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INVERSE SPECTRAL ANALYSIS FOR SINGULAR
DIFFERENTIAL OPERATORS WITH MATRIX COEFFICIENTS

NOUR EL HOUDA MAHMOUD, IMEN YAÏCH

Abstract. Let Lα be the Bessel operator with matrix coefficients defined on
(0,∞) by

LαU(t) = U ′′(t) +
I/4− α2

t2
U(t),

where α is a fixed diagonal matrix. The aim of this study, is to determine, on

the positive half axis, a singular second-order differential operator of Lα + Q
kind and its various properties from only its spectral characteristics. Here

Q is a matrix-valued function. Under suitable circumstances, the solution is

constructed by means of the spectral function, with the help of the Gelfund-
Levitan process. The hypothesis on the spectral function are inspired on the

results of some direct problems. Also the resolution of Fredholm’s equations

and properties of Fourier-Bessel transforms are used here.

1. Introduction

By an inverse problem, physicists mean the derivation of forces from experimen-
tal data. A well-known solution of an inverse problem was the discovery of the
gravitation law by Newton from the observations of Kepler. Inverse problems re-
ceive considerable attention in mathematics, physics, mechanics, meteorology and
other branches of science. In spectral analysis, this consists in recovering operators
from their spectral characteristics that means the bounded states and the scat-
tering matrix or the spectral function. A procedure for explicitly constructing a
potential for a boundary-problem without singularity from its spectral character-
istics was formulated by Gelfand and Levitan in [6], they reduced the problem to
a linear integral equation. The extension of the Gelfund-Levitan theory to higher
waves (l > 0) are due first to Stashevskaya [16], Volk [17] and also to Jost and
Kohn [8]. In the literature, in this direction, we have several other studies; see for
example [1, 2, 5, 7, 13, 14]. For example, the inverse scattering problem for the
radial Schrödinger equation with coupling between the lth and the (l + 2) angular
momentum, which reduces to a system of two singular second order differential
equations is considered in [13]. Spectral problems associated with a generalization
of a such system are studied in [3, 11, 12]. These papers deal with the equation
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defined, on ]0,∞[, by

U ′′ +
I/4− α2

t2
U + Q(t)U = −λ2U, (1.1)

where λ is a complex parameter, α is a diagonal n× n matrix, such that

[α]ii = αi, αn ≥ · · · ≥ α1 > −1/2 (1.2)

and Q is a real symmetric sufficiently smooth n× n matrix-valued function. For a
such potential, (1.1) is solved and its various needed solutions are determined. As-
sociated Fourier-Bessel transform is studied and properties of the spectral function
are deduced. In the following, we make a brief recall of useful results. Let so be
given the matrix Bessel operator Lα defined, for t > 0, by

LαU(t) = Utt(t) +
I/4− α2

t2
U(t) (1.3)

for which the n× n diagonal matrix-valued function given, for λ ∈ C, by[
Jα(t, λ)

]
jj

= (2/λ)αj Γ(αj + 1)
√

tJαj (λt), (1.4)

is the eigenfunction associated with the eigenvalue −λ2 such that

lim
t→0+

t−α−I/2Jα(t, λ) = I, (1.5)

where Jν is the Bessel function of the first kind. Under conditions on Q, the solution
Φ(t, λ) of (1.1) satisfying (1.5) may have the form

Φ(t, λ) = Jα(t, λ) +
∫ t

0

K(t, u)Jα(u, λ)du.

Properties of the kernel K(t, u), as for example its twice differentiability on t and
u, are deduced. Among other the following relation holds

(Lα + Q)tK(t, u) =
[
(Lα)uK∗(t, u)

]∗
,

where [
LαU∗(t)

]∗ = Utt(t) + U(t)
I/4− α2

t2
.

We have also the useful relation

K(t, t) = −1
2

∫ t

0

Q(s)ds, t > 0 .

Since Q(t) is usually taken integrable at zero, so obviously K(t, t) vanish at zero.
Finally let S0(λ) be the spectral function associated with Lα and let S(λ) be the
portion of the spectral function associated with the continuous spectrum of Lα +Q,
we show among other that for λ large we have

S(λ)− S0(λ) = 2−2αΓ−2(α + I)λαO(1)λα

and that, for α1 ≥ 1 (see [3]), S(λ) is integrable at zero. Here Γ(α) is the diagonal
constant matrix defined by [Γ(α)]jj = Γ(αj), 1 ≤ j ≤ n. In [12] and for t, u > 0,
we consider the function

Ω(t, u) =
∫ ∞

0

Jα(t, λ)(S − S0)(λ)Jα(u, λ)dλ +
m∑

j=1

Jα(t, λj)CjJα(u, λj),
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where the Cj are spectral parameters associated with the finite discrete spectrum
λj , 1 ≤ j ≤ m, of the considered operator. The function Ω(t, u) is related to the
kernel K(t, u), for 0 < u ≤ t, by the Gelfand-Levitan equation:

K(t, u) + Ω(t, u) +
∫ t

0

K(t, s)Ω(s, u)ds = 0. (1.6)

The previous equation is solved in [12] as a Volterra one, where Ω(t, u) is seen as its
unknown component. Properties of differentiability and estimates on this function
are thus obtained. Among other properties, we have

lim
u→0+

Ω(t, u) = lim
u→0+

Ωu(t, u) = 0,

(Lα)tΩ(t, u) =
[
(Lα)uΩ∗(t, u)

]∗
.

Conversely, would it be possible to construct a system of singular differential op-
erators from only its spectral characteristics? This question is fairly obvious since
the used functions are measurable quantities. Thing which allows scientists to be
very interested by a such subject, usually called inverse spectral problem.

In the present paper we are concerned with the resolution of such problem for
a singular second order differential operator Lα + Q, with matrix coefficients, for
which α and Lα are given respectively by (1.2), (1.3) and where the potential Q
is to recover from the measured spectral properties. Analogous processes to those
handled in the references above are used here. The main mean is the resolution of
the Gelfand-Levitan equation (1.6) where K(t, u) is taken as an unknown function.
Properties of symmetry for Ω(t, u) and conditions on the spectral function allow to
solve (1.6) as a Fredholm’s equation which give K(t, u) and its useful properties.
This enables us to set

Q(t) = −2
d

dt
K(t, t), t > 0. (1.7)

Let us give a brief outline of the plan and basic ideas of this survey. ¿From the
hypothesis below, we first obtain in the second section useful properties of Ω(t, u).
Then in the third we construct a function K(t, u) related to Ω(t, u) by the Gelfand-
Levitan equation (1.6). Properties of differentiability and estimates on K(t, u)
deduced from those of Ω(t, u) are also obtained. This allows to construct, in the
forth section, a potential Q by the relation (1.7) and a function Φ(t, λ) which should
be an eigenfunction of the operator Lα +Q. In the fifth section, the symmetry of Q
is proved and its asymptotic behavior is obtained in special cases. The case where
the spectrum differs from which of Lα by a finite discrete one is finally studied in
the sixth section.

The final thing to be said here is that recovering the properties of Q(t) from those
of S(λ) turns out to be difficult. This is due to the fact that the kernel Ω(t, u) of
(1.6) is a matrix-valued one expressed in terms of Bessel functions for which there
are no simple addition formulas such as exist for the trigonometric functions in the
scalar case. These difficulties appear in solving this equation as well as in searching
properties of its solution and yield us to look for the asymptotic behavior of Q(t)
in restricted cases.
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2. Preliminaries

For the case where the operator Lα is the matrix Bessel operator, with α given
by (1.2) and whose spectrum reduces to the continuous one associated with the
spectral function

S0(λ) = 2−2αΓ−2(α + I)λ2α+I , λ > 0,

we require a singular differential operator which takes the form Lα +Q. We assume
given a finite system of discrete eigenvalues λj = −iµj , µj > 0 for 1 ≤ j ≤ m,
that these parameters are associated with hermitian normalizing factors Cj , the
latest being positive defined and hermitian matrices. We suppose also given a
prescribed n × n matrix-valued function S(λ), defined for λ ∈ R∗, seen as the
portion of the spectral function associated with the continuous spectrum satisfying
some regularity conditions. The goal of this study is to construct a function K(t, u)
which allows to deduce, for the required operator, the potential Q as well as an
associated eigenfunction and to show some of their classical properties. The key of
this problem is the resolution of the Gelfund-Levitan equation (1.6), where Ω(t, u)
is given, for t, u > 0, by

Ω(t, u) =
∫ ∞

0

Jα(t, λ)(S − S0)(λ)Jα(u, λ)dλ +
m∑

j=1

Jα(t, λj)CjJα(u, λj). (2.1)

Notation and hypotheses. First we suppose obviously that Cj and S(λ) induce
a tempered measure where especially we have

S(λ) = S∗(λ), λ > 0 . (2.2)

Then further notation and hypothesis are needed.

Notation. Under the assumption (2.2) a Hilbert space should be constructed.

L2
s =

{
f :]0,∞[→ Cn : ‖f‖2s =

∫ ∞

0

f∗(λ)S(λ)f(λ)dλ < +∞
}
.

We set also, for t > 0 and u > 0,

Ω1(t, u) = tα+I/2Ω(t, u)u−α−I/2 (2.3)

This function used in (1.6) yields the equation

K1(t, u) + Ω1(t, u) +
∫ t

0

K1(t, s)Ω1(s, u)ds = 0. (2.4)

where

K1(t, u) = tα+I/2K(t, u)u−α−I/2 (2.5)

For any n× n matrix A, we denote

‖A‖ = max
j

∑
k

|Ajk|

recall that for a such norm we have ‖AB‖ ≤ ‖A‖.‖B‖.
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Hypotheses. For simplicity of computations, we assume the given function S(λ)
sufficiently regular such that Ω(t, u) is well defined. Then further hypothesis built
from the results obtained in [12] are assumed. Thus, for t > 0, we suppose that:

(A0) The function u → Ω(t, u) is of class C 2 on ]0,∞[.
(A1) (i) limu→0+ Ω(t, u) = 0, (ii) limu→0+ Ωu(t, u) = 0
(A2) (Lα)tΩ(t, u) =

[
(Lα)uΩ∗(t, u)

]∗, u > 0.

We assume also that, for any real R > 0 and for k = 0, 1, there exist functions F
R

k ,
measurable and bounded on (0, R), such that:

(B0) sup0<s, u≤t |[Ω1
u(s, u)]ij | ≤ F

R

0 (t), 1 ≤ i ≤ j ≤ n

(B1) sup0<s,u≤t |s2(αj−αi)[Ω1
u(s, u)]ij | ≤ F

R

1 (t), 1 ≤ j ≤ i ≤ n

(B2) There exists a function F
R

2 , integrable on (0, R), such that

sup
0<s,u≤t

‖Ω1
uu(s, u)‖ ≤ F

R

2 (t),

Remark 2.1. (i) The hypothesis above are coherent with the results of [12].
(ii) The function Ω(t, u) satisfies the enumerated hypothesis in the case where there
exists a some small real δ > 0 such that

λ−α
(
S(λ)− S0(λ)

)
λ−α =

O(1)
λ2+δ

, (λ → +∞)

Remark 2.2. Given an operator L1 with a potential Q1 6≡ 0 and with no discrete
spectrum, such that S1(λ) is its spectral function. By the technics below and under
conditions analogous to those given above, it is possible to construct an operator L
for a prescribed spectral function S(λ). Both L and L1 are considered in the class
of singular differential operators of type Lα + Q.

Further properties of Ω(t, u). Additional properties of Ω(t, u) are needed to
deduce the existence of the solution of (1.6) and its useful properties.

Remark 2.3. (i) The Hypothesis (A1) implies limt→0+ Ω(t, t) = 0.
(ii) By means of the properties (2.2) of S(λ) and those of Cj , 1 ≤ j ≤ m, the
relation (2.1) yields Ω(t, u) = Ω∗(u, t).
(iii) The above property shows easily that if Ω(t, u) is derivable on u, then it is also
derivable on t. Moreover, for R > t > 0, we have

sup
0<s,u≤t

‖Ωu(s, u)‖ = sup
0<s,u≤t

‖Ωs(s, u)‖.

(iv) For 0 < s, u ≤ t ≤ R and for i ≤ j, the Assumption (B0) implies

|[Ω1(s, u)]ij | ≤
∫ u

0

|[Ω1
v(s, v)]ij |dv ≤ C(R)tF

R

0 (t)

and so, using (B1), we deduce that the functions Ω1(t, u), Ω(t, u) as well as

ω(t, u) = t−α−I/2Ω(t, u)uα+I/2

are bounded on (0, R)× (0, R).

Remark 2.3 (ii) enables us to manipulate (1.6) as a Fredholm’s equation asso-
ciated with the countable Hilbert space E = L2

(
(0, R),Mn(C)

)
. This space is

supplied with the norm ‖.‖2, associated with the scalar product

〈f, g〉 =
n∑

j=1

∫ R

0

g∗j (s)fj(s)ds.
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where fj are the columns vectors of the n × n matrix-valued function f . Let

E1 = L2
(
(0, R), Cn

)
equipped with its usual scalar product and let b > 0. Then,

for f ∈ E1, we set

L(f)(u) =
∫ b

0

Ω(u, s)f(s)ds, 0 < u ≤ b.

For further use, we recall the following results.

Lemma 2.4. Under the Hypothesis (A0), (A1), (B0), (B1), the operator L defined
above is compact and self-adjoint on the Hilbert space E1.

Proof. By the Remark 2.3 (ii), we see easily that L is self-adjoint in the countable
space E1. Therefore since by the Remark 2.3 (vi), we have∫

(0,b)×(0,b)

‖Ω(t, u)‖2dtdu < +∞,

so the components of L(f) given by

[L(f)]i(u) =
n∑

k=1

∫ b

0

Ωik(u, s)fk(s)ds, 1 ≤ i ≤ n

are compact on E1 and so is L. This allows to deduce that it’s possible to con-
struct a Hilbert basis ϕj , j = 1, 2, . . . , of E1 which are eigenfunctions of L whose
eingenvalues denoted λj are real. Furthermore, for u ∈ (0, b) and f ∈ E1,

L(f)(u) =
+∞∑
j=1

λj < f, ϕj > ϕj(u)

where the previous series converges uniformly on (0, b). �

3. Existence and differentiability of K(t, u)

The main objective of this section is the resolution of the Gelfund-Levitan equa-
tion (1.6) associated with Ω(t, u). Thus by mean of the general theory of compact
self-adjoint operators (see [9, 19]) and the Lemma 2.4, we conclude that, for a fixed
t > 0, (1.6) is with respect to K(t, u) of Fredholm’s.

Existence of K(t, u).

Lemma 3.1. Let t0 > 0 be fixed. Then if the rows of Ω(t, u) satisfy the conditions
of the Lemma 2.4, for 0 < u ≤ t0, the only solution of

h0(u) +
∫ t0

0

h0(s)Ω(s, u)ds = 0 (3.1)

in L2(0, t0) is the trivial solution.

Proof. To solve this problem ,we shall use properties of Fourier-Bessel transforms.
We assume that the (3.1) has a solution h0 in L2(0, t0) and we denote

h(u) =

{
h0(u) for u ≤ t0

0 for u > t0
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By construction this function is square integrable on (0,∞). Multiplying the equa-
tion (3.1) by h∗(u) at right and integrating with respect to u then substituting to
Ω(s, u) its expression given by (2.1), we obtain∫ ∞

0

h(u)h∗(u)du +
m∑

j=1

( ∫ ∞

0

Jα(u, λj)h∗(u)du
)∗

Cj

( ∫ ∞

0

Jα(u, λj)h∗(u)du
)

+
∫ ∞

0

( ∫ ∞

0

Jα(u, λ)h∗(u)du
)∗

(S(λ)− S0(λ))
( ∫ ∞

0

Jα(u, λ)h∗(u)du
)
dλ = 0.

By the Plancherel’s Formula for Lα, this may be simplified to∫ ∞

0

( ∫ ∞

0

Jα(u, λ)h∗(u)du
)∗

S(λ)
( ∫ ∞

0

Jα(u, λ)h∗(u)du
)
dλ

+
m∑

j=1

( ∫ ∞

0

Jα(u, λj)h∗(u)du
)∗

Cj

( ∫ ∞

0

Jα(u, λj)h∗(u)du
)

= 0.

The hypothesis on S(λ) and Cj yield that the latest expression can be seen as a
scalar product of Fα

(
u−α−I/2h∗(u)

)
by it self in the Hilbert space L2

S

⊕
(Cn)m (see

[4, 11]) and so it vanishes. Since Fα is a bijection on the space L2
G where, for t > 0,

G(t) = t2α+I . The proof complete. �

Theorem 3.2. Let R > 0 and let t ∈]0, R] be fixed, then under the hypothesis of
the Lemma 2.4, the Gelfund-Levitan equation (1.6) has a unique solution square
integrable on (0, t). Furthermore, there exists a measurable function µ1(t), bounded
on (0, R), such that

‖K(t, u)‖ ≤ c(R)µ1(t).

Proof. To have the unicity of the solution K(t, u) of the equation (1.6), it suffices
to recall that, by mean of the Lemma 3.1, the associated homogeneous equation
has for any fixed t > 0, a trivial solution, square integrable on (0, t). To prove
its existence, we construct first by mean of (1.6) and the Remark 2.3 (ii) a new
Gelfund-Levitan equation, given by

K∗(t, u) + Ω(u, t) +
∫ t

0

Ω(u, s)K∗(t, s)ds = 0. (3.2)

The Lemma 2.4 says that, for 0 ≤ u ≤ t, each column of (3.2) is of Fredholm’s,
explicitly given by

[K∗(t, u)]k + [Ω(u, t)]k +
∫ t

0

Ω(u, s)[K∗(t, s)]kds = 0, 1 ≤ k ≤ n.

Then using results of Lemma 2.4, we deduce that their solutions in E1 exist and
that in the case where (−1) is not an eigenvalue, we have

[K∗(t, u)]k = −[Ω(u, t)]k −
∞∑

j=1

λj(t)
λj(t) + 1

〈[Ω(u, .)]k, ϕj(t, .)〉ϕj(t, u). (3.3)

where ϕj is a particular eigenfunction associated with the eigenvalue λj , j =
1, 2, . . . defined in the previous Lemma. We recall that

〈[Ω(., u)]k, ϕj(t, .)〉 =
∫ t

0

ϕ∗j (t, s)[Ω(s, u)]k ds.



8 N. H. MAHMOUD, I. YAICH EJDE-2006/16

and that the series in expression (3.3) converges uniformly on [0, t]. Estimates on
the solution are obtained by use of this relation, the Remark 2.3 (iv) and Cauchy-
Schawrz’s inequality. Furthermore the unicity of the solution deduced from the
Lemma 3.1 yields inevitably that (−1) is not an eigenvalue of the operator in
question and so the results above are sufficient to conclude. �

Corollary 3.3. Under assumptions of the Lemma 2.4, we have

lim
t→0+

K(t, t) = 0.

For the proof of the above corollary, we use the previous proposition, Remark
2.3 (i), and (1.6).

Proposition 3.4. Under assumptions of the Lemma 2.4, the function K1(t, u)
given by (2.5) is bounded on 0 < u ≤ t ≤ R.

Proof. The Theorem 3.2 and the relation (2.5) yield that the function K1(t, u) is
well defined and that it’s a solution of the equation (2.4), moreover for a fixed
ε > 0, it’s bounded on ε < u ≤ t ≤ R. Since the kernel Ω1(t, u) is not hermitian, we
can not use the technics of the previous proposition to study the behavior of this
solution elsewhere. At zero and since Ω1(t, u) is square integrable on (0, R)×(0, R),
there exists an ε > 0 such that∫ ε

0

∫ ε

0

‖Ω1(t, u)‖2dtdu < 1. (3.4)

Thus for a fixed t = b ≤ ε and for 0 < u ≤ b, we set K1(b, u) = ϕ(u) and
Ω1(b, u) = −f(u), the equation (2.4) becomes

ϕ(u) +
∫ b

0

ϕ(s)Ω1(s, u)ds = f(u). (3.5)

By analogy with the scalar case (see [19, p. 121]), we solve this equation by means
of the resolvent method. For this we set

γ1(t, u) = −Ω1(t, u),

γn(t, u) = −
∫ b

0

γn−1(t, s)Ω1(s, u)ds, n ≥ 2
(3.6)

and we show recursively that

γn+m(t, u) =
∫ b

0

γn(t, s)γm(s, u)ds, n,m ≥ 1. (3.7)

The relation (3.6) and Cauchy’s inequality show that, for 0 < t, u ≤ b and by
iteration, we have∫ b

0

∫ b

0

‖γn(s, u)‖2dsdu ≤
[ ∫ b

0

∫ b

0

‖Ω1(s, u)‖2dsdu
]n

.

Therefore, for n ≥ 3, we deduce that

‖γn(t, u)‖2 ≤
[ ∫ b

0

∫ b

0

‖γn−2(s, u)‖2ds du
] ∫ b

0

∫ b

0

‖Ω1(t, s)Ω1(r, u)‖2ds dr.
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Accordingly, it follows that

‖γn(t, u)‖2

≤
[ ∫ b

0

∫ b

0

‖Ω1(s, u)‖2dsdu
]n−2

{ ∫ b

0

‖Ω1(t, s)‖2ds

∫ b

0

‖Ω1(r, u)‖2dr

}
.

The term between braces is bounded by (3.4), the series Γ(t, u) =
∑

n≥1 γn(t, u)
converges uniformly on the domain in question. Using (3.7), we deduce that

Γ(t, u) = −Ω1(t, u)−
∫ b

0

Γ(t, r)Ω1(r, u)dr

and so that the solution of (3.5) is given by

ϕ(u) = f(u) +
∫ b

0

f(r)Γ(r, u)dr.

Estimates on Γ(t, u) and properties of Ω1(t, u) show that the solution K1(t, u)
of (2.4) behaves regularly at zero. For the case where u → 0+, and where t is
sufficiently large so that the assumption (3.4) is not satisfied, we use further results
on Fredholm’s equations which we do not detail here. �

Remark 3.5. By analogous computations to those done in the Proposition 3.4, we
show that the function k(t, u) = t−α−I/2K(t, u)uα+I/2 is bounded on the domain
0 < u ≤ t ≤ R.

Differentiability of K(t, u).

Lemma 3.6. Under the Hypothesis (A0), (B0), (B1), (B2), the function u 7→
K(t, u) is of class C2 on ]0, t]. By differentiation of (1.6) with respect to u, integral
equations associated with Ku and Kuu are determined; i.e.,

Ku(t, u) = −Ωu(t, u)−
∫ t

0

K(t, s)Ωu(s, u)ds (3.8)

Kuu(t, u) = −Ωuu(t, u)−
∫ t

0

K(t, s)Ωuu(s, u)ds. (3.9)

For which we have the estimates

‖Ku(t, u)‖ ≤ c1(R)θ1(t)

‖K1
uu(t, u)‖ ≤ c2(R)θ2(t)

where the θk, k = 1, 2 are integrable functions on (0, R).

Proof. The continuity of K(t, u), with respect to u, is obtained by means of the
properties of its expression (3.3). To have (3.8), we use results of Theorem 3.2 which
yield that, for a fixed t such that R ≥ t > 0, the function u 7→ K(t, s)Ω(s, u), 0 <
s, u ≤ t, satisfies the Derivation Theorem hypothesis at the first order. Furthermore,
the relation (3.8) and the hypothesis gives the estimate on Ku. Analogous equation
to (3.8) is obtained by means of (2.3)-(2.5); we have

K1
u(t, u) = −Ω1

u(t, u)−
∫ t

0

K1(t, s)Ω1
u(s, u)ds

The process above and the results of the Proposition 3.4, applied to the previous
equation, are then used to obtain an equation on K1

uu(t, u), analogous to (3.9),
estimates about are then deduced. �
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Lemma 3.7. Under the assumptions of Lemma 3.6 and for u > 0, the function
t 7→ K(t, u) is of class C2 on [u, R] and by differentiation of (1.6) with respect to
t, we obtain :

Kt(t, u) = −Ωt(t, u)−K(t, t)Ω(t, u)−
∫ t

0

Kt(t, s)Ω(s, u)ds, (3.10)

Ktt(t, u) = −Ωtt(t, u)−
[ d

dt
K(t, t)

]
Ω(t, u)−K(t, t)Ωt(t, u)

−Kt(t, t)Ω(t, u)−
∫ t

0

Ktt(t, s)Ω(s, u)ds.

(3.11)

Furthermore there exist functions ν1 and ν2, integrable on (0, R), such that:

‖Kt(t, u)‖ ≤ ν1(t) and ‖K1
tt(t, u)‖ ≤ ν2(t) .

Proof. For t ≥ u > 0 some fixed parameters and for h sufficiently small, we consider
the difference quantity δt

hK(t, u) = K(t + h, u)−K(t, u). Used in (1.6) it yields

δt
hK(t, u) +

∫ t

0

δt
hK(t, s)Ω(s, u)ds = −δt

hΩ(t, u)−
∫ t+h

t

K(t + h, s)Ω(s, u)ds.

We obtain hence a Fredholm’s equation with a second member uniformly estimated
in h, vanishing when h → 0. The technics of Theorem 3.2 allow to have the same
behavior for δt

hK(t, u) and so the continuity of t → K(t, u) is deduced. Its twice
differentiability will be proved by similar arguments. Indeed for the first derivatives,
the difference quotient ∆t

hK(t, u) = (δt
hK(t, u)/h) and (1.6) again give the relation

∆t
hK(t, u) +

∫ t

0

∆t
hK(t, s)Ω(s, u)ds = −∆t

hΩ(t, u)−
∫ t+h

t

K(t + h, s)
h

Ω(s, u)ds.

Then since the free term ∆t
hΩ(t, u) +

∫ t+h

t
K(t+h,s)

h Ω(s, u)ds is also estimated uni-
formly in h because of the differentiability of Ω(t, u) with respect to t and since, the
last equation is of Fredholm’s kind, we can so estimate ∆t

hK(t, u). As h → 0, the
result (3.10) follows and estimates on Kt(t, u) are obtained. An analogous equation
to (3.10) is deduced for K1

t (t, u) for which we apply the above process. Finally a
similar result to (3.11) is deduced for K1

tt(t, u). �

Further properties of K(t, u). Lemmas 3.6 and 3.7, imply that the function
K(t, t) is differentiable for t > 0; therefore, we can set

Q(t) = −2
d

dt
K(t, t), t > 0. (3.12)

Remark 3.8. For a class U , of C2 function defined on ]0,+∞[, let

∆αU = Utt +
2α + I

t
Ut,

∆̃αU = Utt −
2α + I

t
Ut +

2α + I

t2
U .

Then simple computations yield

(Lα)tΩ(t, u) = t−α−I/2
[
(∆̃α)tΩ1(t, u)

]
uα+I/2,[

(Lα)uΩ∗(t, u)
]∗ = t−α−I/2

[
(∆α)u(Ω1)∗(t, u)

]∗
uα+I/2.
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Proposition 3.9. Under the hypotheses (A0), (A1), (A2), (B0), (B1), (B2), the
function K(t, u) satisfies the following two assertions:

lim
u→0+

K(t, u) = lim
u→0+

Ku(t, u) = 0, (3.13)

(Lα + Q)tK(t, u) =
[
(Lα)uK∗(t, u)

]∗
. (3.14)

Proof. The hypothesis (A1)(i), the relation (1.6) as well as the Remark 2.3 (iv) and
the Theorem 3.2 imply that K(t, u) vanish as u → 0+. The same arguments and
(3.8) complete the proof of the first assertion. To have (3.14) we show that for a
fixed ε > 0, (A2) and integrations by parts yield

t−α−I/2
( ∫ t

ε

[
(∆̃α)s(K1)∗(t, s)

]∗Ω1(s, u)ds
)
uα+I/2

= −K(t, t)Ωt(t, u) + Ku(t, t)Ω(t, u) + K(t, ε)Ωt(ε, u)−Ku(t, ε)Ω(ε, u)

+ t−α−I/2
( ∫ t

ε

K1(t, s)
[
(∆α)u(Ω1)∗(s, u)

]∗
ds

)
uα+I/2.

Thanks to (A1) and (3.13), the second member of the last identity converges as
ε → 0+, so we have∫ t

0

K(t, s)
[
(Lα)uΩ∗(s, u)

]∗
ds

=
∫ t

0

[
(Lα)sK

∗(t, s)
]∗Ω(s, u)ds + K(t, t)Ωt(t, u)−Ku(t, t)Ω(t, u).

(3.15)

Then Lemmas 3.6, 3.7 and the relation (1.6), yield

(Lα + Q)tK(t, u)−
[
(Lα)uK∗(t, u)

]∗
= −(Lα)tΩ(t, u) +

[
(Lα)uΩ∗(t, u)

]∗
−

∫ t

0

{
(Lα + Q)tK(t, s)Ω(s, u)−K(t, s)

[
(Lα)uΩ∗(s, u)

]∗}
ds

−
[ d

dt
K(t, t) + Kt(t, t) + Q(t)

]
Ω(t, u)−K(t, t)Ωt(t, u).

Finally the condition (A2), the relations (3.12) and (3.15) assert that[
(Lα + Q)tK(t, u)−

[
(Lα)uK∗(t, u)

]∗]
+

∫ t

0

[
(Lα + Q)tK(t, s)−

[
(Lα)sK

∗(t, s)
]∗]Ω(s, u)ds = 0 .

Remark 3.8 yields [
(∆̃α + Q1)tK

1(t, u)−
[
(∆α)u(K1)∗(t, u)

]∗]
uα+I/2

+
∫ t

0

[
(∆̃α + Q1)tK

1(t, s)−
[
(∆α)s(K1)∗(t, s)

]∗]
sα+I/2Ω(s, u)ds = 0

where Q1(t) = tα+I/2Q(t)t−α−I/2, t > 0. Since α1 > 1, the properties of the kernel
Ω(t, u) and those of the solution K1(t, u), obtained in the Lemmas 3.6 and 3.7 show
that the mapping

s 7→
[
(∆̃α + Q1)tK

1(t, s)−
[
(∆α)s(K1)∗(t, s)

]∗]
sα+I/2



12 N. H. MAHMOUD, I. YAICH EJDE-2006/16

is in L2(0, t), then by the Lemma 3.1 the proof is complete. �

4. Derivation of the differential operator

For t > 0 and λ ∈ C, we set

Φ(t, λ) = Jα(t, λ) +
∫ t

0

K(t, u)Jα(u, λ)du, (4.1)

where Jα is given by (1.3) and K(t, u) is the solution of Fredholm’s equation (1.6).
In this section we plan to show important properties of Φ(t, λ). First we remark
that the regularity of K(t, u) yields that this function is well defined. Then, by the
Remark 3.5 and the relation (4.1) we deduce that

t−α−I/2Φ(t, λ) = t−α−I/2Jα(t, λ) +
∫ t

0

k(t, u)u−α−I/2Jα(u, λ)du. (4.2)

We have so, for the potential Q defined by (3.12), the results below.

Theorem 4.1. For λ ∈ C and under the hypothesis (A0), (A1), (A2), (B0), (B1),
(B2), the function Φ(., λ) is, on ]0,∞[, the solution of the singular second order
differential equation with matrix coefficients given by

U ′′ +
I/4− α2

t2
U + Q(t)U = −λ2U

such that
lim

t→0+
t−α−I/2Φ(t, λ) = I.

Proof. The second derivatives of K(t, u) with respect to t obtained in Lemma 3.7
and its estimates imply that, for a fixed λ ∈ C, the mapping t 7→ Φ(t, λ) is twice
differentiable on ]0,+∞[. By the expressions of these derivatives and since Jα(λ, .)
is an eigenfunction of the operator Lα associated with the eigenvalue −λ2. Then
justified integrations by parts and technics, used in the proof of the Proposition
3.9, show that[

Lα + Q + λ2I
]
Φ(t, λ)

=
∫ t

0

[
(Lα + Q)tK(t, u)−

{
(Lα)uK∗(t, u)

}∗]Jα(λ, u)du

+
[ d

dt
K(t, t)+

( ∂

∂t
K(t, u)

)
u=t

+
( ∂

∂u
K(t, u)

)
u=t

+ Q(t)
]
Jα(λ, t)

+ lim
u→0+

[
K(t, u)

∂

∂u
Jα(λ, u)−Ku(t, u)Jα(λ, u)

]
.

Proposition 3.9 again and the relation (3.12) allow us to deduce that the last ex-
pression vanishes. Then relations (1.5) and (4.2) as well as the Remark 3.5 show
that limt→0+ t−α−I/2Φ(t, λ) = I. �

Corollary 4.2. Under the hypothesis of the Theorem 4.1, the mapping λ 7→ Φ(t, λ)
is even and analytic on C.

Proof. For this we recall only that the mapping λ 7→ Jα(t, λ) is even and analytic
on C. Then by the relation (4.2) and the properties of k(t, u) given in the Remark
3.5, the result is easily deduced. �
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5. Properties of the potential Q

We look in this section for common properties of the potential Q. We recall for
example that from the properties of K(t, u), the function Q(t), t > 0, is well defined
by the relation (3.12). Furthermore, by means of the Corollary 3.3, we can set

K(t, t) = −1
2

∫ t

0

Q(s)ds, t > 0

so the locally integrability of Q(t) is simply deduced. Next we will look for its
further classical properties as symmetry and integrability at infinity.

Symmetry of Q(t).

Theorem 5.1. Under the hypothesis (B1), (B2), and since S(λ), λ > 0, is an
hermitian matrix-valued function, then so is the potential Q(t), for t > 0.

Proof. The Gelfand-Levitan equation (1.6) and the Remark 2.3 (ii), yield that the
both relations below hold

Ω(t, t) + K(t, t) +
∫ t

0

K(t, s)Ω(s, t)ds = 0,

Ω(t, t) + K∗(t, t) +
∫ t

0

Ω(t, s)K∗(t, s)ds = 0.

To have Q∗ = Q it is sufficient to show that the integrals in the two preceding
expressions are equal. Now by the same arguments as before, we have

Ω(u, t) =

{
−K∗(t, u)−

∫ t

0
Ω(u, s)K∗(t, s)ds, t ≥ u > 0

−K(u, t)−
∫ u

0
K(u, s)Ω(s, t)ds, u ≥ t > 0.

Therefore, we deduce that∫ t

0

Ω(t, s)K∗(t, s)ds = −
∫ t

0

K(t, s)K∗(t, s)ds−
∫ t

0

∫ t

0

K(t, s)Ω(s, u)K∗(t, u)dsdu

and that also∫ t

0

K(t, s)Ω(s, t)ds = −
∫ t

0

K(t, s)K∗(t, s)ds−
∫ t

0

∫ t

0

K(t, s)Ω(s, u)K∗(t, u)dsdu.

This suffices to prove the required result. �

Remark 5.2. In order that the potential Q(t), t > 0, to be real, it suffices to assume
that the matrix-valued function S(λ), λ ∈ R∗, and the matrices Cj, 1 ≤ j ≤ m, are
so.

Behavior of Q(t). Recall that d
dtΩ(t, t) is a well defined function, on the positive

half axis. In the following, the behavior of Q(t) at zero and at infinity will be studied
by mean of its relation with this function. Because of all the difficulties mentioned
in the introduction, the relation between the both as well as the behavior of the
latest at infinity will be obtained under strong conditions some of them are satisfied
in the regular case (see [1]). In this aim we introduce the following assumptions.

(H1) For a fixed R > 0, there exists a function G which is integrable on ]0, 2R[
and such that ‖Ωu(t, u)‖ ≤ G(t + u).

(H2) Moreover, we suppose that
∫ 2R

0
sG(s)ds < 1.
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Remark 5.3. By Remark 2.2, we deduce that the second assumption is not as
restrictive as it appears.

For the following results, we denote

σ(t) =
∫ 2t

t

G(s)ds, σ1(t) =
∫ t

0

sG(s)ds, σ̃1(t) = [1− σ1(t)]−1 (5.1)

Lemma 5.4. For 0 < u, t ≤ R and under the hypothesis of the Lemma 3.6, (H1)
and (H2), we have

‖Ω(t, u)‖ ≤
∫ t+u

t∨u

G(s)ds. (5.2)

Moreover, for 0 < u ≤ t ≤ R, we have

‖K(t, u)‖ ≤ σ(t)
[
1 + σ̃1(t)

∫ t+u

u

wG(w)dw
]
, (5.3)

‖Kt(t, u)‖ ≤ G(t + u) + σ2(t)δ0(t) + σ(t)σ̃1(2t)
∫ t+u

u

G(s)ds. (5.4)

where t∨u = sup(t, u) and where δ0 is a function of σ1.

Proof. From Remark 2.3 (ii) and (H2), we deduce easily that ‖Ωt(t, u)‖ ≤ G(t+u),
hence the result 5.2 is obtained. To obtain 5.3, we use successive approximations
on (1.6). Thus we set

K(0)(t, u) = −Ω(t, u),

K(n)(t, u) = −
∫ t

0

K(n−1)(t, s)Ω(s, u)ds,

and we show recursively that

‖K(n)(t, u)‖ ≤ σ(t)σn−1
1 (2t)

∫ t+u

u

wG(w)dw, n ≥ 1.

This result is justified by means of 5.2 and simple permutation of integrals. To have
estimates on Kt(t, u), we use the same process as above applied to the relation (i)
of the Lemma 3.7. We set

K
(0)
t (t, u) = −Ωt(t, u)−K(t, t)Ω(t, u),

K
(n)
t (t, u) = −

∫ t

0

K
(n−1)
t (t, s)Ω(s, u)ds

then by (H1), the results 5.2 and 5.3, we have

‖K(0)
t (t, u)‖ ≤ G(t + u) + σ2(t)

[
1 + σ̃1(2t)

∫ 2t

t

wG(w)dw
]

and recursively again this yields that, for n ≥ 1,

‖K(n)
t (t, u)‖

≤ σ(t)σn−1
1 (2t)

∫ t+u

u

G(w)dw + σ2(t)
(
1 + σ̃1(2t)σ1(2t)

)
σn

1 (2t)
∫ t+u

u

wG(w)dw,

so the last estimate follows. �

We have then the following useful results.
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Corollary 5.5. Under the hypothesis of Lemma 5.4, we have∫ t

0

‖K(t, s)Ωu(s, t)‖ds ≤ σ2(t)
[
1 + σ̃1(2t)σ1(2t)

]
,∫ t

0

‖Kt(t, s)Ω(s, t)‖ds ≤ σ2(t)δ1(t),

where δ1 is a bounded function expressed by mean of σ1.

Theorem 5.6. For any fixed R > 0 such that the assumptions of Lemma 5.4 hold,
there exists a positive constant c(R) such that

‖2 d

dt
Ω(t, t)−Q(t)‖ ≤ c(R)

( ∫ 2t

t

G(s)ds
)2

, 0 < t < R.

In particular if these assumptions are satisfied for R = +∞, then∫ ∞

0

(1 + t)‖Q(t)‖dt < ∞ .

Moreover the function Q(t) has the same asymptotic behavior as 2 d
dtΩ(t, t).

Proof. By the (3.8) and (3.10), we have

Ωt(t, u) + Ωu(t, u) + Kt(t, u) + Ku(t, u)

= −K(t, t)Ω(t, u)−
∫ t

0

Kt(t, s)Ω(s, u)ds−
∫ t

0

K(t, s)Ωu(s, u)ds.

Therefore, the relation (3.12) and properties of derivatives allow us to have

d

dt
Ω(t, t)− 1

2
Q(t)

= −K(t, t)Ω(t, t)−
∫ t

0

Kt(t, s)Ω(s, t)ds−
∫ t

0

K(t, s)Ωu(s, t)ds.

By this relation, Corollary 5.5, and since Lemma 5.4 implies

‖K(t, t)Ω(t, t)‖ ≤ σ2(t)
[
1 + σ̃1(2t)σ1(2t)],

we deduce easily that

‖ d

dt
Ω(t, t)− 1

2
Q(t)‖ ≤ 2

(
1 + σ̃1(2t)σ1(2t) + δ1(t)

)
σ2(t). (5.5)

By noticing that the function σ̃1(2t)σ1(2t) + δ1(t) is bounded on (0, R), the first
assertion of the theorem is proved. Furthermore since

tσ(t) ≤
∫ 2t

t

sG(s)ds,

it follows that, for any R > 0,∫ R

0

tσ2(t)dt ≤
∫ R

0

( ∫ 2t

t

sG(s)ds
)
σ(t)dt ≤ σ1(2R)

∫ R

0

σ(t)dt ≤ σ2
1(2R) < +∞.

Therefore, if (H2) is satisfied for R = +∞, we deduce that∫ ∞

0

(1 + t)‖Q(t)‖dt < ∞.
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By these assumptions, we can remark also that∫ 2t

t

G(s)ds = o(1)

as t → 0+, or t → +∞. Therefore, the relation (5.5) yields that the functions
2 d

dtΩ(t, t) and Q(t) are equivalent in this sense and the proof is complete. �

6. Inverse problem and discrete spectrum

We consider here the simplest case where the required operator L has, associated
with the continuous spectrum, the same spectral function S0(λ) as Lα. We assume
also that the discrete spectrum reduces to an only one eigenvalue λ0 = −iµ0, µ0 > 0
with a corresponding normalizing factor C0, which is a positive definite hermitian
constant matrix not necessary diagonal. We remark that in this case, for t > 0 and
u > 0, we have

Ω(t, u) = Y∗α(t)C0Yα(t),

where Yα(t) = J ∗α (t,−iµ0), is the real valued function deduced from (1.4). Our
purpose in this section is to study the behavior at zero and at infinity of the potential
∆Q, associated with this problem. We recall that in the third section, we have
shown the existence and the unicity of a square integrable solution of (1.6). In this
special case we will solve it rather algebraically. We try to look for its solution in
the form

K(t, u) = K(t)Yα(u).

This allows to replace (1.6) by[
K(t) + Y∗α(t)C0 + K(t)

( ∫ t

0

Yα(s)Y∗α(s)ds
)
C0

]
Yα(u) = 0.

The location of the zeros for the Bessel function of the first kind yields that neces-
sarily that

K(t)
[
I + R(t)C0

]
= −Y∗α(t)C0,

where

R(t) =
∫ t

0

Yα(s)Y∗α(s)ds. (6.1)

To obtain K(t), we need the following result.

Lemma 6.1. For a fixed t > 0, the n×n matrix valued function I +R(t)C0, t > 0
is positive defined and so it is invertible.

Proof. For X ∈ Cn and t > 0, we have

X∗R(t)X =
∫ t

0

[Y∗α(s)X]∗[Y∗α(s)X]ds ≥ 0

and if this quantity vanish then X = 0. It results that for any t > 0, R(t) is a
positive defined matrix and since C0 satisfies yet this property, then I + R(t)C0 is
positive defined too and so it is invertible. �

From the result above, we deduce that the n× n matrix valued function

V (t) = C−1
0 + R(t)
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is invertible and so that K(t) = −Y∗α(t)V −1(t). Consequently, for 0 < u ≤ t, the
function

K(t, u) = −Y∗α(t)V −1(t)Yα(u)

is a solution of (1.6). In particular, we have

∆Q(t) = 2
d

dt

[
Y∗α(t)V −1(t)Yα(t)

]
(6.2)

and the relation (4.1) above takes the form

Φ(t, λ) = Jα(t, λ)− Y∗α(t)V −1(t)
∫ t

0

Yα(u)Jα(u, λ)du. (6.3)

The study of the asymptotic behavior of Φ(t, λ) is possible from the estimates below,
but our main interest will be the asymptotic behavior of ∆Q. The relation (6.2)
shows that it suffices to have those of Yα(t), Y ′α(t) and V −1(t) there. In this aim,
we set

Nα(t) =
Γ(α + I)

2
√

π

( 2
µ0

)α+I/2

eµ0t (6.4)

and

(α, k) =
1
k!

(
α2 − I/4

)
. . .

(
α2 − I(k − 1/2)2

)
, k = 1, 2, . . .

Remark 6.2. The asymptotic behavior of the Bessel functions (see [15, 18]) yield
that as t → 0+,

Yα(t) = tα+I/2
[
I + (α + I)−1(

µ0t

2
)2 + O(t4)

]
,

Y ′α(t) = tα−I/2
[
(α + I/2) + (α + 5I/2)(α + I)−1(

µ0t

2
)2 + O(t4)

]
.

As t approaches infinity, we have

Yα(t) = Nα(t)
[
I − (α, 1)

2µ0t
+

(α, 2)
(2µ0t)2

− (α, 3)
(2µ0t)3

+ O(
1
t4

)
]
,

Y ′α(t) = µ0Nα(t)
[
I − (α, 1)

2µ0t
+

(α, 2) + 2(α, 1)
(2µ0t)2

− (α, 3) + 4(α, 2)
(2µ0t)3

+ O(
1
t4

)
]
.

The study of the asymptotic behavior of the function R(t) must be done too.

Lemma 6.3. For t > 0, R(t) is a diagonal matrix-valued function and it can be
expressed as

R(t) =
1

2µ2
0

{
t
(
µ2

0Y2
α(t)− Y ′2α (t)

)
+ Yα(t)Y ′α(t) +

(α, 1)
t

Y2
α(t)

}
(6.5)

Its asymptotic behavior, at zero and at infinity, are respectively

R(t) =
1
2
(α + I)−1t2α+2I

[
I + O(t2)

]
, (6.6)

R(t) =
N2

α(t)
2µ0

[
I − (α, 1)

µ0t
+

2(α, 2)
(2µ0t)2

+ O(
1
t3

)
]
, (6.7)

where Nα is defined by (6.4).
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Proof. It is easy to see that by (1.4) and (6.1),

R(t) =
( 2
µ0

)2α
eiαπΓ2(α + I)

∫ t

0

sJ2
α(sλ0)ds. (6.8)

Manipulating Bessel equations we show, for λ and ν in C distinct complex param-
eters, that (see [10, p. 128])∫ a

0

tJµ(λt)Jµ(νt)dt =
aνJµ(λa)J ′µ(νa)− aλJ ′µ(λa)Jµ(νa)

λ2 − ν2
, a > 0.

Taking the limit of this quantity as ν → λ, we obtain∫ a

0

tJ2
µ(λt)dt =

a2

2

[
(J ′µ)2(λa) + (1− µ2

λ2a2
)J2

µ(λa)
]
.

This result yields that

R(t) =
( 2

µ0

)2α

eiαπΓ2(α + I)
t2

2

[
(J ′α)2(−iµ0t) + (1 +

α2

t2µ2
0

)J2
α(−iµ0t)

]
.

The relation between Jα(t) and Yα(t) completes the proof of assertion 6.5. To prove
6.6 and 6.7, we use 6.5 and Remark 6.2. �

Proposition 6.4. The function ∆Q(t) has the behavior

∆Q(t) =

{
2tα

[
C0(α + I/2) + (α + I/2)C0 + O(t2)

]
tα, as t → 0+

(α,2)
2t2 [I + O( 1

t2 )] as t → +∞

Proof. On the one hand, by definition and from the Lemma 6.3, we show that at
infinity,

V (t) =
N2

α(t)
2µ0

[
I − (α, 1)

µ0t
+

2(α, 2)
(2µ0t)2

+ O(
1
t3

)
]
.

So that, when t → +∞,

V −1(t) = 2µ0N
−2
α (t)

[
I +

(α, 1)
µ0t

+
2(α, 1)2 − (α, 2)

2(µ0t)2
+ O(

1
t3

)
]
.

On the other hand and by means of (6.2), the potential ∆Q, defined by (3.12),
takes the form

∆Q(t) = 2
[
(Y∗α)′(t)V −1(t)Yα(t) + Y∗α(t)V −1(t)Y ′α(t)

− Y∗α(t)V −1(t)Yα(t)Y∗α(t)V −1(t)Yα(t)
]
.

Then, by the behavior at infinity of Yα(t), Y ′α(t), and V −1(t), the result is deduced.
For the behavior at zero, we use an analogous approach. �
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Nour el Houda Mahmoud
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