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TRUNCATED GRADIENT FLOWS OF THE VAN DER WAALS
FREE ENERGY

MICHAEL GRINFELD, IULIAN STOLERIU

Abstract. We employ the Padé approximation to derive a set of new partial
differential equations, which can be put forward as possible models for phase

transitions in solids. We start from a nonlocal free energy functional, we

expand in Taylor series the interface part of this energy, and then consider
gradient flows for truncations of the resulting expression. We shall discuss here

issues related to the existence and uniqueness of solutions of the newly obtained

equations, as well as the convergence of the solutions of these equations to the
solution of a nonlocal version of the Allen-Cahn equation.

1. Introduction

Solid-solid phase transitions may be well described by suitable gradient flows of
the Ginzburg-Landau free energy functional,

E1(u) =
γ

2

∫
Ω

|∇u|2dx +
∫

Ω

F (u)dx, (1.1)

where Ω is a bounded domain in R, u(x, t) is a suitable order parameter and γ is
a measure of strength of intermolecular forces. In many situations, the suitable
bulk energy F (u) has a double well structure. Starting from (1.1) and considering
the gradient flow with respect to the L2-inner product, one obtains the well-known
Allen-Cahn equation,

ut = γ∆u− f(u). (1.2)
Here f(u) = F ′(u) is usually a bistable function. This equation has been used in
modelling order parameter non-conserving phenomena, such as transitions between
variants of a crystalline substance (see, for example, [1, 7, 8, 9, 21]). For order
parameter conserving situations, one has to consider a constrained gradient flow.
If one uses the gradient with respect to the H−1-inner product, one obtains:

ut = −∆(γ∆u− f(u)), (1.3)

which is the Cahn-Hilliard equation [8, 16]. The equation (1.3) gives a qualitatively
faithful description of spinodal decomposition, of the transition from spinodal to
metastable behaviour, as well as of critical nuclei.
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The problem with the Ginzburg-Landau approach (apart from the fact that
it fails to give a good quantitative fit to the course of coarsening in a number
of situations; see [12] for example) is that it is totally phenomenological. Other
approaches exist, all of them more or less starting with the Ising model. Examples
are the work of Penrose [17] and equations derived from the free energy written
down by van der Waals [22] and advocated by Khachaturyan [13] (see equation
(1.4) below).

Gradient flows of the van der Waals free energy (in the non-conserving case)
have been studied, among others, by [1, 7, 9, 21]. In particular, the paper [9] sets
out the general theory of these (integro-differential) equations; [1] gives a careful
derivation of the equations directly from the Ising model and describe stationary
solutions, while [7, 21] deal mainly with the lack of coarsening and non-compactness
of attractors in the case of sufficiently small γ (this is in stark contrast to the Allen-
Cahn situation).

For simplicity, we shall take below Ω = R. The van der Waals free energy is then

E2(u) =
γ

4

∫
R

∫
R

J(|x− y|)(u(y)− u(x))2dydx +
∫

R
F (u(x))dx. (1.4)

where J(·) is an L1(R) kernel describing intermolecular interactions (for most of
the paper we will have to impose additional restrictions on J(·)). The L2 gradient
flow of E2 is

ut = γ

∫
R

J(|x− y|)(u(y)− u(x)) dy − f(u). (1.5)

Note that the linear part of equation (1.5) is a bounded operator; for small γ it is
a regular perturbation of the kinetic equation

ut = −f(u), (1.6)

while the Cahn-Allen equation equation (1.2) is a singular perturbation of (1.6).
Formally, one can derive the Ginzburg-Landau functional from the van der Waals

one by performing a gradient expansion and retaining only the leading term. Trying
to retain more than the leading term is, however, fraught with difficulties: as we
show below in Section 2, retaining an even number of terms leads to an ill-posed
problem, and even in the case of an odd number of terms (considered, e.g. in
[2, 3]), it is not clear how semiflows generated by high order parabolic equations
are supposed to approximate the flow generated by equation (1.5).

In this paper, motivated by the work of Rosenau [18] and of Slemrod [20], we
show that if instead of polynomial approximations we use Padé approximants, we
recover a family of equations that, in addition to being in some aspects easier to
handle than the original integro-differential equation (1.5), also have the desired
well-posedness and convergence properties.

We start by going through the usual gradient expansion scheme, following [3].
Then we derive our new equations based on Padé approximants, we discuss the
well-posedness and we prove a convergence property of the solutions to the newly
obtained equations.

2. Truncation scheme

We aim to derive the truncated gradient flows of (1.4) by expanding in Taylor
series the term (u(y)− u(x)), and then truncate to some order the new expression.
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Since we are expanding the interface part of the free energy, we shall omit the bulk
energy part in the computations below. Thus, consider

L(u) =
γ

4

∫
R

∫
R

J(|x− y|)(u(y)− u(x))2 dy dx.

Below we shall use the notation Dku for the k-th derivative of u. Setting x = η + ξ
and y = ξ − η, we have formally:

L(u) =
γ

2

∫
R

∫
R

J(2|η|)[u(ξ − η)− u(ξ + η)]2dηdξ

= 2γ
∫

R

∫
R

J(2|η|)
[ ∞∑

k=1

η2k−1

(2k − 1)!
D2k−1u(ξ)

]2

dξdη

= 2γ
∫

R
J(2|η|)

∞∑
k=1

η2k

(2k)!

[ ∫
R

k∑
i=1

C2i−1
2k D2i−1u(ξ)D2k−2i+1u(ξ)dξ

]
dη,

(2.1)

where C2i−1
2k is defined by

C2i−1
2k =

(2k)!
(2i− 1)!(2k − 2i + 1)!

, k = 1, 2, . . . ; i = 1, 2, . . . , k.

We now truncate to the nth-order the last expression of L(u) and write

Ln(u) = 2γ

∫
R

J(2|η|)
n∑

k=1

η2k

(2k)!

[ ∫
R

k∑
i=1

C2i−1
2k D2i−1u(ξ)D2k−2i+1u(ξ)dξ

]
dη.

Again, proceeding formally, we compute the L2-gradient flow of the truncated free
energy En(u), where

En(u) = Ln(u) +
∫

R
F (u(x))dx.

We have

〈δEn(u)
δu

, v〉 =
d

dθ
En(u + θv)|θ=0

= 2γ

∫
R

J(2|η|)
n∑

k=1

η2k

(2k)!
{

k∑
i=1

C2i−1
2k

∫
R
[D2i−1u(ξ)D2k−2i+1v(ξ)

+ D2i−1v(ξ)D2k−2i+1u(ξ)]dξ}dη +
∫

R
f(u(ξ))v(ξ) dξ

= 2γ
∫

R
J(2|η|)

n∑
k=1

η2k

(2k)!
{

k∑
i=1

C2i−1
2k

∫
R
[(−1)2k−2i+1D2ku(ξ)

+ (−1)2i−1D2ku(ξ)]v(ξ)dξ}dη +
∫

R
f(u(ξ))v(ξ) dξ

= −γ

∫
R

{ n∑
k=1

[22k+1

(2k)!

∫
R

J(2|η|)η2kdη
]
D2ku(ξ)− f(u(ξ))

}
v(ξ)dξ

= −γ

∫
R

{ n∑
k=1

ρ2kD2ku(ξ)− f(u(ξ))
}

v(ξ)dξ, for all v ∈ L2(Ω),

(2.2)
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where 〈·, ·〉 is the L2 inner product and ρ2k is the non-negative quantity

ρ2k =
22k+1

(2k)!

∫
R

J(2|η|)η2k dη =
1

(2k)!

∫
R

J(|z|)z2k dz, k = 1, 2, . . . (2.3)

Note that in (2.2) we used integration by parts, and homogeneous boundary con-
ditions for the derivatives of u of any order. For the infinite series to be at least
formally defined we must assume that all the moments ρ2k of J(·) are finite. Thus,
the L2-gradient flow derived using En is

∂u

∂t
(x, t) = γ

n∑
k=1

ρ2kD2ku(x, t)− f(u(x, t)), x ∈ R. (2.4)

Note that we can also derive formally the L2-gradient flow of the expanded free
energy (2.1). This is

∂u

∂t
= γ

∞∑
k=1

ρ2kD2ku− f(u), (2.5)

which can be written in the form
∂u

∂t
= γ

∫
R

J(|z|) cosh(zD)(u) dz − f(u), x ∈ R,

which is reminiscent of equations derived in [19]. By cosh(zD) we have defined the
differential operator

cosh(zD)(u) =
1

(2k)!

∞∑
k=1

z2kD2ku.

The symbol of this operator is then

cos(zξ) =
1

(2k)!

∞∑
k=1

(−1)kz2kξ2k.

As a remark, we note that an easier (but also formal) way of obtaining equation
(2.5) is to observe that the symbol of the integral operator A, such that

Au(x) =
∫

R
J(|x− y|)(u(y)− u(x))dy,

is given by

S(A)(k) =
∫

R
J(w)(cos(kw)− 1)dw, (2.6)

then one can expand (cos(kw)− 1) in Taylor series and integrate term by term the

resulting expression. Let us now define the operator Ãnu =
n∑

k=1

ρ2kD2ku, and for

each n ∈ N consider the following initial value problem in H2n(R):

ut = γÃnu− f(u), (x, t) ∈ R× (0,∞),

u(0) = u0.
(2.7)

Well-posedness of these problems is not obvious. If J(·) ≥ 0 and n is an even
number, these problems are not well-posed in positive time. Clearly, if n is an odd
number the problems (2.7) for n are not well-posed in negative time (various aspects
of (2.7) for n odd have been considered in [2, 3]). This is to be expected, as we
are trying to approximate the flow generated by a bounded operator by parabolic
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semiflows. If the usual assumption of nonnegativity of J(·) (which in certain cases
does not have any physical basis) is not imposed, taking polynomial truncations
becomes even more contentious. We note that the limit as n →∞ of (2.7) has been
considered by Dubinskii [6].

In the following, we will approximate the flow generated by (1.5) by taking
operator Padé approximants of (2.7).

Let S(Ã2n) be the symbol of the operator Ã2n (a polynomial of degree 4n). If
q2n/r2n is the [2n/2n] Padé approximant of S(Ã2n), (where p2n, q2n are polyno-
mials of degree 2n), then we consider the differential operators Rn and Qn of order
2n, such that their symbols are q2n and r2n, respectively. In this way, the trunca-
tion to degree 2n of the symbol of Ã2nRn is the symbol of Qn. For each n ∈ N we
define the operator

An = QnR−1
n (2.8)

acting on L2(R), which is a [2n/2n] Padé-type approximant of the operator

Ã∞ =
∞∑

k=1

ρ2kD2ku.

Instead of (2.7), we shall consider now the problem,

ut = γAnu− f(u), (x, t) ∈ R× (0,∞),

u(0) = u0 .
(2.9)

Note the nice commutativity property: RnQn = QnRn on smooth enough functions
(usual property of differential operators with constant coefficients). Thus, we can
rewrite the equation

ut + f(u) = QnR−1
n u

as
Rn(ut + f(u)) = Qnu.

When n = 1, problem (2.9) turns out to be the initial value problem(
ρ2I − ρ4

∂2

∂x2

)
(ut + f(u)) = γρ2

2

∂2u

∂x2
, x ∈ R, (2.10)

where I is the identity operator.
The Cahn-Hilliard equation and the viscous diffusion equation [14] can easily be

derived from the conserved order parameter version of equation (1.5), which is (see
[21]):

ut = γ

∫
R

J(|x− y|)(Au(x, t)−Au(y, t)− f(u(x, t)) + f(u(y, t)) dx dy . (2.11)

After the change of variables and expanding in Taylor series, one obtains

ut = −γÃ∞ ◦ Ã∞u + Ã∞f(u) (2.12)

Truncating at the first order term and scaling time, one obtains the Cahn-Hilliard
equation in the scalar form,

ut =
∂2

∂x2

(
f(u)− γρ2

∂2u

∂x2

)
.

Setting γ = 0 in (2.12) and taking the [2/2] Padé approximant leads to(
ρ2I − ρ4

∂2

∂x2

)
ut = γρ2

2

∂2

∂x2
f(u),
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which was analyzed in [14] in an L∞(R) setting.

3. Well-posedness and convergence

Clearly, for each n ∈ N, the operator An defined by (2.8) is a linear operator,
since both Qn and Rn are linear and the inverse of a linear operator is linear. Since
the symbol of A (equation (2.6)) is a bounded function from R into R, so are the
symbols of An, n ∈ N. Therefore, by applying the Plancherel formula in the form

‖Anu‖2 = ‖Ânu‖2 = ‖S(An)û‖2,

where û is the Fourier transform of u ∈ L2(R), we see that An are bounded operators
in L2(R). Furthermore, it is not hard to show that if J(·) ≥ 0 the symbol of An is
negative for each n.

We now restrict ourselves to the space {u ∈ L2(R); suppu = Ω}, where Ω is
a bounded domain in R, and for each n ∈ N we study the following initial-value
problem

ut = γAnu− f(u), (x, t) ∈ Ω× (0,∞),

u(0) = u0.
(3.1)

We would like to prove that this problem generates a flow on a forward-invariant
subset of L2(Ω), which contains all the steady state patterns. Here we are guided
by the function-theoretic setting in [10]. Let

Z = L2(Ω) ∩ {|u(x)| ≤ 1 a.e. in Ω}. (3.2)

Then by Theorem 2.16 of Hoh [11], which builds on the work of Corrège, the
negativity of symbols of An implies that Z is forward-invariant under the flow
generated by (3.1); for (1.5) this result has been proved in [9] and used extensively
in [7].

We make the following assumptions:
(A1) J(·) ≥ 0; J ∈ L1(R) and there exists α > 0 such that

∫
R J(x)eα|x|dx < ∞;

(A2) the function f : Z → Z is locally Lipschitz continuous.
Note that (A1) assures that all the coefficients ρ2k, k ∈ N, are defined and positive,
and that the operator An is defined for each n ∈ N.

For a fixed n ∈ N, we say that a function u : [0, T ) → L2(Ω) is a (classical)
solution of (3.1) on [0, T ) if u is continuous on [0, T ), continuously differentiable on
(0, T ), and (3.1) is satisfied on [0, T ). We have:

Theorem 3.1. Suppose that the hypotheses (A1) and (A2) are satisfied. Then for
each u0 ∈ Z, n ∈ N, the initial-value problem (3.1) has a unique global solution
un ∈ C([0,∞)×Z). Moreover, for each n ∈ N the mapping u0 → un is continuous
in L2(Ω).

Proof. The theory of Lipschitz perturbations of linear evolution equations (see Pazy
[15]) assures the existence and uniqueness of a local solution un0(x, t, u0), defined on
a maximal interval of existence [0, τn0) (with τn0 depending on ‖u0‖2), and also the
continuity of un0 with respect to the initial condition. Moreover, if τn0 < ∞, then
limt↗τn0 ‖u(t)‖2 = ∞, which is not possible by the forward invariance of Z. �

For each n ∈ N, we denote by {Tn(t) : Z → Z, t ≥ 0} the continuous semigroup
of bounded nonlinear operators

Tn(t)u0 = un(t;u0), t ≥ 0.
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Also, let {T (t) : Z → Z, t ≥ 0} be the continuous semigroup of bounded nonlinear
operators generated by (1.5).

We would like now to show that solutions to (3.1) with u(x, 0) given, converge
in the L2(Ω) -norm to solutions to (1.5) with the same initial data, as n →∞. In
order to prove this, we will use the following lemma:

Lemma 3.2. If X is a Banach space and the sequence {wn, n ∈ N} ⊂ C([0, T ];X)
converges to w in the sense of the norm of C([0, T ];X), then

lim
n→∞

∫ T

0

wn(r)dr =
∫ T

0

w(r)dr, in the X norm. (3.3)

For a proof of the above lemma, see [4, Theorem 3.3]. We can now prove the
following approximation result:

Theorem 3.3. For every u0 ∈ Z and each t > 0, we have that

‖un(t;u0)− u(t;u0)‖2 → 0, as n →∞. (3.4)

Proof. Denote by {S(t); t ≥ 0} and {Sn(t); t ≥ 0} the linear continuous semigroups
generated by the linear continuous operators A and An (n ∈ N), respectively. Since
these semigroups are bounded, we can find some positive constants M and Mn(n ∈
N) so that ‖S(t)‖2 ≤ M and ‖Sn(t)‖2 ≤ Mn(n ∈ N). If we let g(u) = −f(u), then
the solutions of (1.5) and, respectively, (3.1) can be written in the form

u(t;u0) = S(t)u0 +
∫ t

0

S(t− s)g(u(s)) ds, t ≥ 0;

un(t;u0) = Sn(t)u0 +
∫ t

0

Sn(t− s)g(un(s)) ds, t ≥ 0, n ∈ N.

The function g is locally Lipschitz-continuous on Z, hence for every positive con-
stant c there is a constant Lc > 0 such that

‖g(u)− g(v)‖2 ≤ Lc‖u− v‖2

holds for all u, v ∈ Z with ‖u‖2 ≤ c, ‖v‖2 ≤ c. Since T and Tn, n ∈ N, are bounded
semigroups in Z, we can choose c to be the common L2-upper bound, and thus for
all t > 0, we have

‖un(t)− u(t)‖2

≤ ‖Sn(t)u0 − S(t)u0‖2 +
∫ t

0

‖Sn(t− s)g(un(s))− S(t− s)g(u(s))‖2ds

≤ ‖[Sn(t)− S(t)]u0‖2 +
∫ t

0

‖[Sn(t− s)− S(t− s)]g(u(s))‖2ds

+
∫ t

0

‖Sn(t− s)g(un(s))− Sn(t− s)g(u(s))‖2ds

≤ ‖[Sn(t)− S(t)]u0‖2 +
∫ t

0

‖[Sn(t− s)− S(t− s)]g(u(s))‖2ds

+ MnLc

∫ t

0

‖un(s)− u(s)‖2ds,
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for all n ∈ N. We can rewrite the last inequality as

d

dt
{e−MnLωT

∫ t

0

‖un(s)− u(s)‖ds}

≤ e−MnLωT {‖[Sn(t)− S(t)]u0‖2 +
∫ t

0

‖[Sn(t− s)− S(t− s)]g(u(s))‖2ds},

for all n ∈ N. Then, using the above Lemma, the convergence (3.4) is proved if for
all h ∈ L2(Ω) we have

‖Sn(t)h− S(t)h‖2 → 0, as n →∞. (3.5)

By the Trotter approximation theorem [15], in order to have (3.5) it suffices to prove
the following convergence in the L2(Ω) norm, for the corresponding resolvents:

For every h ∈ L2(Ω) and some λ > 0, R(λ, An)h → R(λ, A)h as n →∞, (3.6)

where R(λ, A) = (λI − A)−1 and R(λ, An) = (λI − An)−1, n ∈ N. Since A and
An(n ∈ N) are infinitesimal generators of the uniformly continuous semigroups
{S(t), t ≥ 0} and, respectively, {Sn(t), t ≥ 0} (n ∈ N), then the resolvent sets ρ(A)
and ρ(An)(n ∈ N) contain (0,∞) and

‖R(λ, A)‖2 ≤ M/λ, ‖R(λ, An)‖2 ≤ Mn/λ for λ > 0, n = 1, 2, . . .

We have then

‖R(λ, An)h−R(λ, A)h‖2 = ‖R(λ, An){(λI −A)− (λI −An)}R(λ, A)h‖2

= ‖R(λ, An)[An −A]R(λ, A)h‖2

≤ Mn

λ
‖[An −A]R(λ, A)h‖2, (λ > 0)

(3.7)

for all h ∈ L2(Ω). On the other side, for each n ∈ N the symbol S(An) is the
[2n/2n] Padé approximant of S(A). This fact and the Plancherel formula implies

‖(An −A)ξ‖2 = ‖F [(An −A)ξ]‖2

= ‖[S(An)− S(A)]Fξ‖2

≤ ‖S(An)− S(A)‖2‖ξ‖2 → 0,

(3.8)

as n → ∞ for all ξ ∈ L2(R), where Fξ denotes the Fourier transform. Now (3.8)
and (3.7) imply (3.6), and this completes the proof. �

3.1. Conclusion. By expanding the nonlocal term in the expression of the free
energy (1.4) in Taylor series and truncating the result, one ends up with equations
which are not always well-posed, the well-posedness depending on the order of
truncation and the direction of time chosen. It is not clear whether the solutions
to the unbounded flows can in any sense approximate the solution to the bounded
flow given by (1.5). In this paper we proposed a set of new equations, which can
be put forward as possible models for phase transitions in solids. (Our method
of proof relies on having J(·) ≥ 0, which is a reasonable assumption to make in
this context.) By using Padé approximation, we approximated the flow generated
by (1.5) by some bounded flows. The new equations have the advantage of being
well-posed for all orders of the Padé approximation.
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