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SPECTRAL PROPERTIES OF NON-LOCAL
UNIFORMLY-ELLIPTIC OPERATORS

FORDYCE A. DAVIDSON, NIALL DODDS

Abstract. In this paper we consider the spectral properties of a class of

non-local uniformly elliptic operators, which arise from the study of non-local

uniformly elliptic partial differential equations. Such equations arise naturally
in the study of a variety of physical and biological systems with examples

ranging from Ohmic heating to population dynamics. The operators stud-

ied here are bounded perturbations of linear (local) differential operators, and
the non-local perturbation is in the form of an integral term. We study the

eigenvalues, the multiplicities of these eigenvalues, and the existence of corre-

sponding positive eigenfunctions. It is shown here that the spectral properties
of these non-local operators can differ considerably from those of their local

counterpart. However, we show that under suitable hypotheses, there still

exists a principal eigenvalue of these operators.

1. Introduction

This paper studies the spectral properties of a class of linear integro-differential
operators

[Lεu](x) =
n∑

i,j=1

(aij(x)uxi
(x))xj

+ b(x)u(x) + εc(x)
∫

U

d(x)u(x)dx, x ∈ U, (1.1)

where U is a bounded connected subset of Rn with a suitably smooth boundary,
∂U , and −

∑n
i,j=1(aij(x)uxi(x))xj is uniformly elliptic on U .

The operator Lε is defined on a domain that incorporates homogeneous Dirichlet
boundary conditions. By varying the real parameter ε, the non-local operator can
be viewed as a continuous, bounded perturbation of the (local) differential operator,

[Au](x) =
n∑

i,j=1

(aij(x)uxi
(x))xj

+ b(x)u(x). (1.2)

In this paper this structure will be exploited to study the spectral properties of Lε.
Results will not be restricted to small ε; rather, ε should be viewed as a homotopy
parameter from the local operator A to the general form Lε.
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Operators of the type given in (1.1) arise from the study of non-local nonlinear
parabolic problems of the form

ut(x, t) =
n∑

i,j=1

(aij(x)uxi
(x, t))xj

+ f(x, u(x, t), ū(t)), ū(t) = ε

∫
U

g(x, u(x, t))dx,

(1.3)
for sufficiently differentiable functions f and g. Here ε is a real parameter which
can be viewed as a measure of strength of the non-local interactions. System (1.3)
requires to be augmented with appropriate boundary conditions, for example ho-
mogeneous Dirichlet boundary conditions, as studied here, as well as an initial
condition. Non-local boundary value problems of this type appear in a wide variety
of applications, including Ohmic heating [13, 21], the formation of shear bands in
materials [4], heat transfer in thermistors [11], combustion theory [22], the electric
ballast resistor [8], microwave heating of ceramic materials [7, 20], and popula-
tion dynamics [17]. An extensive survey of results, techniques and applications of
non-local reaction-diffusion equations of this form is given in [15].

It is often desirable to identify steady states of (1.3) and determine their stability,
as stable steady states represent possible asymptotic states of the system under
consideration, and are thus of most physical relevance. Let us assume that a steady
state, u∗, of (1.3) exists. Then linearizing (1.3) around u∗, leads to

ut(x, t) =
n∑

i,j=1

(aij(x)uxi(x, t))xj + b(x)u(x, t) + εc(x)
∫

U

d(x)u(x, t)dx, (1.4)

where b(x) = fu(x, u∗(x), ū∗), c(x) = fū(x, u∗(x), ū∗) and d(x) = gu(x, u∗(x)). We
will assume that f and g, and consequently b, c and d are real valued functions.
Formally at least, it is straightforward to see that the values of λ for which

n∑
i,j=1

(aij(x)uxi(x))xj + b(x)u(x) + εc(x)
∫

U

d(x)u(x)dx = λu(x), x ∈ U ;

u(x) = 0 on ∂U,

(1.5)

has a solution, determine the growth properties of the solutions of (1.4) and hence
the (local asymptotic) stability of the steady state u∗ of (1.3). This connection can
be made rigorous as detailed in [18]. Indeed, an operator equation Lεu = λu can be
defined on a suitable domain, which is equivalent to (1.5) and hence, the spectral
properties of Lε determine the stability of steady states of (1.3).

The spectral properties of (1.2) are well-known, and in [12], certain corresponding
properties for the non-local operator Lε are derived using the perturbation theory of
linear operators (see e.g. [19]), for the special case n = 1. Results in [12] deal with
the structure of the set of eigenvalues of Lε, σ(Lε), when considered as functions of
the parameter ε, and show that the Fourier coefficients of the functions c and d in
(1.1) with respect to the eigenfunctions of (1.2), are fundamental to determining
the qualitative structure of σ(Lε). Further results concerning the spectrum of Lε,
multiplicities of the eigenvalues of Lε, and the nodal properties of the associated
eigenfunctions for the case n = 1, are presented in [9]. In [16], some of the work done
in [12] is extended to n ≥ 1 in the case where A is of the form Au = ∆u + a(x)u,
where ∆· denotes the Laplacian operator, as is standard. Other papers that include
related results on spectral properties of non-local operators are [1, 5, 6, 10, 14, 23].
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In this paper we extend results from [9] to the general n ≥ 1 case and present
some further spectral results, which are new to all cases. As is shown in the above
references, the presence of the non-local term in Lε gives a much wider variety of
possible behaviour of the spectrum, than that of the corresponding local operator.

The following section contains relevant definitions, along with some basic results.
In Section 3 we consider how the eigenvalues of Lε change with ε, and results re-
garding multiplicities of eigenvalues of Lε are given in Section 4. The existence of a
principal eigenvalue, i.e. an eigenvalue to which there corresponds a positive eigen-
function, is important to a number of results including those related to determining
stability and the existence of positive solutions of associated nonlinear problems (via
bifurcation theory). [9, Theorem 5.5], [12, Lemma 3.16] and [14, Proposition 6.1]
deal with the existence of positive eigenfunctions of Lε. We present further, more
general results dealing with not only the existence, but also the uniqueness of a
principal eigenvalue of Lε in Section 5.

2. Preliminaries

Let U be an open bounded connected subset of Rn where n ≥ 1, and assume that
the boundary of U , ∂U is Ck+1 where k := bn+4

2 c. Let A,B, Lε : H2(U)∩H1
0 (U) ⊂

L2(U) → L2(U) be defined by

[Au](x) :=
n∑

i,j=1

(aij(x)uxi
(x))xj

+ b(x)u(x),

[Bu](x) := c(x)
∫

U

d(x)u(x)dx,

Lε := A + εB,

(2.1)

where aij , b ∈ Ck(Ū); c ∈ Hk−1(U); d ∈ L2(U); c, d 6≡ 0; and ε ∈ R. Note
that following standard regularity arguments, the condition on c is necessary for
the eigenfunctions of Lε to lie in C2(U). This in turn is necessary to ensure the
equivalence of the operator equation Lεu = λu and (1.5). Also, assume that −A is
uniformly elliptic.

Then A is a densely defined, closed, self-adjoint operator with compact resolvent.
Its spectrum is real, bounded above and consists entirely of isolated eigenvalues of
finite multiplicity. Denote these eigenvalues by γi, i = 1, 2, 3, . . . Then it is well-
known that γ1 > γ2 ≥ · · · ≥ γi ≥ γi+1 ≥ . . . and γi → −∞ as i →∞. The largest
eigenvalue of A, γ1, is simple and the eigenfunction v1 corresponding to γ1 can be
chosen to be strictly positive on U . Furthermore this is the only eigenvalue of A to
which there corresponds a positive eigenfunction, and the set of eigenfunctions of
A, {vi}∞i=1 can be chosen to form an orthonormal basis for L2(U).

Clearly B is a bounded linear operator, and therefore it can be shown that for
each fixed ε, Lε is a densely defined, closed operator with compact resolvent. Hence,
for each fixed ε, the spectrum, σ(Lε), consists entirely of isolated eigenvalues of finite
multiplicity. Denote these eigenvalues by λi(ε) and for consistency let λi(0) = γi for
each i ∈ N. Denote the eigenfunctions of Lε by ui(ε), where ui(ε) corresponds to the
eigenvalue λi(ε). Then in this way, we generate a set of functions, Σ := {λi(ε)}∞i=1,
which we shall also refer to as eigenvalues of Lε. Similarly, the functions of ε, ui(ε)
will be referred to as eigenfunctions. Then we may apply results contained in [19,
Sections II-1, III-6.4, IV-3.5 and VII-1.3] to our problem to give:
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Lemma 2.1. (a) For each i, λi(ε) is a continuous function of ε, ∀ε ∈ R.
(b) Fix j. If λj(ε) 6= λi(ε) for all i 6= j and ∀ε ∈ (ε1, ε2), then λj(ε) is an

analytic function of ε ∀ε ∈ (ε1, ε2), and the eigenprojection corresponding
to λj(ε) is an analytic function of ε ∀ε ∈ (ε1, ε2).

(c) Let S ⊂ Σ contain only a finite number of elements. If λi(ε) 6= λj(ε) for any
λi(ε) ∈ S and λj(ε) ∈ Σ\S, ∀ε ∈ (ε1, ε2), then the sum of the eigenvalues
in S is an analytic function of ε for all ε ∈ (ε1, ε2). Furthermore, the
total eigenprojection corresponding to all the eigenvalues in S is an analytic
function of ε ∀ε ∈ (ε1, ε2).

Also, by standard regularity theory, given the assumptions on the coefficient
functions aij , b, c, and the boundary ∂U , it can be shown that any eigenfunction
of Lε is actually in C2(Ū), i.e. the spectral properties of Lε : H2(U) ∩ H1

0 (U) ⊂
L2(U) → L2(U) are identical to the spectral properties of the corresponding non-
local differential equation.

It is useful to distinguish between those eigenvalues of Lε which change with ε,
and those which do not.

Definition 2.2. We call λi(ε) a fixed eigenvalue iff λi(ε) ≡ γi. If λi(ε) is not
fixed, then it is referred to as a moving eigenvalue.

Note that an eigenfunction ui(ε) corresponding to a fixed eigenvalue λi(ε), may
or may not vary with ε. If the latter holds, i.e. ui(ε) ≡ vi, then we refer to such an
eigenfunction as being fixed.

Let γi be a fixed eigenvalue of Lε, and let X =
⋂

ε∈R N(Lε − γiI). We call X
the fixed eigenspace of Lε corresponding to γi.

Finally, the adjoint of Lε, denoted L∗ε is defined by

L∗εu = Au + εB∗u, ε ∈ R, u ∈ H2(U) ∩H1
0 (U)

where

[B∗u](x) = d(x)
∫

U

c(x)u(x)dx.

As already noted A is self-adjoint, i.e. L0 is self-adjoint. Moreover, Lε is self-
adjoint if and only if c ≡ d, and clearly if Lε∗ is self-adjoint for some ε∗ 6= 0, then
Lε is self-adjoint for all ε ∈ R.

Whilst [16] considered non-local perturbations of Au = ∆u + a(x)u(x), it was
noted there that it is straightforward to extend all of the spectral theory results in
[16] to a wider class of non-local operators, including the operators given by (2.1).
Hence, where we refer to relevant results from [16], we do so in terms of (2.1).

Understanding the key differences in spectral structure of Lε between the case
n = 1 studied in [9, 12] and the general case studied here is central to extending
many results from [9] and [12]. Hence we now proceed to highlight the important
differences between the structure of Σ in these two cases.

One of the main differences between the case n = 1 previously studied in [9,
12], and the general n ≥ 1 case, is that for n > 1, eigenvalues of A can have
arbitrarily large (but finite) multiplicities. Therefore, although from Lemma 2.1 the
eigenvalues and eigenprojections are continuous, it may be possible for an eigenvalue
to “split” at ε = 0 to form multiple distinct eigenvalues of Lε. However in [16], it
was shown that:
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Lemma 2.3 ([16]). If an eigenvalue of A, γi, has geometric multiplicity m > 1,
then γi is an eigenvalue of Lε ∀ε ∈ R, and the fixed eigenspace, X, of Lε corre-
sponding to γi is such that dim X ≥ (m− 1).

Note that by this result it follows that all moving eigenvalues of Lε are of geo-
metric multiplicity 1 until they “collide” with another eigenvalue of Lε, (see Section
4 for a detailed discussion of multiplicities). The effect of A having eigenvalues of
higher multiplicity is simply to add more (possibly high multiplicity) fixed eigen-
values to Σ, or to increase the multiplicities of the fixed eigenvalues already in
Σ. Therefore, for differential operators of the form given above, the set of moving
eigenvalues has the same properties as the set of moving eigenvalues of the operators
studied in [9, 12], i.e. in the case n = 1. As shown in [16], these properties include
that λj(ε1) = λj(ε2) for any j ∈ N and any ε1 6= ε2 only if λj(ε1) = λj(ε2) = γi. for
some i ∈ N. Hence if a real moving eigenvalue starts moving in one direction along
the real line, then it can not turn back on itself as long as it remains real. Also,
λj(ε1) = λk(ε2) for any j 6= k ∈ N and any ε1 6= ε2 only if λj(ε1) = λk(ε2) = γi

for some i ∈ N. Hence if λj and λk are 2 real moving eigenvalues which are real
∀ε ∈ R, and if γj < γk, then λj(ε1) ≤ λk(ε2) for any ε1, ε2 ∈ R.

3. The Spectrum of Lε

As noted above, in general the spectrum of Lε will vary with the parameter ε.
In this section we present results that deal with precisely how the eigenvalues of Lε

change.
Ideally we would like to determine explicit formulae for the functions {λi(ε)}∞i=1.

We have been unable to do this, but we have obtained the following implicit (but
nevertheless useful) expression.

Lemma 3.1. Take any real number λ 6= γi for any i ∈ N. Take an orthonormal
basis of eigenfunctions of A, {vi}∞i=1, and let

c(x) =
∞∑

i=1

civi(x), d(x) =
∞∑

i=1

divi(x),

i.e. {ci}∞i=1 and {di}∞i=1 are the Fourier coefficients of c and d respectively. Then
the solution ε∗ of the equation λ = λk∗(ε∗) is unique if it exists, and is given by

ε∗ =
( ∞∑

i=1

cidi

(λ− γi)

)−1

. (3.1)

Proof. The uniqueness of the value ε∗ follows from the arguments at the end of the
preceding section. Let

u(x) =
∞∑

i=1

βivi(x). (3.2)

Then, substituting the above expressions for c, d and u into the equation Lεu = λu
and comparing the coefficients of vi for each i ∈ N gives

βi(γi − λ) + εci

∫
U

d(x)u(x)dx = 0.

Hence, either ci = βi = 0 or

ε =
βi(λ− γi)

ci

∫
U

d(x)u(x)dx
.
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But this will hold for all i such that ci 6= 0, and so in this case

βi(λ− γi)
ci

= K, (3.3)

for some constant K independent of i, and without loss of generality we take K = 1.
Hence,

u(x) =
∞∑

i=1

ci

(λ− γi)
vi(x), (3.4)

and it follows directly from (3.3) and (3.4) that

ε =
1∫

U
d(x)u(x)dx

.

By Parseval’s formula we can interchange the order of summation and integration
in

∫
U

d(x)
∑∞

i=1
ci

(λ−γi)
vi(x)dx, as {vi}∞i=1 is an orthonormal basis for L2(U), to give

ε =
( ∞∑

i=1

cidi

(λ− γi)

)−1

.

�

Note that as observed in [16],

λi(ε) ≡ γi ⇒ λ′i(0) = 0

⇔
∫

U

c(x)vi(x)dx

∫
U

d(x)vi(x)dx = 0

⇔ either Bvi ≡ 0 or B∗vi ≡ 0,

(3.5)

also

B[ui(ε∗)] ≡ 0 for some ε∗ ∈ R ⇒ λi(ε) ≡ γi and ui(ε) ≡ vi = ui(ε∗).

Furthermore, as a result of Lemma 3.1

Lemma 3.2. No moving eigenvalue of Lε emanates from γj if and only if∫
U

c(x)v(x)dx

∫
U

d(x)v(x)dx = 0 (3.6)

for all v ∈ N(A− γjI).

Proof. If no moving eigenvalue of Lε emanates from γj , then (3.6) follows by the
results listed immediately above. Now, suppose that (3.6) holds for all v ∈ N(A−
γjI), and assume that there exists a moving eigenvalue λj(ε) emanating from γj at
ε = 0, with corresponding eigenfunction uj(ε). Then by Lemma 2.3, there exists
an orthogonal basis {v1, ..., vn} of N(A− γjI), such that

Span{v1, ..., vn−1} = N(Lε − γjI), ∀ε 6= 0. (3.7)

Moreover, by Lemma 2.1(c),
lim
ε→0

uj(ε) = vn.

Therefore putting u = uj(ε) in (3.2) gives βn 6= 0 for ε sufficiently small. Hence,
from (3.4), cn 6= 0, and noting that (3.6) is equivalent to cidi = 0 for i = 1, ..., n,
we have dn = 0. However, again from above dn = 0 ⇒ vn ∈ N(Lε − γjI) ∀ε ∈ R,
but this contradicts (3.7). �
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In [12] an expression for λ′j(0) was obtained for the case n = 1. In [9] an
expression was obtained for λ′j(ε), ∀ε ∈ R, for the case n = 1 when Lε is self-
adjoint. The following theorem extends these two results in the case n = 1, and
furthermore holds for general n.

Theorem 3.3. Let λj(ε) be a moving eigenvalue of Lε of algebraic multiplicity 1,
and let uj(ε) and u∗j (ε) be eigenfunctions of Lε and L∗ε respectively, corresponding
to λj(ε). Then

λ′j(ε) =

∫
U

d(x)[uj(ε)](x)dx
∫

U
c(x)[u∗j (ε)](x)dx∫

U
[uj(ε)](x)[u∗j (ε)](x)dx

. (3.8)

Proof. First suppose that λj(ε) 6= γi ∀ i ∈ N. Then by Lemma 3.1 [uj(ε)](x) :=∑∞
i=1

ci

λj(ε)−γi
vi(x) and [u∗j (ε)](x) :=

∑∞
i=1

di

λj(ε)−γi
vi(x) are eigenfunctions of Lε

and L∗ε respectively corresponding to the eigenvalue λj(ε). Also by Lemma 3.1,

ε(λj) =
( ∞∑

i=1

cidi

λj(ε)− γi

)−1

. (3.9)

Now as λj(ε) 6= γi for any i ∈ N, it is straightforward to show that
∑∞

i=1
cidi

λj(ε)−γi
is

uniformly convergent in a suitable neighbourhood of ε. Hence, we can differentiate
the series in (3.9) term by term and use the chain rule to obtain

dε

dλ
=

( ∞∑
i=1

cidi

λj(ε)− γi

)−2( ∞∑
i=1

cidi

(λj(ε)− γi)2
)
,

and so
dλ

dε
=

( ∞∑
i=1

cidi

λj(ε)− γi

)2( ∞∑
i=1

cidi

(λj(ε)− γi)2
)−1

. (3.10)

If we substitute the series expansions for c, d, u(ε) and u∗(ε) into (3.8), and inter-
change the order of summation and integration, then the equivalence of (3.8) and
(3.10) is proven.

For λj(ε) = γj (i.e. when ε = 0), the result follows by the analyticity of the
eigenvalues and eigenfunctions, as discussed in Lemma 2.1. �

Hence, as in the case n = 1, we have

Corollary 3.4. If Lε is self-adjoint, and if λj(ε) is an eigenvalue of Lε of geometric
multiplicity 1, then

λ′j(ε) =

( ∫
U

c(x)[uj(ε)](x)dx
)2∫

U
[uj(ε)](x)2dx

.

When deriving an expression for λ′j(0), we must deal with the case where an
eigenvalue of A “splits” to form a moving (simple) eigenvalue and a fixed eigenvalue
of Lε.

Theorem 3.5. Suppose that there exists an eigenvalue of Lε, λj(ε) for which
λj(0) = γj, but λj(ε) 6= γj for ε 6= 0. If ṽ := limε→0 uj(ε), then

λ′j(0) =

∫
U

c(x)ṽ(x)dx
∫

U
d(x)ṽ(x)dx∫

U
ṽ(x)2dx

.
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If in addition, Lε is self-adjoint, then

λ′j(0) = max
u∈N(A−γjI)

( ∫
U

c(x)u(x)dx
)2∫

U
u(x)2dx

.

Proof. Even in the case where the moving eigenvalue λj(ε) intersects a fixed eigen-
value at γj , by Lemma 2.1 λj(ε) is analytic at ε = 0, and hence as a consequence
of Theorem 3.3 and the analyticity of the eigenfunctions, we have

λ′j(0) =

∫
U

c(x)ṽ(x)dx
∫

U
d(x)ṽ(x)dx∫

U
ṽ(x)2dx

.

If Lε is self-adjoint, ṽ will be perpendicular to the fixed eigenspace X, corresponding
to γj , whilst for any v ∈ X,

∫
U

c(x)v(x)dx = 0. Therefore it follows that

max
u∈N(A−γjI)

( ∫
U

c(x)u(x)dx
)2∫

U
u(x)2dx

=

( ∫
U

c(x)ṽ(x)dx
)2∫

U
ṽ(x)2dx

= λ′j(0).

�

Note that the above result is consistent with Corollary 3.2 proved earlier.
Whilst it is possible in general for all of the eigenvalues of Lε to be fixed, such

behaviour is not possible if Lε is self-adjoint as illustrated by the following result.

Theorem 3.6. If Lε is self-adjoint, then at least one of the eigenvalues of Lε is
not fixed.

Proof. The set of eigenfunctions of A, {vi}∞i=1 forms a basis for L2(U), and hence
∃ vj ∈ {vi}∞i=1 such that

∫
U

c(x)vj(x)dx =
∫

U
d(x)vj(x)dx 6= 0. Then, by Corollary

3.2, there exists a moving eigenvalue emanating from γj . �

In the case where σ(Lε) = σ(A) for all ε ∈ R, varying ε affects the corresponding
eigenfunctions as is now shown.

Theorem 3.7. If σ(Lε) = σ(A) for all ε ∈ R, then at least one of the eigenfunctions
of Lε is not fixed.

Proof. Suppose that λi(ε) ≡ γi, ∀i ∈ N. Then, similar to the proof of Theorem 3.6,
there is at least one eigenfunction of A, vj say, such that Bvj 6≡ 0. But by assump-
tion λj(ε) ≡ γj and so it follows from the equation

Auj(ε) + εBuj(ε) = λj(ε)uj(ε),

that uj(ε) 6≡ vj . �

As noted in Lemma 2.1, the eigenvalues of Lε are continuous functions of ε.
We shall prove that the eigenvalues of Lε are also equicontinuous functions of ε.
Equicontinuity is defined as follows.

Definition 3.8. Let X be a normed vector space, and let (a, b) be a (possibly
unbounded) interval of the real line. A sequence of functions, fn : (a, b) → X
n = 1, 2, . . . is uniformly equicontinuous if for each ε > 0, there exists δ > 0, such
that

|x− y| < δ ⇒ ‖fn(x)− fn(y)‖ < ε, ∀x, y ∈ (a, b), ∀n ∈ N.

We shall prove the equicontinuity of the eigenfunctions with the aid of the fol-
lowing two lemmas.
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Lemma 3.9. If Lε is self-adjoint, then for each ε ∈ R, the eigenfunctions of Lε

can be chosen to form an orthonormal basis for L2(U).

Proof. Fix ε and assume without loss of generality that 0 is not an eigenvalue of Lε.
(If 0 is an eigenvalue then simply consider the operator Lε + KI for some constant
K suitably chosen.) The only spectral values of Lε are eigenvalues, therefore L−1

ε :
L2(U) → L2(U) is bounded. Furthermore, Lε = L∗ε implies L−1

ε = (L−1
ε )∗, and as

noted above, L−1
ε is compact. Also, 0 is not an eigenvalue of L−1

ε . Hence

ker L−1
ε = {0}.

Applying Corollary 6.35 in [24] and using the equivalence of the eigenfunctions of
Lε and L−1

ε concludes the proof. �

Now, define ρ(Lε) to be the resolvant set of Lε, i.e. ρ(Lε) := C\σ(Lε). Then we
have:

Lemma 3.10. Fix ε∗ ∈ R. If Lε is self-adjoint, and if (λ, ε) ∈ R2 satisfies

|ε− ε∗|‖B‖ < min
i∈N

|λi(ε∗)− λ|, (3.11)

then λ ∈ ρ(Lε).

Proof. As noted in Section II-5.1 of [19], for any fixed ε∗, if λ ∈ ρ(Lε∗), and if

|ε− ε∗|‖B‖ < ‖(Lε∗ − λI)−1‖−1,

then λ ∈ ρ(Lε). As Lε is self-adjoint, by Lemma 3.9 the eigenfunctions of Lε form
an orthonormal basis for L2(U). Hence, it is straightforward to show that

‖(Lε∗ − λI)−1‖ =
1

mini∈N |λi(ε∗)− λ|
.

Therefore if
|ε− ε∗|‖B‖ < min

i∈N
|λi(ε∗)− λ|,

then λ ∈ ρ(Lε). �

Theorem 3.11. If Lε is self-adjoint, then the set of eigenvalues, Σ = {λi(ε)}∞i=1,
is uniformly equicontinuous for ε ∈ R.

Proof. We first make some observations about the eigenvalues of Lε in the self-
adjoint case. As a consequence of (3.10), the moving eigenvalues of Lε all increase
with respect to ε. Then as noted in the final sentence of Section 2, as the eigenvalues
of a self-adjoint operator are real, 2 moving eigenvalues of Lε never intersect. Fixed
eigenvalues are clearly analytic ∀ε ∈ R. In the case where a moving eigenvalue, λi(ε)
intersects a fixed eigenvalue, λj(ε) ≡ γj , of Lε, λi(ε) + γj is analytic at the point
of intersection by Lemma 2.1(c), and hence by Lemma 2.1(b), a moving eigenvalue
λi(ε) is also analytic ∀ε ∈ R.

Now, consider an eigenvalue λj(ε), and take ε1, ε2 ∈ R. As λj(ε2) /∈ ρ(Lε2), it
follows from Lemma 3.10 that

|ε1 − ε2|‖B‖ ≥ min
i∈N

|λi(ε1)− λj(ε2)|. (3.12)

First suppose that λj(ε2) is not a point of intersection of a moving eigenvalue and
a fixed eigenvalue of Lε. Then for |ε1 − ε2| sufficiently small,

min
i∈N

|λi(ε1)− λj(ε2)| = |λj(ε1)− λj(ε2)|.
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Hence from (3.12),
|λj(ε1)− λj(ε2)|

|ε1 − ε2|
≤ ‖B‖.

This holds for any j ∈ N, ∀ε1, ε2 ∈ R, such that |ε1 − ε2| is sufficiently small,
whenever λj(ε2) 6= γi ∀i ∈ N. Therefore

|λ′j(ε)| ≤ ‖B‖ ∀j ∈ N, ∀ε ∈ R,

whenever λj(ε) 6= γi ∀i ∈ N. But then since λj(ε) is analytic for all ε ∈ R, it
is certainly continuously differentiable, and therefore it follows that the previous
inequality also holds for λj(ε) = γi for some i ∈ N. i.e.

|λ′j(ε)| ≤ ‖B‖ ∀j ∈ N, ∀ε ∈ R,

and the result follows. �

4. Algebraic and Geometric Multiplicity

The geometric and algebraic multiplicities of the eigenvalues are of importance
in establishing conditions for results on nodal properties of eigenfunctions, and for
bifurcation in associated non-linear problems, respectively. Hence, we now consider
whether the multiplicities of the eigenvalues λi(ε) change as the parameter ε is
varied. Geometric multiplicity of an eigenvalue λ of Lε, can be defined in the usual
way, i.e. dim(N(Lε − λI)). Since Lε is a closed linear operator with compact
resolvent, the algebraic multiplicity of an eigenvalue, λ of Lε can be defined to be
the algebraic multiplicity of the eigenvalue, 1/λ of L−1

ε . (Here we are assuming
without loss of generality that L−1

ε does exist; if Lε is not invertible, then consider
Lε + KI for an appropriate constant, K.) A simple eigenvalue is defined to be an
eigenvalue of algebraic multiplicity 1, (see e.g. [3]). Note that since A is self-adjoint
its eigenvalues will have equal algebraic and geometric multiplicities.

4.1. Algebraic Multiplicity. As was noted earlier, the algebraic multiplicity of
an eigenvalue of A, although finite, can be arbitrarily large. However, the following
theorem can be deduced from Section IV-3.5 of [19].

Theorem 4.1. Let S ⊂ Σ contain only a finite number of elements. If λi(ε) 6= λj(ε)
for any λi(ε) ∈ S and λj(ε) ∈ Σ\S ∀ε ∈ (ε1, ε2), then the sum of the algebraic
multiplicities of the eigenvalues in S is constant with respect to ε, ∀ε ∈ (ε1, ε2).

Remark 4.2. As a consequence of the above theorem and Lemma 2.3, a moving
eigenvalue λi(ε) of Lε is simple for 0 < |ε| < ε̂, where ε̂ = minε 6=0{ε|λi(ε) =
λj(ε) for i 6= j}.

4.2. Geometric Multiplicity. In the self-adjoint case, since it is well-known that
eigenvalues of self-adjoint operators have equal geometric and algebraic multiplici-
ties, a direct consequence of Theorem 4.1 is

Theorem 4.3. Suppose that Lε is self-adjoint. If λi(ε) is a moving eigenvalue of
Lε, γj is a fixed eigenvalue of Lε, and if λi(ε∗) = γj then dim(N(Lε∗ − γjI)) ≥ 2.

However it is possible for geometric multiplicity to not be preserved in the general
case, even where no eigenvalues of Lε intersect, as shown by the following simple
example.
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Example 4.4. Let A and γ be such that γ is an eigenvalue of A of multiplicity 2,
and let v1 and v2 be orthogonal eigenfunctions corresponding to γ. Let c = v1 and
d = v2. Then, using Corollary 3.2, it can be shown that all of the eigenvalues of
Lε are fixed and N(L0 − γI) = N(A − γI) = Span{v1, v2}, whilst for any ε 6= 0,
N(Lε − γI) = Span{v1}.

In the remainder of this section we present results that restrict the behaviour of
the geometric multiplicities in the general case.

Theorem 4.5. An eigenvalue λj(ε) has geometric multiplicity 1 provided λj(ε) 6= γi

for any i ∈ N.

Proof. Suppose that for some ε∗ and some j, N(Lε∗ − λj(ε∗)) = span{u, v} with
u and v linearly independent where λj(ε∗) 6= γi for any i ∈ N. Then, there exist
constants a and b with |a|+ |b| 6= 0 such that B(au + bv) ≡ 0. Hence, au + bv = vi

and λj(ε∗) = γi for some i ∈ N, which is a contradiction and so the result is
proved. �

Then since σ(A) ⊂ R, we have

Corollary 4.6. Any complex eigenvalue of Lε has geometric multiplicity 1.

The following theorem is an extension of [9, Theorem 4.8]. The proof of [9,
Theorem 4.8] uses results concerning a corresponding initial value problem. Such
results are not available here, so we require an alternative method, which is similar
to that used in the proof of a different result (Lemma 3.9) in [12].

Theorem 4.7. Suppose that γj is an eigenvalue of A of geometric multiplicity m.
Then, there exists at most one value, εj, such that dim(N(Lεj − γjI)) = m + 1.

Note 4.8. Let S : X̂ → X be a closed operator, where X̂ is a dense subset of
a Banach space, X, and consider T : X̂ → X. Then T is said to be relatively
degenerate with respect to S if and only if (i) ∃ k1, k2 ≥ 0, such that

‖Tu‖ ≤ k1‖u‖+ k2‖Su‖ ∀u ∈ X̂,

and (ii) R(T ) is finite dimensional.

Proof of Theorem 4.7. This proof will use the Weinstein-Aronszajn (W-A) deter-
minant and the W-A formula for relatively degenerate perturbations, details of
which can be found in [19, Section IV-6.1].

Note that εB is a relatively degenerate perturbation with respect to (A − λI),
since it is bounded and its range is finite dimensional. In the same way as shown
in [12], the W-A determinant, ω, associated with εB and (A− λI) has the form

ω(λ, ε) = 1 + εG(λ), (4.1)

for some function G, not dependent upon ε. The W-A formula for degenerate
perturbations gives

M(λ, Lε) = M(λ, A) + N(λ, ω),

where for T ∈ {A,Lε}

M(λ, T ) =

{
0 if λ ∈ ρ(T )
the algebraic multiplicity of λ if λ ∈ σ(T ),
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and

N(λ, ω) =


k if λ is a zero of ω of order k

−k if λ is a pole of ω of order k

0 otherwise.
Hence, it follows that for an eigenvalue λ of A, of multiplicity m, to be an eigenvalue
of multiplicity m + 1 of Lε requires N(λ, ω) > 0 and this is true only when ω(λ, ε)
has a zero. However, from the form of (4.1), it can be seen that for any fixed λ,
ω(λ, ε) equals 0 for at most one value of ε. �

The case where a moving eigenvalue and a fixed eigenvalue emanate from the
same point γi, can be thought of as a moving eigenvalue intersecting γi at ε = 0. In
this case, by Lemma 2.3 there exists an orthonormal basis, {w1, . . . , wm}, for N(A−
γiI) such that Span{w1, . . . , wm−1} ⊂ N(Lε−γiI) ∀ε ∈ R, and wm = limε→0 um(ε),
where um(ε) is the eigenfunction corresponding to the moving eigenvalue. Hence
dim N(A− γiI) = 1 + dim N(Lε − γiI), for any ε 6= 0.

We now consider when a moving eigenvalue, λj(ε), intersects a fixed eigenvalue,
λi(ε) ≡ γi, of Lε at ε 6= 0.

Theorem 4.9. Let λi(ε) ≡ γi be a fixed eigenvalue of Lε, such that no moving
eigenvalue of Lε emanates from γi at ε = 0.

(a) If either Bv 6≡ 0 or B∗v 6≡ 0, for any v ∈ N(A − γiI), then dim(N(Lε −
γiI)) ≤ dim(N(A− γiI)) ∀ε ∈ R.

(b) If Bv = B∗v ≡ 0, ∀v ∈ N(A− γiI), and if a moving eigenvalue λj(εi) = γi

for some εi ∈ R, εi 6= 0, then dim(N(Lεi − γiI)) = dim(N(A− γiI)) + 1.

Remark 4.10. Whilst part (a) of the above result gives that dim(N(Lε − γiI)) 6>
dim(N(A − γiI)) ∀ε ∈ R, we may have dim(N(Lε − γiI)) < dim(N(A − γiI)) for
some ε 6= 0, as in Example 4.4.

Proof. (a) If ∃ v ∈ N(A−γiI) such that Bv 6≡ 0, then by Lemma 2.3, there exists an
orthonormal basis, {v1, v2, . . . vm} for N(A−γiI), such that B(v1) = B(v2) = · · · =
B(vm−1) ≡ 0, whilst B(vm) 6≡ 0. Now suppose that dim(N(Lεi

− γiI)) = m+1 for
some εi 6= 0, i.e. suppose that there exists an orthonormal basis of N(Lεi

− γiI) of
the form {v1, v2, . . . vm−1, z1, z2}. Define the functions

wn :=
( ∫

U

d(x)vm(x)dx
)

zn +
( ∫

U

d(x)zn(x)dx
)

vm, n = 1, 2.

Then {v1, v2, . . . vm−1, w1, w2} are linearly independent and it can be shown that
w1, w2 ∈ N(Lεi/2 − γiI), i.e. dim(N(Lεi/2 − γiI)) = m + 1. But this contradicts
Theorem 4.7.

If B∗v 6≡ 0, for some v ∈ N(A− γiI), then by considering the adjoint problem,
(L∗ε −λI)u = 0, and using the equivalence of the spectrums and multiplicities of Lε

and L∗ε , a similar contradiction can be obtained and result (a) is proven.
(b) Since by assumption Bv ≡ 0, N(A − γiI) ⊆ N(Lε − γiI) ∀ε ∈ R. As in the
proof of Theorem 4.10 in [9] it can be shown that

u(x) :=
∑
j 6=i

ci

(γi − γj)
vj(x)

is in N(Lεi
− γiI), where in the above summation, the eigenvalues are repeated

according to their geometric multiplicity. The function u is orthogonal to N(A −
γiI), and hence the result is proven. �
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5. Existence and Uniqueness of Principal Eigenvalues

As mentioned earlier, for differential operators of the type given in (2.1), it is
known that the eigenfunction corresponding to the first eigenvalue of A is unique
and is of one sign on U , but in general less is known about the nodal properties
of the eigenfunctions corresponding to the other eigenvalues. By the continuity
of the (1-dimensional) eigenprojection corresponding to λ1(ε), it follows that for
ε sufficiently small, the eigenfunction u1(ε), corresponding to λ1(ε) is of one sign
on U , i.e. Lε has a principal eigenvalue for sufficiently small ε. In this section we
are concerned with proving the existence and in some cases the uniqueness of a
principal eigenvalue of Lε, without restriction on |ε|.

Theorem 5.1. Suppose that either c ≥ 0 on U or c ≤ 0 on U . Then, Lε has a
principal eigenvalue λp(ε) ≥ γ1 (i.e. an eigenvalue to which there corresponds a
positive eigenfunction) either ∀ε ≥ 0 or ∀ε ≤ 0.

Proof. Following similar methods to those used in the proof of Theorem 5.5 in [9],
it can be shown that Lε has an eigenvalue greater than or equal to γ1, either ∀ε ≥ 0
or ∀ε ≤ 0.

We now show that any eigenvalue, λ of Lε, satisfying λ ≥ γ1 has a corresponding
eigenfunction which is positive on U . If λ > γ1, then (A− λI) satisfies the strong
maximum principle (see for example Theorem 2.4 in [2]). Let u(x) be an eigenfunc-
tion corresponding to λ > γ1. Then we note that

∫
U

d(x)u(x)dx 6= 0, as there exist
no fixed eigenvalues greater than γ1. Hence, supposing without loss of generality
that −εc(x)

∫
U

d(x)u(x)dx is a non-negative function which is not identical to zero,
applying the strong maximum principle yields

u(x) = (A− λI)−1
[
− εc(x)

∫
U

d(x)u(x)dx
]

> 0 ∀x ∈ U.

We are left to consider the case λi(ε) = γ1 for some i ∈ N. If ε = 0 is the
only solution to λi(ε) = γ1, then as the corresponding eigenfunction, v1 has no
interior zeros, and the result follows directly. If λi(ε) = γ1 for some i ∈ N and some
ε 6= 0, then by the arguments at the end of Section 2, λ1(ε) ≡ γ1. A corresponding
eigenfunction does not change sign as the following argument shows. The function
c is either non-negative or non-positive, therefore B∗(v1) 6≡ 0, and hence as λ1(ε) ≡
γ1, B(v1) ≡ 0. Therefore v1 is an eigenfunction corresponding to γ1, ∀ε ∈ R. and
the result is proved. �

Now, having established the existence of a principal eigenvalue of Lε under cer-
tain hypotheses, we finish this section by considering the uniqueness of the principal
eigenvalue.

Theorem 5.2. If Lε is self-adjoint, if c is strictly of one sign on U and if ε > 0,
then the eigenfunction corresponding to λ1(ε) is the only eigenfunction of Lε with
no interior zeros.

Proof. The case ε = 0 corresponds to the well studied local problem. Now consider
ε > 0 and suppose that either u1(ε) has an interior zero, or uk(ε) has no interior
zeros for k 6= 1. As a consequence of Lemma 2.1, the eigenfunctions of Lε can
be chosen to be continuous functions of ε. Hence ∃ε̂ > 0, and uk ∈ C2(Ū) such
that [uk(ε̂)](x) ≥ 0 ∀x ∈ Ū , whilst ∃x̂ ∈ Ū such that [uk(ε̂)](x̂) = [uk(ε̂)]x1(x̂) =
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[uk(ε̂)]x2(x̂) = · · · = [uk(ε̂)]xn
(x̂) = 0. Then, it follows from standard properties of

uniformly elliptic operators that
n∑

i,j=1

[aij(x̂)uk xi
(x̂)]xj

≥ 0,

and also (b(x̂)− λ)uk(x̂) = 0, for any λ ∈ R. Note that by an appropriate Sobolev
embedding, c ∈ C(Ū), and then, aij , uk ∈ C2(Ū) and b, c ∈ C(Ū) implies that the
differential equation

n∑
i,j=1

[aij(x̂)uk xi(x̂)]xj + (b(x)− λ)uk(x) + εc(x)
∫

U

c(x)uk(x)dx = 0,

holds not only for x ∈ U , but also for x ∈ Ū . Hence,

εc(x̂)
∫

U

c(x)uk(x)dx ≤ 0,

which contradicts our assumptions on the sign of ε. Hence the result is proven. �
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