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EXISTENCE OF PERIODIC SOLUTION FOR PERTURBED
GENERALIZED LIÉNARD EQUATIONS

ISLAM BOUSSAADA, A. RAOUF CHOUIKHA

Abstract. Under conditions of Levinson-Smith type, we prove the existence
of a τ -periodic solution for the perturbed generalized Liénard equation

u′′ + ϕ(u, u′)u′ + ψ(u) = εω(
t

τ
, u, u′)

with periodic forcing term. Also we deduce sufficient condition for existence
of a periodic solution for the equation

u′′ +

2s+1X
k=0

pk(u)u′k = εω(
t

τ
, u, u′).

Our method can be applied also to the equation

u′′ + [u2 + (u+ u′)2 − 1]u′ + u = εω(
t

τ
, u, u′).

The results obtained are illustrated with numerical examples.

1. Introduction

Consider Liénard equation

u′′ + ϕ(u)u′ + ψ(u) = 0

where u′ = du
dt , u

′′ = d2u
dt2 , ϕ and ψ are C1. Studying the existence of periodic

solution of period τ0 has been purpose of many authors: Farkas [3] presents some
typical works on this subject, where the Poincaré-Bendixson theory plays a crucial
role. In general, a periodic perturbation of the Liénard equation does not possess
a periodic solution as described by Moser; see for example [1].

Let us consider the perturbed Liénard equation

u′′ + ϕ(u)u′ + ψ(u) = εω(
t

τ
, u, u′)

where ω is a controllably periodic perturbation in the Farkas sense; i.e., it is periodic
with a period τ which can be choosen appropriately. The existence of a non trivial
periodic solution for (2) was studied by Chouikha [1]. Under very mild conditions
it is proved that to each small enough amplitude of the perturbation there belongs
a one parameter family of periods τ such that the perturbed system has a unique
periodic solution with this period.
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Let us consider now the following generalized Liénard equation, which is “a more
realistic assumption in modelling many real world phenomena” as stated in [3, page
105]

u′′ + ϕ(u, u′)u′ + ψ(u) = 0. (1.1)
Where ϕ and ψ are C1 and satisfy some assumptions that will be specified below.
The leading work of investigation for the existence of periodic solution of generalized
Liénard systems was established by Levinson-Smith [4]. Let us define conditions
CLS .
Definition. The functions ϕ and ψ satisfy the condition CLS if: xψ(x) > 0 for
|x| > 0, ∫ x

0

ψ(s)ds = Ψ(x) and lim
x→+∞

Ψ(x) = +∞, ϕ(0, 0) < 0.

Moreover, there exist some numbers 0 < x0 < x1 and M > 0 such that:

ϕ(x, y) ≥ 0 for |x| ≥ x0,

ϕ(x, y) ≥ −M for |x| ≤ x0

x1 > x0,

∫ x1

x0

ϕ(x, y(x))dx ≥ 10Mx0

for every decreasing function y(x) > 0.

Proposition 1.1 (Levinson-Smith [4]). When the functions ϕ and ψ are of class
C1 and satisfy condition CLS then the generalized Lienard equation (1.1) has at
least one non-constant τ0-periodic solution.

A non trivial solution will be denoted u0(t), and its period τ0. This proposition
has many improvements (under weaker hypotheses) due to Zheng and Wax Ponzo;
see [3], among other authors.

This article is organized as follows: At first, we prove the existence of a periodic
solution for the perturbed generalized Liénard equation

u′′ + ϕ(u, u′)u′ + ψ(u) = εω(
t

τ
, u, u′), (1.2)

Where t, ε, τ ∈ R are such that |τ − τ0| < τ1 < τ0, |ε| < ε0 with ε0 ∈ R sufficient
small and τ1 is a fixed real scalar. We will use the Farkas method which was effective
for perturbed Liénard equation. In the third section, we will propose a criteria for
the existence of periodic solution for

u′′ +
2s+1∑
k=0

pk(u)u′
k = εω(

t

τ
, u, u′), (1.3)

with s ∈ N and pk are C1 functions, for all k ≤ 2s + 1. In the second part of
the section, using a result of De Castro [2] we will prove uniqueness of a periodic
solution for the equation

u′′ + [u2 + (u+ u′)2 − 1]u′ + u = 0. (1.4)

Sufficient condition for the existence of periodic solution to

u′′ + [u2 + (u+ u′)2 − 1]u′ + u = εω(
t

τ
, u, u′). (1.5)

will be found. At the end of the paper, some phase plane examples are given in
order to illustrate the above results. In particular, we describe uniqueness of a
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solution for equation (1.4) and the existence of a solution of equation (1.5) for
ω( tτ , u, u

′) = (sin 2t) u′.

2. Periodic solution of perturbed generalized Lienard equation

In this part of this paper we prove the existence of periodic solution of the
perturbed generalized Lienard equation (1.2) such that the unperturbed one (1.1)
has at least one periodic solution. The method of proof that we will employ was
described in [1, 3].

Consider the equation (1.1) We assume that ϕ and ψ are C1 and satisfy CLS .
Then by Proposition 1.1 there exists at least a non trivial periodic solution denoted
u0(t).

Let the least positive period of the solution u0(t) be denoted by τ0 and U be an
open subset of R2 containing (0, 0). These notation will be used in the rest of the
paper.

Theorem 2.1. Let ϕ and ψ be C1 and satisfy CLS. Suppose 1 is a simple charac-
teristic multiplier of the variational system associated to (1.1). Then there are two
real functions τ, h defined on U ⊂ R2 and constants τ1 < τ0 such that the periodic
solution ν(t, α, a+ h(ε, α), ε, τ(ε, α)) of the equation

u′′ + ϕ(u, u′)u′ + ψ(u) = εω(
t

τ
, u, u′),

exists for (ε, α) ∈ U , |τ − τ0| < τ1, τ(0, 0) = τ0 and h(0, 0) = 0.

We point out that the characteristic multipliers are the eigenvalues of the char-
acteristic matrix which is the fundamental matrix in the time τ0.

Proof of Theorem 2.1. Following the method used in [3], we set x2 = u , x1 = du
dt =

u′ and note x = col(x1, x2) = col(u′, u). The plane equivalent system of (1.1) is

x′ = f(x) ⇐⇒
{
x′1 = −ϕ(x2, x1)x1 − ψ(x2)
x′2 = x1

(2.1)

with
f(x) = col(−ϕ(x2, x1)x1 − ψ(x2), x1).

Then the system (2.1) has the periodic solution q(t) with period τ0. We define

q(t) = col(u0
′(t), u0(t))

and therefore

q′(t) = col(−ϕ(u0(t), u0
′(t))u0

′(t)− ψ(u0(t)), u0
′(t)).

The variational system associated with (2.1) is

y′ = fx
′(q(t))y, (2.2)

Without loss of generality, we take the initial conditions

t = 0, u0(0) = a < 0 and u′0(0) = 0

Hence fx′(q(t)) is the matrix(
−ϕ′x1

(u0(t), u0
′(t))u0

′(t)− ϕ(u0(t), u0
′(t)) −ϕ′x2

(u0(t), u0
′(t))u0

′(t)− ψ′(u0(t))
1 0

)
Notice that q′(t) = col(−ϕ(u0(t), u0

′(t))u0
′(t)−ψ(u0(t), u0

′(t)) is the first solution
of the variational system. Now we calculate the second one, denoted by ŷ(t) =
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col(ŷ1(t), ŷ2(t)) and linearly independent with q′(t) = y(t), in order to write the
fundamental matrix. Consider

I(s) = exp
[
−
∫ s

0

(ϕ′x1
(u0(ρ), u0

′(ρ))u0
′(ρ) + ϕ(u0(ρ), u0

′(ρ)))dρ
]

and

π(t) = −
∫ t

0

(
ϕ(u0(ρ), u0

′(ρ))u0
′(ρ) + ψ(u0(ρ))

)−2(
ϕ′x2

(u0(t), u0
′(t))u0

′(t)

+ ψ′(u0(t))
)
I(ρ)dρ

We then obtain

ŷ1(t) = −[ϕ(u0(t), u0
′(t))u0

′(t) + ψ(u0(t)]π(t),

ŷ2(t) = u0
′(t)π(t) + π′(t)

ϕ(u0(t), u0
′(t))u0

′(t) + ψ(u0(t)
ϕ′x2

(u0(t), u0
′(t))u0

′(t) + ψ′(u0(t))

It is known, [1, 3], that the fundamental matrix satisfying Φ(0) = Id2 is Φ(t) equals
to(
ϕ(u0(t),u0

′(t))u0
′(t)+ψ(u0(t))

ψ(a) ψ(a)π(t)[ϕ(u0(t), u0
′(t))u0

′(t) + ψ(u0(t)]

−u0
′(t)

ψ(a) −ψ(a)u′0(t)π(t)− ψ(a)π′(t) ϕ(u0(t),u0
′(t))u0

′(t)+ψ(u0(t))
ϕ′

x2
(u0(t),u0′(t))u0′(t)+ψ′(u0(t))

)
Thus,

Φ(τ0) =
(

1 ψ(a)2π(τ0)
0 ρ2

)
.

We use the Liouville’s formula

det Φ(t) = det Φ(0) exp
∫ t

0

Tr(fx′(q(τ)))dτ.

Since det(Φ(0)) = 1, we deduce the characteristic multipliers associated with (2.2):
ρ1 = 1 and ρ2 = I(τ0) = exp

[
−
∫ τ0
0

(ϕ′x1
(u0(ρ), u0

′(ρ))u0
′(ρ)+ϕ(u0(ρ), u0

′(ρ)))dρ
]
.

From [3], we have:

J(τ0) = −Id2 +
[
−ψ(a) 0

0 0

]
+ Φ(τ0)

Hence we obtain the jacobian matrix

J(τ0) =
(
−ψ(a) ψ(a)2π(τ0)

0 ρ2 − 1

)
,

Since 1 is a simple characteristic multiplier (ρ2 6= 1), det J(0, 0, 0, τ0) 6= 0. We
define the periodicity condition

z(α, h, ε, τ) := ν(α+ τ, a+ h, ε, τ)− (a+ h) = 0. (2.3)

By the Implicit Function Theorem there are ε0 > 0 and α0 > 0 and uniquely
determined functions τ and h defined on U = {(α, ε) ∈ R2 : |ε| < ε0, |α| < α0} such
that: τ, h ∈ C1, τ(0, 0) = T0, h(0, 0) = 0 and z(α, h, ε, τ) ≡ 0. Because of (2.3), the
periodic solution of (1.2) has period τ(ε, α) near T0 and has path near the path of
the unperturbed solution. �
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In particular if ρ2 < 1, the periodic solution is orbitally asymptotically stable
i.e. stable in the Liapunov sense and it is attractive see [3, page 346]. Thus,
the following inequality is a criteria of the existence of orbital asymptotical stable
periodic solution of the equation (1.2).

ρ2 < 1 ⇐⇒
∫ τ0

0

(ϕ′x1
(u0(ρ), u0

′(ρ))u0
′(ρ) + ϕ(u0(ρ), u0

′(ρ)))dρ > 0. (2.4)

Using Proposition 1.1, we conclude the existence of non trivial periodic solution for
perturbed generalized Liénard equation.

3. Results on the periodic solutions

Special case. Let us now consider the equation

u′′ +
2s+1∑
k=0

pk(u)u′
k = 0. (3.1)

Let pk be C1 function, for allk ≤ 2s+ 1 for s ∈ N. This is a special case of Liénard
equation with p0(u) = ψ(u) and

ϕ(u, u′) =
2s+1∑
k=1

pk(u)u′
k−1

.

We will suppose ϕ and ψ verify CLS conditions. Let U be an open subset of R2

containing (0, 0). The associated perturbed equation, as denoted previously (1.3),
is equation

u′′ +
2s+1∑
k=0

pk(u)u′
k = εω(

t

τ
, u, u′).

Remark. The last non-zero term of the finite sum
∑2s+1
k=0 pk(u)u′

k has an odd
index. Then it is necessary to have the element x0 6= 0 in the CLS conditions.

Theorem 3.1. Let ϕ and ψ be C1 and satisfy CLS. If 1 is a simple characteristic
multiplier of the variational system associated to (3.1) then there are two functions
τ, h : U → R and constants τ1 < τ0 such that the periodic solution ν(t, α, a +
h(ε, α), ε, τ(ε, α)) of the equation

u′′ +
n∑
k=0

pk(u)u′
k = εω(

t

τ
, u, u′)

exists for (ε, α) ∈ U with |τ − τ0| < τ1, τ(0, 0) = τ0 and h(0, 0) = 0.

Proof. We will use the same method as in the existence theorem for non-trivial
periodic solution of the perturbed system. Consider the unperturbed equation
to compute some useful elements. First we assume that 2s + 1 = n, to simplify
notation. Let x2 = u and x1 = du

dt = u′. The equivalent plane system of (3.1) is

x′ = f(x) ⇐⇒
{
x′1 = −

∑n
k=0 pk(x2)x1

k

x′2 = x1
(3.2)

with

f(x) = col(−
n∑
k=0

pk(x2)x1
k, x1).
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Let q(t) = col(u′0(t), u0(t)) the periodic solution of (3.2). The variational system
associated to (3.2) is

y′ = f ′x(q(t))y

with the periodic solution

q′(t) = col(−
n∑
k=0

pk(u0)(t)u′0
k(t), u′0(t)),

hence

f ′x(q(t)) =
(
−
∑n
k=1 kpk(u0(t))u′0(t)

k−1 −
∑n
k=0 p

′
k(u0(t))u′0(t)

k

1 0

)
.

We assume the initial values:

t = 0, u0(0) = a < 0 and u0
′(0) = 0.

Then q(0) = col(0, a) and q′(0) = col(−ψ(a), 0).
In same way as the previous section we compute the fundamental matrix as-

sociated with (3.2), denoted Φ(t). Determine the second vector solution (linearly
independent with q′(t) = y(t)). A trivial calculation described in [1, 3] gives us the
second solution denoted ŷ(t), hence Φ(t) = ( y(t)y(0) , y(0)ŷ(t)). For that consider

I(s) = exp
[
−
∫ s

0

(
n∑
k=1

kpk(u0(ρ))u′0(ρ)
k−1)dρ

]
,

and denote as in the previous section

π(t) = −
∫ t

0

(
n∑
k=0

pk(u0)(ρ)u′0(ρ)
k)−2(

n∑
k=0

p′k(u(t))u
′k(t))I(ρ)dρ.

Sine ŷ(t) = col(ŷ1(t), ŷ2(t)), where

ŷ1(t) = −(
n∑
k=0

pk(u0)(t)u′0(t)
k)π(t),

ŷ2(t) = u′0(t)π(t) + π′(t)
∑n
k=0 pk(u0)(t)u′0

k(t)∑n
k=0 p

′
k(u0(t))u′0(t)

k
.

Hence the fundamental matrix associated with our variational system is

Φ(t) =

Pn
k=0 pk(u0)(t)u

′
0

k(t)

ψ(a) ψ(a)(
∑n
k=0 pk(u0)(t)u′0(t)

k)π(t)

−u0
′(t)

ψ(a) −ψ(a)u′0(t)π(t)− ψ(a)π′(t)
Pn

k=0 pk(u0)(t)u
′
0(t)

kPn
k=0 p

′
k(u0(t))u′

0(t)
k

 .

We deduce the principal matrix (the fundamental one with t = τ0).

Φ(τ0) =
(

1 ψ(a)2π(τ0)
0 ρ2

)
.
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By the Liouville’s formula, we have the characteristic multipliers ρ1 = 1 and

ρ2 = det(Φ(τ0))

= exp
(∫ τ0

0

(Trfx′(q(τ))dτ
)

= exp
(
−
∫ τ0

0

n∑
k=1

kpk(u0(τ))u′0(τ)
k−1)dτ

)
Then we define the equivalence (2.4):

ρ2 < 1 ⇐⇒
∫ τ0

0

( n∑
k=1

kpk(u0(τ))u′0(τ)
k−1
)
dτ > 0 (3.3)

and the associated Jacobian matrix is

J(τ0) =
(
−ψ(a) ψ(a)2π(τ0)

0 ρ2 − 1

)
.

�

Uniqueness of the periodic solution for an unperturbed equation. Let us
consider now equation (1.4):

u′′ + [u2 + (u+ u′)2 − 1]u′ + u = 0,

which is a special case of generalized Liénard equation with

ϕ(u, u′) = (u2 + (u′ + u)2 − 1) and ψ(u) = u.

We will prove existence and uniqueness of non trivial periodic solution for equation
(1.4). Existence will be ensured by CLS conditions and for proving uniqueness we
use a De Castro’s result [5] (see also [2]).

Proposition 3.2 (De Castro [1]). Suppose the following system has at least one
periodic orbit

y′ = −ϕ(x, y)y − ψ(x)

x′ = y.

Then under the following two assumptions:
(a) ψ(x) = x;
(b) ϕ(x, y) increases, when |x| or |y| or the both increase

this periodic orbit is unique.

Let us verify that (1.4) satisfies the above assumptions: Equation (1.4) is satisfied
if and only if

u′′ +
3∑
k=0

pk(u)u′
k = 0,

p0(u) = ψ(u) = u, p1(u) = 2u2 − 1, p2(u) = 2u, p3(u) = 1.

(3.4)

Also if and only if

u′′ + ϕ(u, u′)u′ + ψ(u) = 0,

ϕ(u, u′) = (u2 + (u′ + u)2 − 1), ψ(u) = u.
(3.5)
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Clearly, the assumptions of Proposition 3.2 are satisfied. In the following, we firstly
verify conditions CLS . In that case the equation

u′′ + ϕ(u, u′)u′ + ψ(u) = 0

has at least a non trivial periodic solution. It is easy to see that ψ(u) = u satisfies

xψ(x) > 0 for |x| > 0,∫ x

0

ψ(s)ds = Ψ(x), limx→+∞Ψ(x) = +∞

Now we have ϕ(0, 0) = −1 < 0. By taking x0 = 1, M = 1, we have

ϕ(x, y) ≥ 0 for |x| ≥ x0,

ϕ(x, y) ≥ −M for |x| ≤ x0 .

The following calculation gives us the optimal value of x1 > x0. Let

H =
∫ x1

x0

ϕ(x, y)dx

=
∫ x1

1

[x2 + (x+ y)2 − 1]dx

=
∫ x1

1

[2x2 + 2xy + y2 − 1]dx

=
[2
3
x3 + x2y + x(y2 − 1)

]x1

1

= (x1 − 1)(
x1

2 − 2x1 + 1
6

+ 2(
x1 + 1

2
)2 + 2y(

x1 + 1
2

) + (y2 − 1))

= (x1 − 1)
(x1

2 − 2x1 + 1
6

+ ϕ(
x1 + 1

2
, y)
)

Since x1+1
2 > x0 = 1, using the inequality ϕ(x, y) ≥ 0 for |x| ≥ x0, we obtain

H > (x1−1)3

6 . Hence, if (x1−1)3

6 = 10Mx0 = 10, then x1 = 1 + (60)
1
3 which satisfies

x1 > x0,

∫ x1

x0

ϕ(x, y) dx ≥ 10Mx0,

for every decreasing function y(x) > 0.

Existence of periodic solution for perturbed equation satisfying CLS. In
the following we are dealing with the existence of periodic solution for the equation
(1.5). We assume the initial values:

t = 0, u0(0) = a < 0, u0
′(0) = 0.

Theorem 3.3. Suppose 1 is a simple characteristic multiplier of the variational
system associated to (1.4). Then there are two functions τ, h : U → R and constants
τ1 < τ0 such that the periodic solution ν(t, α, a+ h(ε, α), ε, τ(ε, α)) of the equation

u′′ + u′
3 + 2uu′2 + (2u2 − 1)u′ + u = εω(

t

τ
, u, u′),

exists for (ε, α) ∈ U with |τ − τ0| < τ1, τ(0, 0) = τ0 and h(0, 0) = 0.
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Proof. We proceed similarly as in the proof of Theorem 3.1. We substitute the
fundamental matrix, the second characteristic multiplier is ρ2. The following holds
for equation (1.4),

ρ2 < 1 ⇐⇒
∫ τ0

0

(
3∑
k=1

kpk(u0(τ))u′0(τ)
k−1)dτ > 0,

then

ρ2 < 1 ⇐⇒
∫ τ0

0

[2u0
2(τ) + 4u0(τ)u′0(τ) + 3u′0(τ)

2 − 1]dτ > 0.

It ensures that 1 is a simple characteristic multiplier of the variational system
associated to (1.4) it implies J(τ0) 6= 0. Then a periodic solution for the perturbed
equation (1.5) exists. �

Using Scilab we will describe the phase plane of equation (1.4) u′′ + [u2 + (u +
u′)2−1]u′+u = 0. We take x0 = u0(0) = a = −0.7548829, y0 = u0

′(0) = 0 and the
step time of integration (step = .0001). Recall that the periodic orbit is unique.

Figure 1. (A) The unique periodic orbit for u′′+[u2+(u+u′)2−
1]u′ + u = 0. (B) Zoom on the periodic orbit (×20)

We take εω( tτ , u, u
′) = εsin(2t)u′. Some illustrations of the phase portrait for

the perturbed equation (1.5), those can explain existence of a bound ε0, from which
periodicity of the orbit will be not insured. In order to localize ε0, we have taken
several values of ε.

Figure 2. (C) The periodic orbit for u′′+[u2+(u+u′)2−1]u′+u =
εω( tτ , u, u

′), ε = 0.001. (D) Zoom on the periodic orbit (×20)
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Figure 3. (E) Orbit for u′′+[u2+(u+u′)2−1]u′+u = εω( tτ , u, u
′),

ε = 0.01. (F) Zoom on the orbit (×10) and loss of periodicity.

We see that from the range of ε = 0.01 the orbit loses the periodicity.

Table 1. Period τ for some values of ε

ε 0 1/1000 1/900 1/800 1/700
τ 5.4296 5.4287 5.4286 5.4285 5.4283
ε 1/600 1/500 1/400 1/300 1/200
τ 5.4281 5.4278 5.4274 5.4267 5.4252
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