

Throughout this section we impose the following conditions.

Assumption 4.1. The coefficient γ does not identically vanish on the boundary of
each connected component of Ω.

Under the Assumption 4.1, the properties of the cosine operator function and of
the semigroups associated with Q are essentially improved. The main reason is the
following.

Lemma 4.2. Under the Assumptions 3.1 and 4.1, the operator Ap is invertible for
all p ∈ [1,∞].
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Proof. Assume without loss of generality that Ω is connected, and let u =
(

u
u|∂Ω

)
∈

D(A2) such that A2u = 0. We obtain by definition of A2 that σ(∂Ω \ ∂V ) > 0.

0 = Q(u, u)

=
∫

Ω

(a∇u)·∇udx +
∫

∂Ω

γ|u|2dσ

≥ c1

∫
Ω

|∇u|2dx +
∫

∂Ω

γ|u|2dσ.

It follows by the assumptions on γ that u ∈ H1(Ω) is constant in Ω and vanishes
somewhere on ∂Ω. Hence, u ≡ 0, and 0 is not an eigenvalue of A2. Since T2 is
compact and analytic, A2 has compact resolvent. Therefore A2 is invertible, and
the same holds for all Ap, since σ(Ap) = σ(A2) for all p ∈ [1,∞]. �

We already know by Remark 3.11.(2) that the growth bound of Tp is given by
the spectral bound s(A2). By the above lemma such a spectral bound is strictly
negative, and we obtain the following.

Corollary 4.3. Under the Assumptions 3.1 and 4.1, the semigroup Tp is uniformly
exponentially stable for all p ∈ [1,∞].

Corollary 4.4. Under the Assumptions 3.1 and 4.1, the cosine operator function
generated by A2 is contractive, together with the associated sine operator function.
Moreover, the solutions to the second order abstract Cauchy problem

ü(t) = A2u(t), t ∈ R,

u(0) = f ∈ V,

u̇(0) = g ∈ X 2,

(4.1)

are almost periodic.

Proof. By Theorem 3.2 and Lemma 4.2, the operator A2 is self-adjoint and strictly
negative definite. It follows by [20, Lemma 3.1] that the reduction matrix associated
with A2 generates a group of isometries, hence both the cosine operator function
(C(t))t∈R generated by A2 and the associated sine operator function (S(t))t∈R are
contractive. More precisely, by (5.1) the classical solutions to (4.1) are given by

u(t) = C(t)f + S(t)g, t ∈ R.

Moreover, A2 has compact resolvent by Corollary 3.10, hence by Lemma 5.5 the
solutions to (4.1) are almost periodic. �

Even more can be said if we replace the Assumption 4.1 by the following stronger
version.

Assumption 4.5. The coefficient γ is strictly positive, i.e., there holds c2 ≤ γ
dσ-a.e. for some constant c2 > 0.

We can now sharpen Lemma 3.8 and obtain the following, cf. also [5, Prop. 2.6].

Proposition 4.6. Under the Assumptions 3.1 and 4.5 the semigroup T2 on X 2

associated with Q satisfies the estimate

‖T2(t)f‖X∞ ≤ Mµt−
µ
4 ‖f‖X 2 for all t > 0, f ∈ X 2, (4.2)
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for

µ ∈


[2n− 2,∞), if n ≥ 3,

(2,∞), if n = 2,

[1,∞), if n = 1,

and some constant Mµ.

Proof. Take u =
(

u
u|∂Ω

)
∈ V. Observe that plugging (2.3) into (3.3) and (3.4) one

obtains

‖u‖
L

2µ
µ−2 (Ω)

≤ N1

(
‖∇u‖L2(Ω) + ‖u‖L2(∂Ω)

)
, (4.3)

‖u‖
L

2µ
µ−2 (∂Ω)

≤ N2

(
‖∇u‖L2(Ω) + ‖u‖L2(∂Ω)

)
(4.4)

for suitable constants N1, N2, where µ ∈ [2n − 2,∞) if n ≥ 3, and µ ∈ (2,∞) if
n ≤ 2. On the other hand there holds

‖∇u‖2
L2(Ω) + ‖u‖2

L2(∂Ω) ≤ N3Q(u, u),

where N3 := (c1 ∨ c2)−1. The claim then follows by [7, Thm. 2.4.2] for n ≥ 2, and
by [7, Thm. 2.4.6] for n = 1. �

Combining the uniform exponential stability and the ultracontractivity of T2 we
finally derive the following L2 − L∞ stability estimate.

Corollary 4.7. Under the Assumptions 3.1 and 4.5 the semigroup T2 on X 2 as-
sociated with Q satisfies the estimate

‖T2(t)f‖X∞ ≤ Mµ

(1− ts(A2)
t

)µ/4
ets(A2)‖f‖X 2 for all t > 0, f ∈ X 2,

where µ, Mµ are as in Proposition 4.6.

Proof. The claim is a direct consequence of Remark 3.11.(2), Proposition 4.6, and
[30, Lemma 6.5]. �

We can reformulate the above results aas follows.

Corollary 4.8. The semigroup T2 satisfies the estimate

‖T2(t)f‖X∞ ≤ eκ(t)‖f‖X 2 for all t > 0, f ∈ X 2, (4.5)

where κ is a function related to the estimate (4.2) and such that

κ(ε) ∼ C − n− 1
2

log ε as ε → 0+ (4.6)

for some constant C > 0, if n ≥ 3.

Proof. By Proposition 4.6, it follows that the estimate (4.5) holds with

κ(t) := log Mµ −
µ

4
log t.

for all µ ∈ [2n − 2,∞) if n ≥ 3, µ ∈ (2,∞) if n = 2, or µ ∈ [1,∞) if n = 1. If in
particular n ≥ 3, then (4.6) holds for some constant C > 0. �
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Note that this is a special case of the nonlinear result in [16] specialized to the
linear case. In [16] it is shown that an estimate analogous to the above one holds
with ‖f‖X2 replaced by ‖f‖X1 , which is a much stronger result.

A direct computation shows that for µ in the ranges defined above κ is a contin-
uous, monotonically decreasing function on (0,∞). We thus apply [7, Thm. 2.2.3]
and finally derive the logarithmic Sobolev inequality∫

Ω

f2 log fdµ ≤ εQ(f, f) + κ(ε)‖f‖2
X 2 + ‖f‖2

X 2 log ‖f‖X 2 , (4.7)

which is valid for all 0 ≤ f ∈ V ∩ X∞ and all ε > 0.

Remark 4.9. (1) We have already seen in Remark 3.11.1) that T2 has a bounded,
positive integral kernel. If we assume γ to be strictly positive, we can derive from
Corollary 4.7 the alternative estimate

K(t,x,y) ≤ M2
µ

(
1− ts(A2)

t

)µ
2

e2ts(A2) for all t > 0, a.e. x,y ∈ Ω,

on the upper bound of the integral kernel, cf. [7, § 2.1]. Here µ and Mµ are the
same parameters that appear in Proposition 4.6.

(2) The logarithmic Sobolev inequality (4.7) for κ of the form κ(ε) = C− n
4 log ε

is typical for uniformly elliptic operators with Dirichlet boundary conditions on
connected domains of Rn, cf. [7, § 2.3]. Now, our A2 may be regarded as a
differential operator on Ω, where Ω is an n-dimensional bounded open domain and
∂Ω is an (n− 1)-dimensional manifold. The results of [16] give the best estimate of
the form (4.5) near t = 0; in fact, they agree with the best estimate for the linear
heat equation.

Davies has developed (see [7, § 3.2] and references therein) a method that makes
use of such logarithmic Sobolev inequalities for sesquilinear forms and allows to
deduce that the associated semigroups admit Gaussian estimates with respect to a
suitable metric, cf. [7, Thm. 3.2.7]. In view of Remark 4.9.(2), this means in our
context that a certain mild form of domination of T2 by the Gaussian semigroup
(in R2n−2, if n ≥ 2, or in R, if n = 1) holds – where, again, the metric we endow
R2n−2 or R with is a suitable one that needs not be equivalent to the Euclidean
metric.

We point out that Gaussian estimates are a key argument for discussing several
issues, including the p-independence of the angle of analyticity of the semigroups
on Lp, L1-analyticity, and the boundedness of the H∞-calculus of their generators
in Lp. We refer the reader to [30, § 7.1], [2, § 7.4], and references therein.

5. Appendix: A remainder of the theory of cosine operator functions

We summarize a few generalities from the theory of cosine operator functions as
presented, e.g. in [12] or [4, § 3.14].

Definition 5.1. Let X be a Banach space. A strongly continuous function C : R →
L(X) is called a cosine operator function if it satisfies the D’Alembert functional
relations

C(t + s) + C(t− s) = 2C(t)C(s), t, s ∈ R,

C(0) = IX .
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Further, the operator A on X defined by

Ax := lim
t→0

2
t2

(C(t)x− x), D(A) :=
{
x ∈ X : lim

t→0

2
t2

(C(t)x− x) exists
}
,

is called the generator of (C(t))t∈R. We define the associated sine operator function
(S(t))t∈R by

S(t)x :=
∫ t

0

C(s)xds, t ∈ R, x ∈ X.

Lemma 5.2. Let A be a closed operator on a Banach space X. Then the operator A
generates a cosine operator function (C(t))t∈R on X, with associated sine operator
function (S(t))t∈R, if and only if there exists a Banach space V , with [D(A)] ↪→
V ↪→ X, such that the operator matrix

A :=
(

0 IV

A 0

)
, D(A) := D(A)× V,

generates a C0-semigroup (etA)t≥0 in V ×X, and in this case there holds

etA =
(

C(t) S(t)
AS(t) C(t)

)
, t ≥ 0. (5.1)

If such a space V exists, then it is unique. The (unique) product space X = V ×X
is called phase space associated with (C(t))t∈R (or with A).

Lemma 5.3. Let A generate a cosine operator function with associated phase space
V ×X. Then also A+B generates a cosine operator function with associated phase
space V ×X, provided B is an operator that is bounded from V to X.

Concerning regularity, it is known that cosine operator functions have in general
no smoothing effect (see [33, Prop. 4.1]). However, the following can be deduced
by (5.1) and the fact that a semigroup leaves invariant the domains of all of its
generator’s powers.

Lemma 5.4. Let A generate a cosine operator function (C(t))t∈R with associated
sine operator function (S(t))t∈R. Consider the solution to the second order abstract
Cauchy problem

ü(t) = Au(t), t ∈ R,

u(0) = f, u̇(0) = g,

which is given by u(t) = C(t)f + S(t)g, t ∈ R. Then u(t) ∈ D(Ak) for all t ∈ R,
provided that f, g ∈ D(A2k), k ∈ N.

It is known that cosine and sine operator functions cannot be stable – i.e., one
cannot expect the decay of the norm of a solution to a second order abstract Cauchy
problem. Hence, one is usually interested in boundedness and almost periodicity of
such solutions. The following results are due to Arendt and Batty, cf. [3, Cor. 5.6].

Lemma 5.5. Let A generate a bounded cosine operator function (C(t))t∈R with
associated sine operator function (S(t))t∈R on a Banach space X. If A has compact
resolvent, then (C(t))t∈R is almost periodic. If further A is invertible, then also
(S(t))t∈R is almost periodic.
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A technical lemma.

Lemma 5.6. Let X1, X2, Y1, Y2 be Banach spaces, such that X1 ⊂ X2, and Y1 is
dense in Y2. Consider a surjective operator L ∈ L(X1, Y1) such that ker(L) is dense
in X2. Then {(

x
y

)
∈ X1 × Y1 : Lx = y

}
is dense in X2 × Y2.

Proof. Let x ∈ X2, y ∈ Y2, ε > 0. Take z ∈ Y1 such that ‖y − z‖Y2 < ε. The
surjectivity of L ensures that there exists u ∈ X1 such that Lu = z. Take ũ, x̃ ∈
ker(L) such that ‖u− ũ‖X2 < ε and ‖x− x̃‖X2 < ε. Let w := x̃+u− ũ ∈ X1. Then∥∥(

x
y

)
−

(
w
z

) ∥∥
X2×Y2

≤
∥∥(

x− x̃
0

) ∥∥
X2×Y2

+
∥∥(

u− ũ
0

) ∥∥
X2×Y2

+
∥∥(

0
y − z

) ∥∥
X2×Y2

< 3ε.

Since L(w) = L(u) = z, we obtain
(

w
z

)
∈ X1 × Y1. �
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[6] A. Bátkai and K.-J. Engel, Abstract wave equations with generalized Wentzell boundary con-

ditions. J. Diff. Equations 207 (2004), 1–20.

[7] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics 92, Cam-
bridge University Press 1990.

[8] K.-J. Engel, Spectral theory and generator property for one-sided coupled operator matrices,

Semigroup Forum 58 (1999), 267–295.
[9] K.-J. Engel, Matrix methods for Wentzell boundary conditions in: Interplay between (C0)-

semigroups and PDEs: Theory and Applications, Aracne Editrice 2004, 55–80.

[10] K.-J. Engel and G. Fragnelli, Analiticity of semigroups generated by operators with general-
ized Wentzell boundary conditions, Adv. Differential Equations 10 (2005), 1301–1320.

[11] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad-
uate Texts in Mathematics 194, Springer-Verlag 2000.

[12] H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Mathematics

Studies 108, North-Holland 1985.
[13] A. Favini, G.R. Goldstein, J.A. Goldstein, and S. Romanelli, The heat equation with gener-

alized Wentzell boundary condition, J. Evol. Equations 2 (2002), 1–19.



20 D. MUGNOLO, S. ROMANELLI EJDE-2006/118

[14] A. Favini, C.G. Gal, G.R. Goldstein, J.A. Goldstein, and S. Romanelli, The non-autonomous

wave equation with general Wentzell boundary conditions, Proc. Roy. Soc. Edinburgh 135A

2005, 317–329.
[15] A. Favini, G.R. Goldstein, J.A. Goldstein, E. Obrecht, and S. Romanelli, Higher order elliptic

operators in divergence form and general Wentzell boundary conditions (submitted).

[16] A. Favini, G.R. Goldstein, J.A. Goldstein, and S. Romanelli, The heat equation with nonlinear
general Wentzell boundary condition, Adv. Differential Equations 11 (2006), 481–510.

[17] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Grundlehren der mathematischen Wissenschaften 224, Springer-Verlag 1977.
[18] G.R. Goldstein, General boundary conditions for parabolic and hyperbolic problems in: Inter-

play between (C0)-semigroups and PDEs: Theory and Applications, Aracne Editrice 2004,

91–112.
[19] G.R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv.

Differential Equations 11 (2006), 457–480.
[20] J.A. Goldstein, Time dependent hyperbolic equations, J. Funct. Anal. 4 (1969), 31–49.

[21] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical

Monographs, Oxford University Press 1985.
[22] T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5

(1953), 283–304.

[23] M. Kramar, D. Mugnolo, and R. Nagel, Theory and applications of one-sided coupled operator
matrices, Conf. Sem. Mat. Univ. Bari 283 (2003).

[24] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications.

Vol. I, Grundlehren der mathematischen Wissenschaften 181–182, Springer-Verlag 1972.
[25] F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities, J. Geom. Anal. 15

(2005), 83–121.

[26] V.G. Maz’ja, Sobolev Spaces, Springer-Verlag 1985.
[27] D. Mugnolo, Operator matrices as generators of cosine operator functions, Integral Equations

Oper. Theory 54 (2006), 441–464.
[28] R. Nagel (ed.): One-parameter Semigroups of Positive Operators. Lect. Notes Math. 1184,

Springer-Verlag 1986.
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