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A CHARACTERIZATION OF BALLS USING THE DOMAIN
DERIVATIVE

ANDRIY DIDENKO, BEHROUZ EMAMIZADEH

Abstract. In this note we give a characterization of balls in RN using the do-

main derivative. As a byproduct we will show that an overdetermined Stekloff

eigenvalue problem is solvable if and only if the domain of interest is a ball.

1. Introduction

In this note we give a characterization of balls in RN using the domain derivative.
As an application we prove that an overdetermined Stekloff eigenvalue problem is
solvable if the domain of interest is a ball. This work is motivated by the following
result.

Theorem 1.1. A domain D ⊂ RN is a ball if and only if there exists a constant c
such that the following integral equality is valid∫

D

h dx = c

∫
∂D

h dσ, (1.1)

for every harmonic function h.

For the proof of the above theorem, the reader is referred to [1, 3].
Our characterization replaces (1.1) by another integral equation which involves

the domain derivative of the solution of the Saint-Venant equation in D. This
result will enable us to show that an overdetermined Stekloff eigenvalue problem is
solvable if and only if the domain of the problem is a ball.

2. Main result

To state the main result we need some preparation. Henceforth D is a smooth
simply connected bounded domain in RN . By u we denote the unique solution of
the Saint-Venant problem in D; i.e.,

−∆u = 1 in D

u = 0 on ∂D
(2.1)
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Given a vector field V ∈ C2(RN ; RN ), we denote by u′, the domain derivative of u
at D in direction of V ; the reader is referred to [5] for a thorough treatment of the
concept of domain derivatives. Using [5, Theorems 3.1 and 3.2], it follows that

∆u′ = 0 in D

u′ = −∂u

∂ν
V · ν on ∂D,

(2.2)

where ν stands for the unit outward normal vector on ∂D. Now we state our main
result.

Theorem 2.1. The domain D is a ball if and only if there exists a constant c such
that the following integral equation is valid∫

D

u′ dx = c

∫
∂D

u′ dσ, (2.3)

for every vector field V ∈ C2(RN ; RN ).

We need the following result.

Lemma 2.2. Suppose f ∈ C(∂D) and the following equation holds∫
∂D

fV · ν dσ = 0, (2.4)

for every V ∈ C2(RN , RN ). Then f vanishes on ∂D.

Proof. To derive a contradiction suppose f(x0) 6= 0, for some x0 ∈ ∂D. Let us
assume that in fact f(x0) > 0; the case f(x0) < 0 can be addressed similarly. Since
f is continuous, we readily infer existence of an open component of ∂D, denoted γ,
where

f(x) ≥ 1
k

, ∀x ∈ γ,

for some integer k. Thanks to smoothness of ∂D we can make the following obser-
vation; namely, ∂D is locally star-shaped. This means: For every ξ ∈ ∂D, there
exists a ball Bξ centered at ξ, and a point xξ ∈ D, such that

(x− xξ) · ν(x) > 0, ∀x ∈ Bξ ∩ ∂D.

Without loss of generality we may assume there exists x∗ ∈ D such that

(x− x∗) · ν(x) > 0, ∀x ∈ γ.

Let us now consider a non-negative test function φ ∈ C∞
0 (RN ), where the intersec-

tion of the support of φ with ∂D is a proper subset of γ and has positive measure.
Now we choose V = φ(x)(x−x∗) in (2.4); note that V is admissible since it belongs
to C2(RN , RN ). Thus ∫

γ

f(x)φ(x)(x− x∗) · ν(x) dσ = 0. (2.5)

However∫
γ

f(x)φ(x) (x− x∗) · ν(x) dσ ≥ 1
k

∫
support(φ)∩γ

φ(x)(x− x∗) · ν(x) dσ > 0,

which contradicts (2.5). Thus f must vanish on ∂D, as desired. �



EJDE-2006/154 A CHARACTERIZATION OF BALLS 3

Proof of Theorem 2.1. Assume that (2.3) is satisfied. Let us fix V ∈ C2(RN ; RN ).
We claim ∫

D

u′ dx =
∫

∂D

(∂u

∂ν

)2
V · ν dσ. (2.6)

To prove (2.6) we observe that from the differential equation in (2.1) we have∫
D

u′ dx = −
∫

D
u′∆u dx. Since u′ is harmonic in D it then follows that∫

D

u′ dx =
∫

D

(u∆u′ − u′∆u) dx.

Now an application of the Green identity to the right hand side of the above equation
yields ∫

D

u′ dx =
∫

∂D

(
u

∂u′

∂ν
− u′

∂u

∂ν

)
dσ.

Since u vanishes on ∂D, the above equation implies∫
D

u′ dx = −
∫

∂D

u′
∂u

∂ν
dσ. (2.7)

From (2.7) and the boundary condition in (2.2) we derive (2.6). From the hypothesis
and (2.6) we obtain c

∫
∂D

u′ dσ =
∫

∂D

(
∂u
∂ν

)2
V · ν dσ. So again using the boundary

condition in (2.2) we derive

−c

∫
∂D

∂u/∂νV · ν dσ =
∫

∂D

(∂u

∂ν

)2
V · ν dσ.

So ∫
∂D

((∂u

∂ν

)2 + c
∂u

∂ν

)
V · ν dσ = 0.

Since V ∈ C2(RN ; RN ) is arbitrary Lemma 2.2, applied to the above equation,
guarantees that

∂u

∂ν

(∂u

∂ν
+ c

)
= 0 on ∂D.

By the Hopf boundary point lemma applied to (2.1) we infer that ∂u/∂ν is negative
on ∂D. So the last equation implies ∂u/∂ν = −c on ∂D. This result added to (2.1)
yields the following overdetermined boundary value problem

−∆u = 1 in D

u = 0 on ∂D

∂u

∂ν
= −c on ∂D

(2.8)

It is classical, see [4, 6], that (2.8) is solvable if and only if D is a ball.
Conversely, let us assume that D is a ball. Without loss of generality we may

assume that D is the ball with radius R centered at the origin. Note that in this
case the solution of (2.1) is

u(x) =
1

2N
(R2 − |x|2).

Therefore ∂u/∂ν will be equal to −R/N on ∂D. So if we apply (2.7) we find that∫
D

u′ dx = −R

N

∫
∂D

u′ dσ,

which coincides with the integral equation (2.3), with c = −R/N . This completes
the proof. �
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Note that c = −R/N , as in the above argument, could also be written as c =
− ωN RN

NωN RN−1 = −V (D)
S(D) , where ωN stands for the volume of the unit N -dimensional

ball, and V (D), S(D) denote the volume and the surface area of D, respectively.
In the remaining of this section we focus on the Stekloff eigenvalue problem; i.e.,

∆w = 0 in D.

∂w

∂ν
= pw on ∂D

(2.9)

In (2.9), p denotes the eigenvalue. It is well known that there are infinitely many
eigenvalues 0 = p1 < p2 ≤ p3 ≤ . . . for which (2.9) has non trivial solutions. These
solutions are the corresponding eigenfunctions denoted by w1, w2, . . . , where w1 is
clearly constant. We now prove the following result.

Theorem 2.3. The overdetermined boundary-value problem
∆w = 0 in D

∂w

∂ν
= pw on ∂D∫

D

wk dx = 0 ∀k ≥ 2.

(2.10)

is solvable if and only if D is a ball.

Proof. Let us assume D is a ball. Let wk be an eigenfunction corresponding to
pk, k = 2, 3, . . . . Since wk is harmonic it follows from the mean value property
that ∫

D

wk dx = d

∫
∂D

wk dσ,

for some constant d. Thus using the boundary condition in (2.9) in conjunction
with the Divergence Theorem we infer∫

D

wk dx =
d

pk

∫
D

∆wk dx.

Since wk is harmonic in D we obtain
∫

D
wk dx = 0, as desired.

To prove the converse we proceed along the same lines as in [2, Theorem 2] to
prove the converse. To this end, let u be the solution of the Saint-Venant problem
in D, V ∈ C2(RN ; RN ), and u′ the domain derivative of u in direction of V . Since
D is smooth it follows from (2.2) that u′ ∈ C2(D). Hence u′ can be represented in
terms of the eigenfunctions wk as follows

u′(x) =
∞∑

i=1

γi wi(x),

where
γi =

∫
∂D

wiu
′ dσ.

Integrating the equation before the last, over D, and taking into account that∫
D

wi dx = 0, for i = 2, 3, . . . yields∫
D

u′ dx = γ1

∫
D

w1 dx = k

∫
∂D

u′ dσ,

where k is a constant independent of the vector field V . Since V is arbitrary we
can apply Theorem 2.1 to conclude that D must be a ball, as desired. �
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