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OPTIMAL CONTROL OF AN EPIDEMIC THROUGH
EDUCATIONAL CAMPAIGNS

CÉSAR CASTILHO

Abstract. In this work we study the best strategy for educational campaigns

during the outbreak of an epidemic. Assuming that the epidemic is described
by the simplified SIR model and that the total time of the campaign is limited

due to budget, we consider two possible scenarios. In the first scenario we have

a campaign oriented to decrease the infection rate by stimulating susceptibles
to have a protective behavior. In the second scenario we have a campaign

oriented to increase the removal rate by stimulating the infected to remove

themselves from the infected class. The optimality is taken to be to minimize
the total number of infected by the end of the epidemic outbreak. The tech-

nical tool used to determine the optimal strategy is the Pontryagin Maximum

Principle.

1. Introduction

In this work we study the best strategy for educational campaigns during the
outbreak of an epidemic. We assume that the epidemic is described by the simplified
SIR model [16] and also assume that the total time of the campaign is budget
limited. Optimality is measured minimizing the total number of infected at the end
of the optimal outbreak. If we cannot make a campaign during all the epidemic
time, what is the optimal way of using the time we have? How many campaigns
should we make? What should be their intensities? When should they start? The
difficult point is, of course, how to model the effect of the campaign on the spread
of the epidemic. Here we face two problems: first, the model must be intuitively
plausible and second, it must be mathematically tractable.

With respect to the first requirement we will model the campaign effects by
reducing the rate at which the disease is contracted from an average individual
during the campaign (called shortly infection rate). We justify this with an example:
suppose during a flu outbreak one starts a campaign orienting susceptibles to avoid
contracting the virus (assuming some protective behavior, e.g., washing hands,
avoiding close environments, etc.). The effect of the campaign will be that the
probability of a susceptible contracting the virus will decrease. The same reasoning
applied to a campaign oriented to the infected (e.g. stimulating quarantine) will be
modelled increasing the rate at which an average individual leaves the infective rate
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(called shortly removal rate). With respect to the second requirement we assume,
for mathematical simplicity, that this reduction (increase) is bounded below (above)
and the campaigns cost are linear on the controls. With those hypotheses the
problem renders itself to analytical treatment and we can prove the main facts
about the optimal campaign. The theorems of section 4 reduce the dimension of
the optimal problem allowing a complete numerical study of the problem.

Application of control theory to epidemics is a very large field. A comprehensive
survey of control theory applied to epidemiology was performed by Wickwire [17].
Many different models with different objective functions have been proposed (see
[8, 9, 12] and more recently [3, 18]). A major difficulty in applying control theoretic
methods to practical epidemiology problems is the commonly made assumption
that one has total knowledge of the state of the epidemics [7].

2. Statement of the problem

We denote by S(t), I(t), R(t) the number of susceptible, infectives and removed
in a closed population of size N at time t. We assume the controlled dynamics

Ṡ = −u1SI ,

İ = u1SI − u2I ,

Ṙ = u2I,

(2.1)

The above models assume a mass-action type interaction ( for more realistic inter-
actions see [4]). We let positive constants β and γ denote the infection and removal
rates respectively without the influence of an education campaign. Our controls
are u1(t), u2(t) with u1(t) ∈ [βm, β] and u2(t) ∈ [γ, γM ] with 0 < βm. Observe
that u1(t) and u2(t) regulate the goals and efforts of two types of campaigns. For
example, if u2(t) = γ for all t we are controlling only the infection rate. In this
case u1(t) = β will correspond to not having a campaign affecting the susceptibles
and u1(t) = βm will correspond to the maximum effort that can be made. The
reciprocal case will be if u1(t) = β for all t. In this scenario we will be controlling
only the removal rate γ. The above considerations motivate the introduction of the
following cost constraints.

J1 =
∫ t∗

0

[(β − u1(t)) + (u2(t)− γ)]I(t) dt , (2.2)

J2 =
∫ t∗

0

(β − u1(t)) + (u2(t)− γ) dt , (2.3)

In both cases the cost is linear in the controls u1 and u2. In the first case the
cost of the campaign is supposed to be proportional to the number of infected (if
one assumes that the number of infected is proportional to the number of regions
where the disease occurs and therefore, to the number of regions to be covered by
the campaign, higher the number of infected, higher the costs) . The second case
assumes that the cost is independent of the number of infected.

Our goal will be to find the optimal control strategies that minimize the total
number of infected over the course of the epidemic outbreak (equivalently, that
maximize the total number of susceptibles). In this work, the end of the epidemic
outbreak will be defined as a (very large) time instant t∗ for which I(t∗) < 1 (see
remark (2.1) about the existence of t∗). In other words, t∗ is the first time such that
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I(t∗) < 1. This is a technicality in order to avoid dealing with a infinite horizon
control problem. Since in the simplified SIR model the only way to enter in the
removed class is from the infected class, the total number of infected at the end of
the epidemics is given by limt→∞R(t). However,

Ṙ = γI ,

and since we always assume R(0) = 0, we obtain that the total number of infected
is given by

lim
t→∞

R(t) =
∫ ∞

0

γI(t) dt .

Remark 2.1. We make some remarks that are important for what follows.

(1) Since S(t) + I(t) + R(t) = N we will ignore the last equation of (2.1).
(2) The set M = {I ≥ 0, S ≥ 0, S + I ≤ N} is an invariant set for system (2.1).
(3) In the simplified SIR model we always have that limt→∞ I(t) = 0 (see e.g.

[6]).

Since we are working only on M and the controls u1 and u2 are bounded and
positive, we will always have that limt→∞ I(t) = 0 for any control. This establishes
the existence of t∗.

The constant cost constraints J1 and J2 can be imposed introducing a new
variable w to our system. We obtain the two control systems

Ṡ = −u1SI,

İ = u1SI − u2I, Y1 =
∫ t∗

0

I(t) dt

ẇ =
((

β − u1(t)
)

+
(
u2(t)− γ

))
I(t), w(0) = 0, w(t∗) = C.

(2.4)

with cost J1, and the system

Ṡ = −u1SI ,

İ = u1SI − u2I, Y2 =
∫ t∗

0

u2(t)I(t) dt

ẇ =
(
β − u1(t)

)
+

(
u2(t)− γ

)
, w(0) = 0, w(t∗) = C.

(2.5)

with cost J2. In both systems we are imposing J1 = J2 = C, where C is a constant.

Remark 2.2. The constant C is the value of the total amount of campaign effort.
We will assume henceforth that C is such that the controls can not be at the
maximum effort level during the whole time period.

The problems will be referred as problem C1 and C2 respectively. The goal is to
find the optimal controls to (2.4) that minimize Y1 and the optimal controls to (2.5)
that minimize Y2. We will refer to the first problem as problem C1 and to the second
problem as problem C2. As it will turn out, problem C1 is trivial. We will assume
that the admissible controls u1 and u2 are measurable locally bounded functions.
Since u1 and u2 appear linearly in our control problems, an optimal control will in
general be a combination of bang-bang controls and singular controls (see [14, 11]).
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3. Optimality Problem C1

Problem C1 is such that all the differential equations involved are multiplied by
the positive function I(t). This motivates the introduction of a new parameter s
defined by

s(t) =
∫ t

0

I(t)dt.

Observing that d
dt = I d

ds we obtain for the objective functional that

Y1 =
∫ t∗

0

Idt =
∫ s∗

0

ds = s∗,

where s∗ =
∫ t∗

0
I(t)dt. Therefore, problem C1 write as the minimum time problem

S′ = −u1S,

I ′ = u1S − u2

w′ = (β − u1) + (u2 − γ), w(0) = 0, w(s∗) = C,

(3.1)

where ′ = d
ds , and s∗ =

∫ t∗

0
I(t)dt. Now we see that in order for the variable w(s)

achieve the value C in the smallest possible time s, it suffices that the derivative
w′ be the largest possible, therefore it suffices that u1(s) = βm and u2(s) = γM .

4. Optimality Problem C2

Our main tool for the study of the optimality of system (2.5) will be the Pon-
tryagin Maximum Principle (PMP) [1, 14]. Let pS , pI and pw denote the adjoint
variables to S, I, and w respectively. The Hamiltonian for problem C2 is

H = pS(−u1SI) + pI(u1SI − u2I) + pw[(β − u1(t)) + (u2(t)− γ)]− u2(t)I.

That we write as
H = g + u1φ1 + u2φ2, (4.1)

where
g ≡ pw(β − γ), φ1 ≡ SI(pI − pS)− pw, φ2 ≡ −I(pI + 1) + pw.

The adjoint variables satisfy Hamilton’s equations

ṗS = −∂H
∂S

, ṗI = −∂H
∂I

, ṗw = −∂H
∂w

, (4.2)

that are given by
ṗS = u1I(ps − pI),

ṗI = u1S(ps − pI) + u2(pI + 1),
ṗw = 0.

(4.3)

By the PMP, the optimal controls u1(t), u2(t) are the ones that maximize H (we
are ignoring abnormal controls see [1]). PMP implies that at optimal trajectories
the following transversality conditions will hold [14]

pS(0) = pI(0) = 0 and pS(t∗) = pI(t∗) = 0. (4.4)



EJDE-2006/125 OPTIMAL CONTROL OF AN EPIDEMIC 5

This is implied by the boundary conditions to be satisfied by w. The derivatives of
the functions φ1 and φ2 along the flow of hamiltonian dynamical system induced
by (4.1) can be computed using (2.5) and (4.3). We obtain

φ̇1 = u2IS(pS + 1), (4.5)

φ̇2 = −u1IS(pS + 1). (4.6)

From where it follows that
u1φ̇1 + u2φ̇2 = 0 .

Remark 4.1. The existence of the optimal control for problem C2 is given by an
application of Filipov’s theorem [1, 15]: We observe that the vector field X defined
by (2.5) is bounded in M and complete (M is compact). Also the controls are
bounded and for each fixed allowed pair (u1, u2) the set

X̄(u1, u2) =
{

SI

 u1

−u1

0

 + I

 0
u2

0

 , for S, I ∈ M
}

is convex, which implies that the set X(u1, u2) = {XforS, I ∈ M} is convex. To
apply directly Filipov’s theorem it remains to establish the compact support of the
vector fields. But this is not necessary by the boundness and completeness of the
vector fields (see discussion in [1] and [5]).

4.1. Controlling the infection parameter. In this subsection we will control
only the infection parameter; i.e., we will assume u2(t) = γ for all t ≥ 0. The
pre-hamiltonian (4.1) is given by

H = βpw − γI(pI + 1) + u1(t)φ1. (4.7)

We observe that the derivative of the switching function φ̇1 = γSI(pS + 1) is a
continuous function and its number of zeros is determined only by the behavior of
pS since −γIS 6= 0.

Lemma 4.2. If u2(t) = γ in the control problem (2.5) then there is no open interval
where φ1(t) = φ̇1(t) = 0.

Proof. Assume there exists an open interval D, where φ1(t) = φ̇1(t) = 0 for t ∈ D.
The derivative of φ1 being zero implies that pS = −1 in D what implies that ṗS = 0
and by the first equation of (4.3) we have that pI = pS = −1 in D; but equations
(4.3) imply that pI = pS = −1 for all future t (pI = pS = −1 is an equilibrium point
for the vector field (4.3)) what contradicts the transversality condition (4.4). �

Theorem 4.3. If u2(t) = γ in the control problem (2.5), the optimal control u∗1(t)
has at most two switches.

Proof. First we observe that when φ1 = 0 we have by (4.7) that

H − βpw = −γI(pI + 1).

For latter use we multiply this equation by −S
γ obtaining the equality

SI(pI + 1) = −S

γ
(H − βpw). (4.8)

When φ1 = 0 we have that SI(pI − pS) = pw. Solving for pS and substituting back
in φ̇1, we obtain

φ̇1 = γSI(pS + 1) = γ(SI(pI + 1)− pw).
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Using (4.8), we obtain that at the zeros of φ1,

φ̇1 = (βpw −H)S − pw. (4.9)

From equation (4.9) we define the function

h = (βpw −H)S − pw.

By the first equation of (2.1) we see that S is a strictly monotone function. There-
fore since pw and H are constant along the flow we have that h is a monotonic
function. (4.9) shows that at the zeros of φ1, φ̇1 = h. Therefore, we have that
at the zeros of the C1 function φ1, the values of its derivative φ̇1 is a monotonic
function. Therefore φ̇1 can switch signs at most one time. What implies that φ1

can have at most two switches of sign (and at most three zeros). �

4.2. Controlling the removal parameter. In this section we will assume that
u1 = β for all times. The pre-hamiltonian is

H = −pwγ + βSI(pI − pS) + u2φ2. (4.10)

We observe that φ̇2 = −βSI(pS + 1) is a continuous function.

Lemma 4.4. If u1(t) = γ in the control problem (2.5) then there is no singular
optimal control u2(t).

The proof of the above lemma is similar to the proof of lemma (4.2). Therefore,
it is omitted.

Theorem 4.5. If u1(t) = β in the control problem (2.5), the optimal control u2(t)
has at most two switches.

Proof. When φ2 = 0 we have that pI − 1 = pw/I. Since at the zeros of φ2 we have

H + γpw = βSI(pI − pS)

it follows that
φ̇2 = H + pw(γ − βS). (4.11)

The argument here is the same as the in proof of theorem (4.3). The left hand side
of (4.11) is a monotonic function. Therefore we have that at the zeros of the C1

function φ2, φ̇2 can switch signs at most one time. Therefore φ2 can have at most
two switches of sign (and at most three zeros). �

4.3. Controlling the infection and the removal parameters. In this case
we are working in a more complex case. We recall that φ̇1 = u2IS(pS + 1) and
φ̇2 = −u21IS(pS +1). The functions φ̇1 and φ̇2 depend on the controls and are not
necessarily continuous (we are assuming that u1(t) and u2(t) are measurable locally
bounded functions). Therefore φ1 and φ2 are not C1 functions and the previous
reasoning does not apply in this case.

Theorem 4.6. Along the optimal solution there is no time instant t̄ for which
φ1(t̄) = φ2(t̄) = 0.

Proof. At t̄ we would have that pS = pI = −1 what contradicts the boundary
conditions for w at t = t∗. �

A corollary of this fact is that H − g 6= 0. As in lemma 4.2, we can prove the
following result.
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Theorem 4.7. There is no time interval for which φ1(t) = φ̇1(t) = 0 and for which
φ2(t) = φ̇2(t) = 0.

Theorem 4.8. The two types of campaign, that is, the campaign for reducing β
and the campaign for increasing γ are either time disjoint or time nested.

The theorem says, for example, that if you start a reducing infection rate cam-
paign (RIRC), when there is no campaign being made, then there are only two
possibilities: either you start and finish a increasing removal rate campaign (IRRC)
before you finish the RIRC of you wait until the RIRC is over to start the IRRC.

Proof. We recall that
H = g + u1φ1 + u2φ2.

Since g is constant and H is a first integral for the control system it follows that
the two functions f1 ≡ u1φ1 and f2 ≡ u2φ2 add to a constant. The proof is a direct
consequence of this fact. A campaign will start or end at a switch time, i.e. at
a time where some of the functions φ1 or φ2 changes sign. Now let α ≡ H − g.
Therefore if f1(t1) is zero we have that f2 = α and vice-versa. Assume, by way
of contradiction, that campaigns are neither disjoint neither nested. We have two
cases to consider a) The number of total switches is two or b) The number of total
switches is greater than two. (the case of only one switch satisfies the theorem).
If we are in case a) the only situation that does not satisfy the theorem is the
one where each function has one switch and one of the campaigns (say campaign 2)
starts when the other campaign (say campaign 1) is still on. In this case, since there
is only one switch left, it follows that only one of the two will be turned off. As a
net result we will have at least one campaign being made during all epidemic time
what is ruled out by the main hypothesis of the paper: one can not make campaign
for all times (see remark 2.2). In case b) We have at least three zeros. Now assume,
by way of contradiction, that there are two campaigns that are neither disjoint or
nested. Then there is at least one switching time t̄ for say f2 that is inside the
f1 campaign interval I = [t1, t2]. Assume without lost of generality that t̄ is a
start and that there is no other switch of f2 in the interval Ī = [t̄, t2] (intersection
hypothesis) Now at t1 we have f1(t1) = 0 and f2(t1) = α. At t2 we also have that
f1(t2) = 0 and f2(t2) = α. But this impossible, since f2 switches signs at t̄ and
does not switch signs in the interval Ī. �

5. Controlling an Epidemic

In this section we study an example numerically. We will be controlling only
the infection parameter. We assume that the campaign cost is independent of
the number of infected, i.e. We will be considering the problem C2. Since the
optimal campaign has at most two switches it will consist of only one campaign
with maximal effort. Therefore, to determine the optimal campaign, one must only
to determine the time instant when it starts. We call it the optimal start. The
strategy to determine the optimal control numerically is as follows: For a fixed
campaign time C we fix the susceptible and infective initial values. A grid of N
starting campaign times ti, i = 1, ..N is then specified. The equations for S(t) and
I(t) (the adjoints are not used) are then integrated N times, one for each campaign
starting time ti. The total number of infected Ti by the end of the epidemic outbreak
is them computed. The optimal start is the ti that results in the smaller of all Ti.
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Our goal is to understand how the optimal start depends on the campaign total
time C (we will present only the results for reducing β since the results for increasing
γ are equal in nature). The model case is a severe flu epidemic described in the
4th March 1978 issue of the British Medical Journal. The parameters for the
epidemic were determined by a best fit numerical technique in [13]. The values for
the influenza epidemic are N = 763, S(0) = 762, I(0) = 1, γ = 2.18 × 10−3 and
β = 0.44036. Time is measured in days. We plot the epidemic dynamics in figure
1. The maximum number of infected occurs at t = 6.49. This instant is called
(according Bailey [2]) the central epoch.
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0 5 10 15 20

S

I

Figure 1. Epidemic dynamics: The number of infected I and the
number of susceptibles S. Time is measured in days.

We used a Runge-Kutta Fehlberg 7-8 to integrate the system of equations with
tolerance 10−8 and step size h = 0.01. We will take βm ≡ 1.08× 10−3 what gives a
reduction of 50%of the infection rate. The results obtained are valid for all ranges
of reduction studied. The optimal start can be determined numerically by a simple
search procedure. We partition the time interval in intervals of length 0.1. Then
we do the campaign (reducing the infection parameter by 50% ) during time C
for all starting times. In figure 2 we show the number of infected at the end of
the epidemic as a function of the starting time. Each curve represents different
campaign times.

In figure 3 we show the optimal starting time as a function of the campaign time.
We observe that as the campaign time increases the starting time decreases until
eventually becomes zero.

Figure 4 shows that the optimal campaigns always include the central epoch.
In other words, limited cost campaigns are optimal around the central epoch for
non-controlled epidemics. In the figure we show in the horizontal axis the campaign
duration. The two solid curves represent the time when the campaign starts (lower)
and the time when the campaign finishes (upper). The dashed curve shows the
central epoch. It is always inside the campaign duration even for very small times.

Conclusions. In this paper we studied optimal strategies for a limited cost educa-
tional campaign during the outbreak of an epidemic. Optimality was measured by
the minimality of the total number of infected at the end of the outbreak. Assum-
ing that the effect of the campaign was to decrease (or increase) infection (removal)
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Figure 2. Number of total infected at the end of epidemics as a
function of the campaign starting time. Different curves represent
different campaigns times C.
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Figure 3. Optimal starting time for different values of campaign
values C.

rate we were able to show, using the Pontryagin Maximum Principle, that the op-
timal campaign must consist of only one maximum effort. Numerical simulations,
concerning a particular epidemic, gave us additional information about the optimal
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Figure 4. Relative position of the central epoch (dashed line)
with respect to the optimal campaign interval.

start, i.e. the time to start this maximum effort, in order to minimize our objective
functional. Calling t̃ the central epoch we summarize our results in the following: If
the campaign cost is proportional to the number of infected than both campaigns,
to decrease infection rate and to increase removal rate must be done with maximum
intensity at the start of the epidemic. If the campaign cost is independent of the
number of infected and only one scenario is chosen, then 1) only one maximum
effort campaign should be made, 2) all campaigns should include t̃. If the goals of
the campaign is both to decrease infection rate and to increase removal rate then
campaign for different scenarios must be nested or disjoint. They should never start
or end at the same time.
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