\documentclass[reqno]{amsart} %\usepackage[notref,notcite]{showkeys} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 128, pp. 1--23.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/128\hfil Existence of solutions] {Existence of solutions for the one-phase and the multi-layer free-boundary problems with the p-laplacian operator} \author[I. Ly, D. Seck\hfil EJDE-2006/128\hfilneg] {Idrissa Ly, Diaraf Seck} \address{Facult\'e des Sciences Economiques et de Gestion, Universit\'e Cheikh Anta Diop, B.P 5683, Dakar, S\'en\'egal} \email{ndirkaly@ugb.sn} \address {Facult\'e des Sciences Economiques et de Gestion, Universit\'e Cheikh Anta Diop, B.P 5683, Dakar, S\'en\'egal} \email{dseck@ucad.sn} \date{} \thanks{Submitted March 6, 2006. Published October 11, 2006.} \subjclass[2000]{35R35} \keywords{Bernoulli free boundary problem; starshaped domain; \hfill\break\indent shape optimization; shape derivative; monotonicity} \begin{abstract} By considering the p-laplacian operator, we show the existence of a solution to the exterior (resp interior) free boundary problem with non constant Bernoulli free boundary condition. In the second part of this article, we study the existence of solutions to the two-layer shape optimization problem. From a monotonicity result, we show the existence of classical solutions to the two-layer Bernoulli free-boundary problem with nonlinear joining conditions. Also we extend the existence result to the multi-layer case. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \section{Introduction} In part I, we study the exterior and interior free-boundary problem with non-constant Bernoulli boundary condition. Given $K$ a $\mathcal{C}^{2}$-regular bounded domain in $\mathbb{R}^{N}$ and a positive continuous function $g$, such that $g(x)>\alpha>0$ for all $ x\in R$, we find for the exterior problem a domain $\Omega$ and a function $u_{\Omega}$ such that \begin{equation} \label{eq1} \begin{gathered} -\Delta_p u_{\Omega} = 0\quad\text{in } \Omega\backslash K,\; 10: B(o,R) \subset K \}$, Here $c_K$ is the minimal value for which the interior Bernoulli problem (\ref{eq2}) admits a solution. \begin{theorem}\label{theo2} If the solution $\Omega$ of the shape optimization problem $\min\{J(w), w \in \mathcal{O}^{2}_{\epsilon}\}$ is $\mathcal{C}^{2}$-regular, then for all constant $c>0$ satisfying $c \geq \alpha( R_K,p,N)$, $\Omega$ is the classical solution of the free-boundary problem \eqref{eq2}. Moreover The constant $c_K$ satisfies $ 00$ such that $\frac{\partial u}{\partial \nu_{i}} = ( \frac{p}{p - 1}\lambda_{\Omega})^{\frac{1}{p}}\frac{g}{c}(x)$ on $\partial \Omega$. \end{proposition} For the proof of the above proposition, we use the same technics as in proposition \ref{pro3}. To conclude this section, we state a monotonicity result. For the exterior case, we have the following result, whose proof can be found in \cite{LS2}. \begin{proposition}\label{pro5} Suppose that $K$ is star-shaped with respect to the origin. Let $\Omega_1$ and $\Omega_2$ be two different solutions to the shape optimization problem $\min \{J_1(w), w\in \mathcal{O}^{1}_{\epsilon}\}$, star-shaped with respect to the origin such that ${\bar{\Omega}}_1 \subset {\bar{\Omega}}_2$. The mapping which associates to every $\Omega$ the corresponding Lagrange multiplier $\lambda_{\Omega}$ is strictly increasing i.e $\lambda_{\Omega_2} > \lambda_{\Omega_1}$. \end{proposition} For the interior case, we have the following result, whose proof is found in \cite{LS3}. \begin{proposition}\label{pro6} Suppose that $K$ is star-shaped with respect to the origin. Let $\Omega_1$ and $\Omega_2$ be two different solutions to the shape optimization problem $\min \{J_2(w), w\in \mathcal{O}^{2}_{\epsilon}\}$, star-shaped with respect to the origin such that ${\Omega}_1 \subset {\Omega}_2$ and $\partial \Omega_1\cap\partial \Omega_2 \neq \emptyset$. The mapping which associates to every $\Omega$ the corresponding Lagrange multiplier $\lambda_{\Omega}$ is decreasing i.e $\lambda_{\Omega_1} \geq \lambda_{\Omega_2}$. \end {proposition} \section{Proof of the main results of Part I} We use the preceding properties to prove the main result. Exterior case: \begin{proof}[Proof of the Theorem \ref{theo1}] We choose a ball $B(O,R)$ centered at the origin and radius $R$ and a ball $B(O,r)$ such that $ B(O,r) \subset K \subset B(O,R)$. First, we have to look for a solution $ u_0$ to the problem \begin{equation}\label{eq221} \begin{gathered} -\Delta_p u = 0 \quad \mbox{in } B_{R}\backslash B_r\\ u = 0 \quad \mbox{on } \partial B_{R} \\ u = 1 \quad \mbox{on } \partial B_r . \end{gathered} \end{equation} The solution $u_0$ is explicitly determined by \begin{equation} u_0(x) = \begin{cases} \dfrac{ \ln\|x\| - \ln R}{\ln r - \ln R}&\mbox{if } p = N \\[5pt] \dfrac{ \|x\|^{\frac{p -N}{p -1}} - R^{\frac{p -N}{p -1}}} { r^{\frac{p -N}{p -1}} - R^{\frac{p -N}{p -1}}}&\mbox{if }p\neq N, \end{cases} \end{equation} and \[ \|\nabla u_0(x)\| = \begin{cases} \dfrac{1}{ \|x\|^{2}( \ln R - \ln r)}&\mbox{if } p = N \\[5pt] \dfrac{ |\frac{p -N}{p -1}| \|x\|^{\frac{-N-p+2}{p -1}}}{| r^{\frac{p -N}{p -1}} - R^{\frac{p -N}{p -1}}|}&\mbox{if }p \neq N. \end{cases} \] In particular $\|\nabla u_0\| < c$ on $\partial B_R$ for $R$ big enough. Now consider the problem \begin{equation}\label{eqq11} \begin{gathered} -\Delta_p u = 0 \quad \mbox{in } B_R\backslash K\\ u = 0 \quad \mbox{on } \partial B_R \\ u = 1 \quad \mbox{on } \partial K. \end{gathered} \end{equation} This problem admits a solution denoted by $u_R$. This solution is obtained by minimizing the functional $J_1$ defined on the Sobolev space $$ V'= \{ v\in W_0^{1,p} ( B_R), v = 1 \mbox{on } \partial K \} $$ and $J_1(v) = \frac{1}{p}\int_{B_R\backslash K }\|\nabla v\|^{p}dx$. Consider the problem \begin{equation}\label{eqq21} \begin{gathered} -\Delta_p v = 0 \quad\mbox{in } B_{R}\backslash K\\ v = 0 \quad\mbox{on } \partial B_R \\ v = u_0 \quad\mbox{on } \partial K. \end{gathered} \end{equation} It is easy to see that $ v = u_r$ is a solution to problem (\ref{eqq21}). By the comparison principle \cite{T1}, we obtain $0 \leq u_0 \leq 1$ and $0 \leq u_R \leq 1$. On $\partial (B_{R}\backslash K)$, we obtain $u_R \geq u_0$ and then, $u_R \geq u_0$ in $B_{R}\backslash K$. Finally, we have $\|\nabla u_R\| \geq \|\nabla u_0\|$ on $\partial B_R$. \subsection*{Case $p = N$} If $R_1 < R_0$, we get $\|\nabla u_0\|_{| \partial B_{R_0}} \leq \|\nabla u_0\|_{| \partial B_{R_1}}$ then the mapping for all $R$ associates $\|\nabla u_0\|_{| \partial B_{R}}$ is decreasing. Initially, we choose a radius $R_0$ big enough and we compute $\|\nabla u_0\|_{| \partial B_{R_0}}$ and if $ \big| \|\nabla u_0\|_{|{\partial B_{r_0}}} - c \big|>\delta$, where $\delta>0$ is a fixed and sufficiently small number. We continue the process by varying $R$ in the increasing sense, we will achieve a step denoted $N$ such that $ \big|\|\nabla u_0\|_{|{\partial B_{R_N}}} - c \big| <\delta$. Consider $\mathcal{O}_N$ the class of admissible domains defined as follows $$ \mathcal{O}_N = \left \{ w\in \mathcal{ O}_{\epsilon}: w \subset B_{R_N} , \; \int_{w} \frac {g^{p}}{c^{p}} = V_0 \right\}, $$ where $ V_0$ denotes a fixed positive constant. We look for $\Omega\in \mathcal{O}_N$ and $\lambda_{\Omega}$ a real such that \begin{equation}\label{i1} \begin{gathered} -\Delta_p u = 0 \quad \mbox{in } \Omega\backslash K\\ u = 0 \quad \mbox{on } \partial \Omega \\ u = 1 \quad \mbox{on} \partial K\\ -\frac{\partial u}{\partial \nu} = c_{\Omega} \quad \mbox{on }\partial \Omega \end{gathered} \end{equation} where $ c_{\Omega}= (\frac{-p}{p -1}\lambda_{\Omega})^{\frac{1}{p}}\frac{g}{c}(x)$. Applying proposition (\ref{pro1}), the shape optimization problem $\min\{ J_1(w) , w\in \mathcal{O}_N \} $ admits a solution and by proposition \ref{pro3}, $\Omega$ satisfies the overdetermined boundary condition $-\frac{\partial u}{\partial \nu} = c_{\Omega}$. We have $ \Omega \in \mathcal{O}_N $, then $\Omega \subset B_{R_N}$, according to the lemma \ref{ler0} there exists $t_0 < 1$ such that $t_0 B_{R_N} \subset \Omega$, and $t_0\partial B_{R_N}\cap \partial \Omega \neq \emptyset$. Let us take $x_0 \in t_0\partial B_{R_N}\cap \partial \Omega $ and set $ u_{t_0}(x) = u_{R_N}(\frac{x}{t_0}),\frac{x}{t_0} \in B_{R_N}\backslash K$. $ u_{t_0}$ satisfies \begin{equation}\label{i1s1} \begin{gathered} -\Delta_p u_{t_0} = 0 \quad \mbox{in } t_0(B_{R_N} \backslash K) \\ u_{t_0} = 0 \quad \mbox{on } t_0 \partial B_{R_N} \\ u_{t_0} = 1 \quad \mbox{on } t_0\partial K. \end{gathered} \end{equation} On the other hand, we have $t_0 B_{R_N} \subset \Omega$, let us take $w_3= u_{|t_0 B_{R_N}}$, then $w_3$ satisfies \begin{equation}\label{i1s2} \begin{gathered} -\Delta_p w_3 = 0 \quad \mbox{in } t_0 B_{R_N} \backslash K \\ w_3 = u_{|t_0\partial B_{R_N}} \quad \mbox{on } t_0 \partial B_{R_N} \\ w_3 = 1 \quad \mbox{on } \partial K. \end{gathered} \end{equation} Let us consider the problem \begin{equation}\label{ils3} \begin{gathered} -\Delta_p z = 0 \quad \mbox{in }t_0 B_{R_N} \backslash K \\ z = 0 \quad \mbox{on } \partial t_0\partial B_{R_N}\\ z = {u_{t_0}}_{|\partial K} \quad \mbox{on } \partial K. \end{gathered} \end{equation} It is easy to see that $ z = u_{t_0} $ is a solution to the problem (\ref{ils3}). And we get $0 \leq u_{t_0} \leq 1$ and $0 \leq u \leq 1$. On $\partial ( t_0 B_{R_N} \backslash K)$, we have $u_{t_0 } \leq u$, by the comparison principle \cite{T1}, we obtain $u_{t_0 } \leq u\quad\text{in} ( t_0 B_{R_N} \backslash K)$. We have \[ \lim_{t\to 0}\frac{u_{t_0}(x_0 -\nu_{e} t) - u_{t_0}(x_0)}{t} \leq \lim_{t\to 0}\frac{u(x_0 -\nu_{e} t) - u(x_0)}{t}, \] which is equivalent to \[ -\frac{\partial u_{t_0}}{\partial \nu_{e}}(x_0) \leq - \frac{\partial u}{\partial \nu_{e}}(x_0)\,. \] This implies \[ \|\nabla u_{R_N}(x_0)\| \leq - \frac{\partial u}{\partial \nu_{e}(x_0)} \] Let us consider $ \Omega = \Omega_0$ as the first iteration and $$ \mathcal{O}_N ^{1}= \big\{ w\in \mathcal{ O}_{\epsilon}: w \subset \Omega_0 \subset B_{R_N} ,\; \int_{w} \frac {g^{p}}{c^{p}} = V_1 \big\}, \quad (V_1 < V_0) $$ where $ V_1$ denotes a fixed positive constant. We iterate by looking for $\Omega_1\in \mathcal{O}_N^{1}$ and $\lambda_{\Omega_{1}}$ such that such that \begin{equation}\label{il2} \begin{gathered} -\Delta_p u_1 = 0 \quad \mbox{in } \Omega_1\backslash K\\ u_1 = 0 \quad \mbox{on } \partial \Omega_1 \\ u_1 = 1 \quad \mbox{on} \partial K\\ -\frac{\partial u}{\partial \nu} = c_{\Omega_1} \quad \mbox{on }\partial \Omega_1 \end{gathered} \end{equation} where $c_{\Omega_1}=(\frac{-p}{p -1}\lambda_{\Omega_1})^{\frac{1}{p}}\frac{g}{c}(x)$. Applying proposition (\ref{pro1}), the shape optimization problem $\min\{ J_2(w) , w\in \mathcal{O}_N^{1} \} $ admits a solution and by proposition \ref{pro3}, $\Omega_1$ satisfies the overdetermined boundary condition $-\frac{\partial u_1}{\partial \nu} = c_{\Omega_1}$. We have $ \Omega \in \mathcal{O}^{1}_N $, then $\Omega_1 \subset B_{R_N}$, according the lemma \ref{ler0} there exists $t_1 < 1$ such that $t_1 B_{R_N} \subset \Omega$, then $t_1\partial B_{R_N}\cap \partial \Omega_1 \neq \emptyset$. Let us take $x_1 \in t_1\partial B_{R_N}\cap \partial \Omega_1 $ and set $ u_{t_1}(x)= u_{R_N}(\frac{x}{t_1}), \frac{x}{t_1} \in B_{R_N}\backslash K$. $ u_{t_1}$ satisfies \begin{equation}\label{i1ss1} \begin{gathered} -\Delta_p u_{t_1} = 0 \quad \mbox{in } t_1(B_{R_N} \backslash K) \\ u_{t_1} = 0 \quad \mbox{on } t_1 \partial B_{R_N} \\ u_{t_1} = 1 \quad \mbox{on } t_1\partial K. \end{gathered} \end{equation} On the other hand, we have $t_1 B_{R_N} \subset \Omega_1$, let us take $w_4= u_{|t_1 B_{R_N}}$, then $w_4$ satisfies \begin{equation}\label{i1ss2} \begin{gathered} -\Delta_p w_4 = 0 \quad \mbox{in } t_1 B_{R_N} \backslash K \\ w_4 = u_{1_{|t_1\partial B_{R_N}}} \quad \mbox{on } t_1 \partial B_{R_N} \\ w_4 = 1 \quad \mbox{on } \partial K. \end{gathered} \end{equation} Let us consider the problem \begin{equation}\label{ilss3} \begin{gathered} -\Delta_p z = 0 \quad \mbox{in }t_1 B_{R_N} \backslash K \\ z = 0\quad \mbox{on } t_1 \partial B_{R_N} \\ z = {u_{t_1}}_{|\partial K} \quad \mbox{on } \partial K. \end{gathered} \end{equation} It is easy to see that $ z = u_{t_1} $ is a solution to (\ref{ilss3}). And we get $0 \leq u_{t_1} \leq 1$ and $0 \leq u_1 \leq 1$. On $\partial ( t_1 B_{R_N} \backslash K)$, we have $u_{t_1 } \leq u_1$, by the comparison principle \cite{T1}, we obtain $u_{t_1 } \leq u_1\quad\text{in} ( t_1 B_{R_N} \backslash K)$. We have \[ \lim_{t\to 0}\frac{u_{t_1}(x_1 -\nu_{e} t) - u_{t_1}(x_1)}{t} \leq \lim_{t\to 0}\frac{u_1(x_1 -\nu_{e} t) - u_1(x_1)}{t}, \] which is equivalent to \[ -\frac{\partial u_{t_1}}{\partial \nu_{e}}(x_1) \leq - \frac{\partial u_1}{\partial \nu_{e}}(x_1). \] This implies \[ \|\nabla u_{R_N}(x_1)\| \leq - \frac{\partial u_1}{\partial \nu_{e}} (x_1). \] We can continue the process until a step denoted by $k$ such that $$ -\frac{\partial u_k}{\partial \nu_{e}}(x_k) = c_{\Omega_k} $$ For all $s \in \partial B_{R_N}$, we get $\|\nabla u_0(s)\| \leq \|\nabla u_{R_N}(s)\|$ then there exists $s_0 \in \partial B_{R_N}$, such that $\|\nabla u_0(s_0)\| > c_{\Omega_k}$. The sequence $(c_{\Omega_j})_{(0 \leq j \leq k)}$ is strictly decreasing and positive, then $(\frac{-p}{p-1}\lambda_{\Omega_j})^{\frac{1}{p}}$ converges on $c$. Then there exists $\Omega$ solution to problem (\ref{eq1}), the sequence $ (\Omega_j)_{(0 \leq j \leq k)}$ gives a good approximation to $\Omega$. The uniqueness of the solution $\Omega$ is given by the monotonicity result. \subsection*{Case $ p \neq N $} If $R_1 < R_0$, we get $\|\nabla u_0\|_{| \partial B_{R_1}} \geq \|\nabla u_0\|_{| \partial B_{R_0}}$ then the mapping for all $R$ associates $\|\nabla u_0\|_{| \partial B_{R}}$ is decreasing. Initially, we choose a radius $R_0$ big enough and we compute $\|\nabla u_0\|_{| \partial B_{R_0}}$ and if $ \big| \|\nabla u_0\|_{|{\partial B_{R_0}}} - c \big|>\delta, \delta>0$ fixed and sufficiently small number. We continue the process by varying $R$ in the increasing sense, we will achieve a step denoted $N$ such that $ \big| \|\nabla u_0\|_{|{\partial B_{R_N}}} - c \big| <\delta$. Here the reasoning is identical to the case $ p = N$. \end{proof} \subsection*{Interior case} \begin{proof}[Proof of the Theorem \ref{theo2}] Let $R_K = \sup \{ R >0: B(o, R) \subset K \}$. Let $ r>0$ such that $B(o, r) \subset B(o,R_K)$. First, we have to look for a solution $ u_0$ to the problem \begin{equation}\label{eq22} \begin{gathered} -\Delta_p u = 0 \quad \mbox{in } B_{R_K}\backslash B_r\\ u = 0 \quad \mbox{on } \partial B_{R_K} \\ u = 1 \quad \mbox{on } \partial B_r . \end{gathered} \end{equation} The solution $u_0$ is explicitly determined by \begin{equation} u_0(x) = \begin{cases} \dfrac{ \ln\|x\| - \ln R_K}{\ln r - \ln R_K} &\mbox{if } p = N \\[5pt] \dfrac{ -\|x\|^{\frac{p -N}{p -1}} + R_K^{\frac{p -N}{p -1}}} { R_K^{\frac{p -N}{p -1}} - r^{\frac{p -N}{p -1}}} &\mbox{if }p\neq N, \end{cases} \end{equation} and \[ \|\nabla u_0(x)\| = \begin{cases} \dfrac{1}{ r( \ln R_K - \ln r)}&\mbox{if } p = N \\[5pt] \dfrac{ |\frac{p -N}{p -1}| \|x\|^{\frac{-N+1}{p -1}}}{| r^{\frac{p -N}{p -1}} - R^{\frac{p -N}{p -1}}|}&\mbox{if }p \neq N. \end{cases} \] In particular $\|\nabla u_0\| > c$ on $\partial B_r$ for $r$ small enough. Now let us consider the problem \begin{equation}\label{eqq1} \begin{gathered} -\Delta_p u = 0 \quad \mbox{in } K\backslash B_r\\ u = 1 \quad \mbox{on } \partial B_r \\ u = 0 \quad \mbox{on } \partial K. \end{gathered} \end{equation} Then problem (\ref{eqq1}) admits a solution denoted by $u_r$. This solution is obtained by minimizing the functional $J$ defined on the Sobolev space \[ V'= \{ v\in W^{1,p} (K\backslash B_r), v = 1 \mbox{on } \partial B_r \text{ and }v = 0 \text{ on } \partial K \} \] and $J(v) = \frac{1}{p}\int_{K\backslash B_r }\|\nabla v\|^{p}dx$. Consider the problem \begin{equation}\label{eqq2} \begin{gathered} -\Delta_p v = 0 \quad\mbox{in } B_{R_K}\backslash B_r\\ v = 1 \quad\mbox{on } \partial B_r \\ v = u_r \quad\mbox{on } \partial B_{R_K}. \end{gathered} \end{equation} It is easy to see that $ v = u_r$ is a solution to (\ref{eqq2}). By the comparison principle \cite{T1}, we obtain $0 \leq u_0 \leq 1$ and $0 \leq u_r \leq 1$. On $\partial (B_{R_K}\backslash B_r)$, we obtain $u_r \geq u_0$ and then, $u_r \geq u_0$ in $B_{R_K}\backslash B_r$. Finally, we have $ \|\nabla u_r\| \leq \|\nabla u_0\|$ on $\partial B_r$. \subsection*{Case $p = N$} \[ \|\nabla u_0\|_{|{\partial B_r}} =\frac{1}{r(\ln R_K - \ln r)} = h(r), \quad \forall r\in ]0,R_K[. \] It is easy to see that $h(r)$ is a strictly decreasing function on $]0,\frac{R_K}{e}[$ and a strictly increasing function on $]\frac{R_K}{e}, R_K[$. Then for all $r\in ]0,R_K[$, $\|\nabla u_0\|_{|{\partial B_r}} \geq h(\frac{R_K}{e}) = \frac{e}{R_K}$. \noindent(1) For $ g(x) = e/R_K$, let $\delta>0$ be a fixed and sufficiently small number. To initialize we choose $r_0\in ]0,\frac{R_K}{e}[ \cup ]\frac{R_K}{e},R_K [$ such that $ \big| \|\nabla u_0\|_{|{\partial B_{r_0}}} - c \big|>\delta$. To fix ideas let us consider $r_0\in ]0,\frac{R_K}{e}[$. The process will be identical if $ r_0\in ]\frac{R_K}{e}, R_K[$. By varying $r$ in the increasing sense, we will achieve a step denoted $n$ such that $$ r_n\in ]0,\frac{R_K}{e}[ \mbox{and} \big|\|\nabla u_0\|_{|{\partial B_{r_n}}} - c \big| <\delta. $$ Consider $\mathcal{O}_n$ the class of admissible domains defined as follows $$ \mathcal{O}_n = \big\{ w\in \mathcal{ O}_{\epsilon}, B_{r_n} \subset w, \partial B_{r_n}\cap \partial w \neq \emptyset, \mbox{ and } \int_{w} \frac {g^{p}}{c^{p}} = V_0 \big\}, $$ where $ V_0$ denotes a fixed positive constant. We look for $\Omega\in \mathcal{O}_n$ and $\lambda_{\Omega}$ such that \begin{equation}\label{i11} \begin{gathered} -\Delta_p u = 0 \quad \mbox{in } K\backslash \bar{\Omega}\\ u = 1 \quad \mbox{on } \partial \Omega \\ u = 0 \quad \mbox{on} \partial K\\ \frac{\partial u}{\partial \nu} = c_{\Omega} \quad \mbox{on } \partial \Omega \end{gathered} \end{equation} where $ c_{\Omega}= (\frac{p}{p -1}\lambda_{\Omega})^{\frac{1}{p}} \frac{g}{c}(x)$. Applying the proposition (\ref{pro2}), the shape optimization problem $\min\{ J_2(w) , w\in \mathcal{O}_n \} $ admits a solution and by proposition \ref{pro4}, $\Omega$ satisfies the overdetermined boundary condition $\frac{\partial u}{\partial \nu} = c_{\Omega}$. Then problem (\ref{i1}) admits a solution. Since $\Omega\in \mathcal{O}_n$, we have $B_{r_n} \subset \Omega$, $\partial B_{r_n}\cap \partial \Omega \neq \emptyset$ and $u_{r_n}$ satisfies \begin{equation}\label{i2} \begin{gathered} -\Delta_p u_{r_n} = 0 \quad \mbox{in } K\backslash B_{r_n} \\ u_{r_n} = 1 \quad \mbox{on } \partial B_{r_n} \\ u_{r_n} = 0 \quad \mbox{on } \partial K. \end{gathered} \end{equation} Let us consider the problem \begin{equation}\label{i22} \begin{gathered} -\Delta_p z = 0 \quad \mbox{in } K\backslash \bar{\Omega }\\ z = u_{r_n} \quad \mbox{on } \partial \Omega \\ z = 0 \quad \mbox{on } \partial K. \end{gathered} \end{equation} It is easy to see that $ z = u_{r_n}$ is a solution to (\ref{i22}), and we get $0 \leq u_{r_n} \leq 1$ and $0 \leq u \leq 1$. On $\partial (K\backslash \bar{\Omega})$, we have $u_{r_n } \leq u$. Since $\partial \Omega \cap \partial B_{r_n} \neq \emptyset$, let $x_0\in \partial \Omega \cap \partial B_{r_n}$, we have \[ \lim_{t\to 0}\frac{u_{r_n}(x_0 -\nu t) - u_{r_n}(x_0)}{t} \leq \lim_{t\to 0}\frac{u(x_0 -\nu t) - u(x_0)}{t}, \] This is equivalent to \[ \frac{\partial u_{r_n}}{\partial \nu}(x_0) \geq \frac{\partial u}{\partial \nu}(x_0) = c_{\Omega}. \] Let $ \Omega = \Omega_0$ as the first iteration. We iterate by looking for $\Omega_1\in \mathcal{O}_n^{1}$ such that \begin{equation}\label{i5} \begin{gathered} -\Delta_p u_1 = 0 \quad \mbox{in } K\backslash \bar{\Omega}_1\\ u_1 = 1 \quad \mbox{on } \partial \Omega_1 \\ u_1 = 0 \quad \mbox{on } \partial K\\ \frac{\partial u_1}{\partial \nu} = c_{\Omega_1} \quad \mbox{on }\partial \Omega_1. \end{gathered} \end{equation} where $ c_{\Omega_1}=(\frac{p}{p -1}\lambda_{\Omega_1})^{\frac{1}{p}}\frac{g}{c}(x)$, and $$ \mathcal{O}^{1}_n = \big\{w\in \mathcal{O}_{\epsilon}: \Omega_0 \subset w, \; \partial w \cap \partial B_{r_n} \neq \emptyset \int_{w} \frac {g^{p}}{c^{p}} = V_1 \big\}, $$ where $V_1$ is a strictly positive constant and $V_0\frac{e}{R_K}$ and $r\in ]0,\frac{R_K}{e}[ \cup ]\frac{R_K}{e},R_K[$. We have the same reasoning and we show that the problem (\ref{eq2}) admits a solution. \subsection*{Case $ p \neq N $} Here the reasoning is identical to the case $ p = N$. We note that $$ \|\nabla u_0\|_{|{\partial B_{r_n}}} = \big|\frac{p - N}{p-1}\big| \frac{1}{ 1 - (\frac{r}{R_K})^{\frac{N - p}{p-1}}} \frac{1}{r} = h(r) $$ and $h$ is strictly increasing on $](\frac{ p - 1}{ N -1})^{\frac{ p- 1}{N - p }} R_K, R_K[$ and a strictly decreasing on $] 0, (\frac{ p- 1}{ N - 1})^{\frac{ p-1}{N - p }} R_K[$. For all \[ g(x) \geq |\frac{p - N}{p -1}|\frac{1}{| (\frac{ p- 1}{ N - 1})^{\frac{N - 1}{N-p}} - (\frac{ p- 1}{ N - 1})^{\frac{p - 1}{N- p}}|}\frac{1}{R_K} = h((\frac{ p - 1}{ N -1})^{\frac{ p- 1}{N - p }} R_K), \] problem (\ref{eq1}) admits a solution. It is easy to have, $0 < c_K \leq \alpha(R_K,p,N)$. If $K$ is a ball of radius $R$, an explicit computation gives $c_K = \alpha(R,p,N)$ and for all $00: B(O,R) \in D_1^{*}\}$and $ D_0^{*} \in B(O,R_0)$ If $D$, $\mathcal{C}^{2}$-regular domain solution to the shape optimization problem $ \min \{ J ( w), w \in \mathcal{O}_{\epsilon}\}$ such that $D_0^{*} \subset \subset D \subset \subset D_1^{*}$, then $D$ is a solution of the two-layer free boundary problem (\ref{q1})-(\ref{qq1}). \end{theorem} To prove the main result of the Part II, we need to establish some results such as shape optimization and monotonicity results. \section{Shape optimization and monotonicity result} \begin{theorem}\label{theop} The problem: Find $D \in \mathcal{O}_{\epsilon}$ such that $ J(D) = \min \{ J(w), w \in \mathcal{O}_{\epsilon}\}$ admits a solution \end{theorem} \begin{proof} Let $E$ be a functional defined on $W^{1,p}(D_1^{*})\times W^{1,p}(D_1^{*})$ by $$ E( \tilde{v},\tilde{u}) = \frac{1}{p} \int_{ D_1^{*}}\|\nabla \tilde{ v}\|^{p} + \frac{1}{p} \int_{ D_1^{*}}\|\nabla \tilde{u}\|^{p}, \quad 1-\infty$. Let $\alpha= \inf \{ J(w) , w \in \mathcal{O}_{\epsilon}\}$. Then there exists a minimizing sequence $ (D_n)_{(n \in \mathbb{N})} \subset \mathcal{O}_{\epsilon}$ such that $J(D_n)$ converges to $\alpha$. Since the sequence is bounded, there exists a compact set $F$ such that $ D_0^{*} \subset \subset \bar{D_n} \subset F \subset \subset D_1^{*}$. By the lemma \ref{ler4}, there exists a subsequence $(D_{n_k})_{(n_k \in \mathbb{N})}$ and $ D$ verifying the $\epsilon$-cone property such that $$ \chi_{{D}_{n_k}} \stackrel{ L^{1}} {\to} \chi_{D} \quad\text{and} D_{n_k} \stackrel{H}{\to} D . $$ It is easy to see the sequence $(v_n,u_n)$ is bounded in $W^{1,p}(D_1^{*})$ see \cite{LS2,LS4}. Since $ W^{1,p}(D_1^{*})$ is a reflexive space, there exists a subsequence $(v_{n_k},u_{n_k})$ and $(v^{*},u^{*})$ such that $ v_{n_k}$ converges weakly on $v^{*}$ in $ W^{1,p}(D_1^{*})$ and $ u_{n_k}$ converges weakly on $u^{*}$ in $ W^{1,p}(D_1^{*})$. The norm is lower semi continuous for the weak topology in $W^{1,p}(D_1^{*})$, then we have \begin{align*} &\frac{1}{p}\int_{D_1^{*}\backslash D}\|\nabla v^{*} \|^{p} + \frac{1}{p}\int_{ D\backslash D_0^{*}}\|\nabla u^{*}\|^{p} \\ &\geq \liminf (\frac{1}{p} \int_{ D_1^{*}\backslash D_{n_k}}\|\nabla v_{n_k} \|^{p} + \frac{1}{p} \int_{ D_{n_k}\backslash D_0^{*}}\|\nabla u_{n_k}\|^{p}). \end{align*} From the above we get $J(D) \geq \alpha$, then $J(D) =\min \{ J(w) , w \in \mathcal{O}_{\epsilon}\}$. \end{proof} \begin{remark} \label{tmk7.1} \rm On the one hand, see \cite{LS2} \cite{LS3}, it is easy to verify that $v= v^{*}, u =u^{*}$ and $ v^{*},u^{*} $ satisfy \[ \begin{gathered} -\Delta_p v^{*} = 0 \quad \mbox{in } {\mathcal D}'( D_1^{*}\backslash D) \\ v^{*} = 1 \quad \mbox{on } \partial D \\ v^{*} = 0 \quad \mbox{on } \partial D_1^{*} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p u^{*} = 0 \quad \mbox{in } {\mathcal D}'(D\backslash D_0^{*}) \\ u^{*} = 0 \quad \mbox{on } \partial D \\ u^{*} = 1 \quad \mbox{on } \partial D_0^{*} \end{gathered} \] respectively. On the other hand, we have regularity for $v, u$ as solutions to (\ref{opt1}); see \cite{D,Le,T2}. \end{remark} \begin{remark} \label{rmk7.2} \rm The remark 4.1 can be stated for the multilayer case. The theorem 4.3 and the lemma 4.4 proved in \cite{LS3} are valid too for the multilayer case. \end{remark} For the rest of this article, we assume that $D$ is $\mathcal{C}^{2}$-regular domain in order to use the shape derivatives. We follow the approach of Sokolowski-Zolesio to define the shape derivatives \cite{SZ} (see also \cite{JS}). \begin{theorem}\label{theoc} If $D$ is a solution to the shape optimization problem $ \min \{ J ( w), w \in \mathcal{O}_{\epsilon}\}$, then there exists a Lagrange multiplier function $\lambda_D \in \mathbb{R}$ such that \begin{equation} \|\nabla v\|^{p} - \|\nabla u\|^{p} = \frac{p}{p- 1} \lambda_{D}\quad\text{on}\quad \partial D. \end{equation} \end{theorem} \begin{proof}[Proof of the theorem \ref{theoc}] $$ J( D) = \frac{1}{p} \int_{ D_1^{*}\backslash D}\|\nabla v\|^{p} + \frac{1}{p} \int_{ D\backslash D_0^{*}}\|\nabla u\|^{p}, \quad 10, B(O, R) \subset D_1^{*}\}$. Let $ r_0>0, r>0$ such that $ B(O, r_0) \subset D_0^{*} \subset B(O, r)$. First, we look for $v_0$ solution of the problem \begin{equation}\label{eqmain} \begin{gathered} -\Delta_p v_0 = 0 \quad \mbox{in } B_{R_0}\backslash B_r \\ v_0 = 1 \quad \mbox{on } \partial B_r \\ v_0 = 0 \quad \mbox{on } \partial B_{R_0} \end{gathered} \end{equation} and second $u_0$ solution of the problem \begin{equation}\label{eqmain1} \begin{gathered} -\Delta_p u_0 =0 \quad\text{in } B_r\backslash B_{r_0} \\ u_0 =0 \quad\text{on } \partial B_r \\ u_0 =1 \quad\text{on } \partial B_{r_0} \end{gathered} \end{equation} The problem (\ref{eqmain}) admits a solution $v_0$ which is explicitly determined by \[ v_0(x) = \begin{cases} \dfrac{ \ln\|x\| - \ln R_0}{\ln r - \ln R_0}&\mbox{if } p = N \\[5pt] \dfrac{ -\|x\|^{\frac{p -N}{p -1}} + R_0^{\frac{p -N}{p -1}}} { R_0^{\frac{p -N}{p -1}} - r^{\frac{p -N}{p -1}}}&\mbox{if }p\neq N, \end{cases} \] and \[ \|\nabla v_0(x)\| = \begin{cases} \dfrac{1}{ \|x\|( \ln R_0 - \ln r)}&\mbox{if } p = N \\[5pt] \dfrac{ |\frac{p -N}{p -1}| \|x\|^{\frac{-N+1}{p -1}}}{| r^{\frac{p -N}{p -1}} - R_0^{\frac{p -N}{p -1}}|}&\mbox{if }p \neq N. \end{cases} \] Also the problem (\ref{eqmain1}) admits a solution $u_0$ which is explicitly determined by \[ u_0(x) = \begin{cases} \dfrac{ \ln\|x\| - \ln r}{\ln r_0 - \ln r}&\mbox{if } p = N \\[5pt] \dfrac{ -\|x\|^{\frac{p -N}{p -1}} - r^{\frac{p -N}{p -1}}} { r_0^{\frac{p -N}{p -1}} - r^{\frac{p -N}{p -1}}}&\mbox{if }p\neq N, \end{cases} \] and \[ \|\nabla u_0(x)\| = \begin{cases} \dfrac{-1}{ \|x\|( \ln r_0 - \ln r)}&\mbox{if } p = N \\[5pt] \dfrac{ |\frac{p -N}{p -1}| \|x\|^{\frac{-N -p +2}{p -1}}}{| r_0^{\frac{p -N}{p -1}} - r^{\frac{p -N}{p -1}}|}&\mbox{if }p \neq N. \end{cases} \] On $\partial B_r$, let us take $h(r) = \| \nabla v_0\|^{p} -\| \nabla u_0\|^{p}$. Now consider the problem \begin{equation}\label{eqm1} \begin{gathered} -\Delta_p v =0 \quad\text{in } D_1^{*}\backslash B_r \\ v =1 \quad\text{on } \partial B_r \\ v =0 \quad\text{on } \partial D_1^{*} \end{gathered} \end{equation} Problem (\ref{eqm1}) admits a solution denoted by $v_r$. This solution is obtained by minimizing the functional $J_1$ on the Sobolev space $$ \mathcal{V}_1 = \{ v \in W^{1,p}_0(D_1^{*}\backslash B_r), v= 1 \text{ on } \partial B_r\} \quad\text{and}\quad J_1(v) = \frac{1}{p}\int_{D_1^{*}\backslash B_r}\|\nabla v\|^{p} dx. $$ \begin{equation}\label{eqm2} \begin{gathered} -\Delta_p u =0 \quad\text{in } B_r \backslash D_0^{*} \\ u =1 \quad\text{on } \partial D_0^{*} \\ u =0 \quad\text{on } \partial B_r \end{gathered} \end{equation} Then problem (\ref{eqm2}) admits a solution denoted by $u_r$. This solution is obtained by minimizing the functional $J_2$ on the Sobolev space $$ \mathcal{V}_2 = \{ u \in W^{1,p}_0(B_r\backslash D_0^{*}), u= 1 \text{ on } \partial D_0^{*}\} \quad\text{and}\quad J_2(u) = \frac{1}{p}\int_{B_r\backslash D_0^{*}}\|\nabla u\|^{p} dx. $$ Consider the problem \begin{equation}\label{eqm3} \begin{gathered} -\Delta_p v =0 \quad\text{in } B_{R_0}\backslash B_r \\ v =1 \quad\text{on } \partial B_r \\ v = v_r \quad \mbox{on } \partial B_{R_0} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p u =0 \quad\text{in } B_r \backslash D_0^{*} \\ u = u_0 \quad \mbox{on } \partial D_0^{*} \\ u =0 \quad\text{on } \partial B_r. \end{gathered} \end{equation} It is easy to see that $ v = v_r $ and $u = u_0$ are respectively solutions to the problem (\ref{eqm3}). We have $0 \leq v_0 \leq 1$ and $0 \leq v_r \leq 1$. We obtain on $\partial (B_{R_0}\backslash B_r)$, $v_r \geq v_0$. By the comparison principle \cite{T1}, we have $v_r \geq v_0$ in $B_{R_0}\backslash B_r$. Finally, we have $ \|\nabla v_r\| \leq \|\nabla v_0\|$ then \begin{equation}\label{eqm31} \|\nabla v_0\|^{p} \geq \|\nabla v_r\|^{p}\quad\text{on } \partial B_r. \end{equation} Also, we have $ 0 \leq u_0 \leq 1$ and $0 \leq u_r \leq 1$. We obtain on $ \partial (B_r \backslash D_0^{*})$, $u_r \geq u_0$. By the comparison principle \cite{T1}, we have $u_r \geq u_0$ in $B_r \backslash D_0^{*}$. We get $ \|\nabla u_r\| \geq \|\nabla u_0\|$ then \begin{equation}\label{eqm32} -\|\nabla u_0\|^{p} \geq -\|\nabla u_r\|^{p}\quad\text{on } \partial B_r. \end{equation} By combining (\ref{eqm31}) and (\ref{eqm32}), we obtain \[ \|\nabla v_0\|^{p} -\|\nabla u_0\|^{p} \geq \|\nabla v_r\|^{p} -\|\nabla u_r\|^{p}\quad\text{on } \partial B_r. \] \subsection*{Case $p = N$} Note that $$ h(r) = \frac{1}{r^{p}}\left( \frac{1}{ (\ln R_0 - \ln r)^{p}} -\frac{1}{ (-\ln r_0 + \ln r)^{p}} \right) , \quad\text{for all } r \in ]r_0, R_0[. $$ Let $\delta >0$ be a fixed and sufficiently small number. To initialize, we choose $r_1 \in ]r_0, R_0[$, such that $|h(r_1) - \lambda|>\delta, \lambda \in \mathbb{R}$. By varying $r$ in the increasing sense, we will achieve a step denoted $n$ such that $r_n \in ]r_0, R_0[$ and $|h(r_n) - \lambda| < \delta$. Consider $\mathcal{O}_n$ the class of admissible domains defined as follows $$ \mathcal{O}_n = \{ w \in \mathcal{O}_{\epsilon}, B_{r_n} \subset w, \partial B_{r_n}\cap \partial w \neq \emptyset \quad\text{and}\quad \mathop{\rm vol}(w) = V_1\}, $$ where $ V_1$ denotes a fixed positive constant. We look for $D \in \mathcal{O}_n$ such that \begin{equation}\label{eqm4} \begin{gathered} -\Delta_p v =0 \quad\text{in } D_1^{*}\backslash D \\ v =1 \quad\text{on } \partial D \\ v =0 \quad\text{on } \partial D_1^{*} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p u =0 \quad\text{in } D\backslash D_0^{*} \\ u =0 \quad\text{on } \partial D \\ u =1 \quad\text{on } \partial D_0^{*} \end{gathered} \end{equation} and satisfies the nonlinear joining condition \begin{equation}\label{eqj} \|\nabla v\|^{p} - \|\nabla u\|^{p} =\frac{p}{p-1}\lambda_{D}\quad\text{on } \partial D. \end{equation} Applying the theorem \ref{theop}, the shape optimization problem $\min\{ J(w), w \in \mathcal{O}_n\}$ admits a solution $D$ and by the theorem \ref{theoc}, $D$ satisfies the joining condition (\ref{eqj}). Since $ D \in \mathcal{O}_n$, we have $B_{r_n} \subset D$ and $\partial B_{r_n}\cap \partial D \neq \emptyset$ and $v_{r_n}$ respectively $u_{r_n}$ satisfy \begin{equation}\label{eqm5} \begin{gathered} -\Delta_p v_{r_n} =0 \quad\text{in } D_1^{*}\backslash B_{r_n} \\ v_{r_n} =1 \quad\text{on } \partial B_{r_n} \\ v_{r_n} =0 \quad\text{on } \partial D_1^{*} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p u_{r_n} =0 \quad\text{in } B_{r_n}\backslash D_0^{*} \\ u_{r_n} =0 \quad\text{on } \partial B_{r_n} \\ u_{r_n} =1 \quad\text{on } \partial D_0^{*}. \end{gathered} \end{equation} Consider the problem \begin{equation}\label{eqm6} \begin{gathered} -\Delta_p z =0 \quad\text{in } D_1^{*}\backslash D \\ z = v_{r_n} \quad \mbox{on } \partial D \\ z =0 \quad\text{on } \partial D_1^{*} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p g =0 \quad\text{in } D\backslash D_0^{*} \\ g =0 \quad\text{on } \partial D \\ g = u_{r_n} \quad \mbox{on } \partial D_0^{*}. \end{gathered} \end{equation} It is easy to see that $ z = v_{r_n}$ and $g= u_{r_n}$ are respectively solutions to problem (\ref{eqm6}). We get $0 \leq v_{r_n} \leq 1$ and $0 \leq v \leq 1$. We have on $\partial (D_1^{*}\backslash D )$, $v_{r_n} \leq v$. By the comparison principle \cite{T1}, we obtain $v_{r_n} \leq v$ in $(D_1^{*}\backslash D )$. Since $\partial B_{r_n}\cap \partial D \neq \emptyset$, let's take $x_1\in \partial B_{r_n}\cap \partial D $, we have by passing to the limit $$ \lim_{h \to 0}\frac{v_{r_n}(x_1 +\nu h) - v_{r_n}(x_1)}{h} \leq \lim_{h \to 0}\frac{v(x_1 +\nu h) - v(x_1)}{h}, $$ this is equivalent to (where $\nu$ is the exterior normal to $D$) \begin{equation}\label{eqm61} \|\nabla v_{r_n}(x_1)\|^{p} \geq \|\nabla v(x_1)\|^{p} \end{equation} We get $0 \leq u \leq 1\quad\text{and} 0 \leq u_{r_n} \leq 1$. We have on $\partial (D\backslash D_0^{*} )$, $u_{r_n} \leq u$. By the comparison principle \cite{T1}, we obtain $u_{r_n} \leq u$ in $ (D\backslash D_0^{*} )$. Since $\partial B_{r_n}\cap \partial D \neq \emptyset$, let us take $x_1\in \partial B_{r_n}\cap \partial D $, we have by passing to the limit $$ \lim_{h \to 0}\frac{u_{r_n}(x_1 -\nu h) - u_{r_n}(x_1)}{h} \leq \lim_{h \to 0}\frac{u(x_1 -\nu h) - u(x_1)}{h}, $$ that is \begin{equation}\label{eqm62} -\|\nabla u_{r_n}(x_1)\|^{p} \geq -\|\nabla u(x_1)\|^{p} \end{equation} By combining the relations (\ref{eqm61}) and (\ref{eqm62}), we obtain \[ \|\nabla v_{r_n}(x_1)\|^{p}-\|\nabla u_{r_n}(x_1)\|^{p} \geq \|\nabla v(x_1)\|^{p}-\|\nabla u(x_1)\|^{p}. \] Let us take $ D = D_1$ as the first iteration. We iterate by looking $D_2 \in \mathcal{O}_n^{2}$ such that \begin{equation}\label{eqm7} \begin{gathered} -\Delta_p v_2 =0 \quad\text{in } D_1^{*}\backslash D_2 \\ v_2 =1 \quad\text{on } \partial D_2 \\ v_2 =0 \quad\text{on } \partial D_1^{*} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p u_2 =0 \quad\text{in } D_2\backslash D_0^{*} \\ u_2 =0 \quad\text{on } \partial D_2 \\ u_2 =1 \quad\text{on } \partial D_0^{*}, \end{gathered} \end{equation} and satisfies the nonlinear joining condition \begin{equation}\label{eqj1} \|\nabla v_2\|^{p} - \|\nabla u_2\|^{p} =\frac{p}{p-1}\lambda_{D_2}\quad\text{on } \partial D_2. \end{equation} Also $$ \mathcal{O}^{2}_n = \{ w \in \mathcal{O}_{\epsilon}, D_1 \subset w, \partial B_{r_n}\cap \partial w \neq \emptyset \quad\text{and } \mathop{\rm vol}(w) = V_2\}, $$ where $ V_2$ is a strictly positive constant and $ V_1 < V_2$. By the same reasoning as above, we obtain \[ \|\nabla v_{r_n}(x_2)\|^{p}-\|\nabla u_{r_n}(x_2)\|^{p} \geq \|\nabla v(x_2)\|^{p}-\|\nabla u(x_2)\|^{p} \quad\text{on } \partial B_{r_n}. \] We can continue the process until a step denoted $k$, which we will be determined, and we have \[ \|\nabla v_{r_n}(x_k)\|^{p}-\|\nabla u_{r_n}(x_k)\|^{p} < \|\nabla v(x_k)\|^{p}-\|\nabla u(x_k)\|^{p} \quad\text{and} x_k\in \partial D_k \cap \partial B_{r_n}. \] Finally, we constructed an increasing sequence of domain solutions $$ D_1 \subset D_2 \subset \dots \subset D_{k-1} \subset D_k. $$ By the monotonicity result, in theorem \ref{them7.3}, we have $$ \lambda_{D_1} \geq \lambda_{D_2} \geq \dots \geq \lambda_{D_{k-1}} \geq \lambda_{D_k}. $$ Since $\|\nabla v_{r_n}(x_k)\|^{p}-\|\nabla u_{r_n}(x_k)\|^{p} \leq \|\nabla v_0\|^{p}-\|\nabla u_0\|^{p}$ on $\partial B_{r_n}$, $k$ is chosen as follows in each point $ s_0 \in \partial B_{r_n}$, $$ \lambda_{D_k} \leq h(s_0) \leq \lambda_{D_{k-1}}. $$ Then we obtain the inequality \begin{equation}\label{eqf} \lambda_{D_k} -\lambda \leq h(s_0)-\lambda \leq \lambda_{D_{k-1}}-\lambda. \end{equation} The sequence $(\lambda_{D_j})_{(0 \leq j \leq k)}$ is decreasing and underestimated because we cannot indefinitely generate a sequence domains if not we will leave $D_1^{*}$. We have $\lambda_{D_k} \geq \lambda_{D_*'}$ where $D_*'$ is the greatest domain contained in $D_1^{*}, \partial D_*'\cap \partial B_{r_n} \neq \emptyset. D_*'$ is solution to the shape optimization problem $\min\{ J(w), w \in \mathcal{O}_n\}$ and for all $k$, we have $D_k \subset D_*'$. The sequence $(\lambda_{D_j})_{(0 \leq j \leq k)}$ converges to $l$. By passing to the limit in (\ref{eqf}), we obtain $l = \lambda$ and there exists $D$ solution to problem (\ref{q0})-(\ref{qq0}). The sequence $(D_j)_{(0 \leq j \leq k)}$ gives a good approximation to $D$. \subsection*{Case $p \neq N$} Here the reasoning is identical to the case $ p= N$. We note that $$ h(r) = (|\frac{ p-N}{N-1}|)^{p}(r ^{-|\frac{ N-1}{p-1}|})^{p} \Big( \frac{1}{ | r^{\frac{ p-N}{p-1}} - R_0^{\frac{ p-N}{p-1}}|^{p}} -\frac{1} { (r| r_0^{\frac{ p-N}{p-1}} - r^{\frac{ p-N}{p-1}}|)^{p}} \Big), $$ for all $r \in ]r_0, R_0[$. \end{proof} \section{The multi-layer case} Let $ D_0$ and $ D_{k+1}$ be $\mathcal{C}^{2}$-regular , compact sets in $\mathbb{R}^{N}$ and starshaped with respect to the origin such that $ D_{k +1}$ strictly contains $ D_0$. One supposes that there is $R_0$ such that $D_0 \subset B(0, R_0) \subset D_{k+1}$ where $R_0 = \sup \{ R>0: B(0,R) \subset D_{k+1}\}$. We find a sequence of domains, $\mathcal{C}^{2}$-regular, starshaped with respect to the origin and solution to the shape optimization problem $\min\{ J(w), w \in \mathcal{O}_{\epsilon}\}$, $ D_0 \subset D_1 \subset D_2 \subset \dots \subset D_k \subset D_{k +1}$ such that $(D_i, v_i,u_i)$ is solution of \begin{equation}\label{q1mu} \begin{gathered} -\Delta_p v_i =0 \quad\text{in } D_{i+1}\backslash D_i \\ v_i =1 \quad\text{on } \partial D_i \\ v_i =0 \quad\text{on } \partial D_{i+1} \end{gathered} \hspace{15mm} \begin{gathered} -\Delta_p u_i =0 \quad\text{in } D_i\backslash D_{i-1} \\ u_i =0 \quad\text{on } \partial D_i \\ u_i =1 \quad\text{on } \partial D_{i-1} \end{gathered} \end{equation} and satisfy the non linear joining condition \begin{equation}\label{qq1mu} \|\nabla v_i\|^{p} - \|\nabla u_i\|^{p} = \frac{p}{p-1} \lambda_{i}\quad\text{on } \partial {D_i}, \lambda_i \in \mathbb{R}, 1 \leq i \leq k. \end{equation} \begin{theorem}\label{theomul} Let $ D_0$ and $ D_{k+1}$ be $\mathcal{C}^{2}$-regular , compact sets in $\mathbb{R}^{N}$ and starshaped with respect to the origin such that $ D_{k+1}$ strictly contains $ D_0$. Then there exists a sequence domains $(D_i)_{(1 \leq i \leq k)}$, $\mathcal{C}^{2}$-regular domain solution to the shape optimization problem $ \min \{ J ( w), w \in \mathcal{O}_{\epsilon}\}$ such that $D_0 \subset D_1 \subset D_2 \dots \subset D_k \subset D_{k+1}$ solution of the multi-layer free boundary problem (\ref{q1mu})-(\ref{qq1mu}). \end{theorem} To prove this theorem, we use the method presented in the proof of the two layer case. In fact we consider at first the domains $D_0$ and $D_{k+1}$. And according to the two layer case there is $D_1$ ($D_0 \subset D_1 \subset D_{k+1}$) which is solution to the problem. And sequentially, we seek $D_i$ ($D_{i-1}\subset D_i \subset D_{k+1}, i=2,\cdots k$).It is always possible to invoke the two layer case in order to solve these types of problems. \begin{thebibliography}{00} \bibitem{A1} Acker , A., \emph{On the multi-layer fluid problem: regularity, uniqueness, convexity and successive approximation of solutions}, Comm. Part. Diff.Eq, {\bf 16}(1991), 674-666. \bibitem{A2} Acker , A., \emph{On the existence of convex solutions for multi-layer free boundary problems with general nonlinear joining condition}, Trans.Amer.Math.Soc, {\bf 350}(1998), no. 8, 2981-3020. \bibitem {A3} Acker , A., \emph{On the non convexity of solutions in free boundary problems arising in plasma physics and fluid dynamics,} Comm. Pure. Appl.Math., {\bf 42}(1989), 1165-1174.( Addendum: Comm. Pure. Appl.Math., {\bf 44}(1991), no. 7, 869-872. \bibitem{A4} Acker , A., \emph{Qualitative properties of the boundary derivative of the capacity potential for special classes of annular domains,} Math.Meth.in the Appl.Sci., {\bf 7}(1985), 251-259. \bibitem{A5} Acker , A., \emph{On 2-layer free boundary problems with generalized joining conditions. In: Comparison Methods and Stability Theory} (edited by Xinzhi Liu and David Siegel). Lecture notes in pure and applied mathematics, Vol. 162. Marcel dekker, Inc .1994. \bibitem{AM} Acker, A, Meyer, R. A.; \emph{A free boundary problem for the p-Laplacian: uniqueness,convexity, and sucessive approximation of solutions,} Electronic Journal of Differential Equations, {\bf 8}(1995), 1-20. \bibitem{AHPS}Acker, A.,Henrot, A.,Poghosyan,M. and Shahgholian, H.; \emph{The multi-layer free boundary problem for the $p-$Laplacian in convex domains,} Interfaces and Free boundaries, {\bf 6}(2004), 81-103. \bibitem{AC} H. W. Alt and L. A. Caffarelli, \emph{Existence and regularity for a minimum problem with free boundary,} J. Reine Angew. Math., {\bf 325}(1981), 105-144. \bibitem{DZ} Delfour, M. Zolesio, J.P.; \emph{Shape analysis via oriented distance functions ,} Journal of Functional Analysis {\bf 123}, 129-201,(1994) \bibitem{D1Z} Delfour M., Zolesio J.P.; \emph{Shapes and Geometries, Analysis, Differential Calculus, and Optimization} Advances in Design and Control, SIAM 2001. \bibitem{D}DiBenedetto, E.; \emph{$\mathcal{C}^{1 + \alpha}$ local regularity of weak solutions of degenerate elliptic equations,} Nonlinear Analysis, {\bf 7}(1983), 827-850. \bibitem{Dob} Dobrowolski, M., \emph{On quasilinear elliptic equations in domains with conical boundary points,} J. Reine Angew. Math., {\bf 394}(1989), 186-195. \bibitem{FR} Flucher, M. and Rumpf, M.; \emph{Bernoulli's free boundary problem, qualitative theory and numerical approximation,} J. Reine Angew. Math, {\bf 486}(1997), 165-204. \bibitem{HS1} Henrot, A, Shahgholian, H.; \emph{Existence of classical solutions to a free boundary problem for the p-Laplace operator (I): the exterior convex case,} J. Reine Angew. Math. {\bf 521}(2000), 85-97. \bibitem{HS2} Henrot, A, Shahgholian, H.; \emph{Existence of classical solutions to a free boundary problem for the p-Laplace operator (II): the interior convex case,} Indiana Univ. Math. Journal, {\bf 49 }(2000), No.1, 301-323. \bibitem{HS3} Henrot, A, Shahgholian, H.; \emph{The one phase free boundary problem for the p-Laplacian with non-constant Bernoulli boundary condition,} Trans. Amer. Math. Soc. {\bf 354}(2002), no. 6, 2399-2416. \bibitem {kav} Kavian, O.; \emph{Introduction \`a la th\'eorie des points critiques et applications aux probl\`emes elliptiques,} Springer-Verlag, France, Paris, 1993. \bibitem {lstre1} Laurence, P., and Stredulinsky, E., \emph{A New Approach to Queer Differential Equations,} Comm.in Pure Appl.Math., {\bf 38}(1985), 333-355. \bibitem {lstre2} Laurence, P., and Stredulinsky, E., \emph{Existence of regular solutions with convex levels sets for semilinear elliptic equations with nonmonotone $L^{1}$ nonlinearities. Part (I),} Indiana Univ. Math. J. vol. 39 (4)(1990), pp. 1081-1114. \bibitem{La} Lavrent'ev, M. A.; \emph{Variational methods for boundary value problems for systems of elliptic equations,} Noordhoff, 1963. \bibitem{Le} Lewis, J. L.; \emph{Regularity of the derivatives of solutions to certain degenerate elliptic equations,} Indiana Univ . Math. J., {\bf 32}(1983), 849-858. \bibitem{L} Ly, I.; \emph{Th\`ese de doctorat de troisi\`eme cycle: R\'esultat d'existence en optimisation de forme et \'etude d'un probl\`eme ext\'erieur \`a fronti\`ere libre: cas du p-laplacien,} Soutenue le 20 juin 2002 , UGB, S\'en\'egal. \bibitem{LS} Ly, I., Seck, D.; \emph{Etude d'un probl\`eme \`a fronti\`ere libre pour le p-laplacien,} CRAS, Paris {\bf 332}(2001), S\'erie I, 899-902. \bibitem{LS1} Ly, I., Seck, D.; \emph{Estimation de la constante de Bernoulli dans le probl\`eme int\'erieur cas du p-laplacien,} CRAS, Paris {\bf 337}(2003), S\'erie I, 393-396. \bibitem{LS2} Ly, I., Seck, D.; \emph{Optimisation de forme et probl\`eme \`a fronti\`ere libre pour le p-laplacien,} Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), no.1, 103-126. \bibitem{LS3} Ly, I. and Seck ,D., \emph{Isoperimetric inequality for an interior free boundary problem with p-laplacian operator,} Electronic Journal of Differential Equations, {\bf 2004}(2004), n 109, pp 1-12. \bibitem{LS4} Ly, I., Seck ,D.; \emph{About free boundary problem with quasi linear operator and non constant Bernoulli boundary condition,} to appear. \bibitem{JS} Simon, J.; \emph{Differential with respect to the domain in boundary value problems,} Numer. Funct. Anal. and Optimiz. {\bf 2} (7 - 8), 649-687(1980). \bibitem{SZ} Sokolowski, J., Zolesio, J. P.; \emph{Introduction to Shape Optimization: shape sensitivity analysis,} Springer Series in Computational Mathematics,Vol. 10,Springer,Berlin, 1992. \bibitem{T1} Tolksdorf, P.; \emph{On the Dirichlet problem for quasilinear equations in domains with conical boundary points,} Comm. Partial Differential Equations, {\bf 8}(1983), 773-817. \bibitem{T2} Tolksdorf, P.; \emph{Regularity for a more general class of quasilinear elliptic equations,} J. Differential Equations, {\bf 52}(1984), 126-150. \end{thebibliography} \end{document}