\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 37, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/37\hfil $p$-Laplacian with nonlinear boundary conditions] {Multiple solutions for the $p$-Laplace equation with nonlinear boundary conditions} \author[J. Fern\'andez B.\hfil EJDE-2006/37\hfilneg] {Juli\'an Fern\'andez Bonder} \address{Juli\'an Fern\'andez Bonder \newline Departamento de Matem\'atica, FCEyN \\ UBA (1428) Buenos Aires, Argentina} \email{jfbonder@dm.uba.ar} \urladdr{http://mate.dm.uba.ar/$\sim$jfbonder} \date{} \thanks{Submitted January 10, 2006. Published March 21, 2006.} \thanks{Supported by grant TX066 from Universidad de Buenos Aires, grants 03-05009 and \hfill\break\indent 03-10608 from ANPCyT PICT, project 13900-5 from Fundacion Antorchas and \hfill\break\indent CONICET (Argentina)} \subjclass[2000]{35J65, 35J20} \keywords{$p$-Laplace equations; nonlinear boundary conditions; \hfill\break\indent variational methods} \begin{abstract} In this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation $$ -\Delta_p u + |u|^{p-2}u = f(x,u) $$ in a smooth bounded domain $\Omega$ of $\mathbb{R}^N$ with nonlinear boundary conditions $|\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = g(x,u)$ on $\partial\Omega$. The proof is based on variational arguments. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} Let us consider the nonlinear elliptic problem \begin{equation}\label{e1.1} \begin{gathered} -\Delta_p u + |u|^{p-2}u = f(x,u) \quad \mbox{in } \Omega\\ |\nabla u|^{p-2}\frac{\partial u}{\partial\nu} = g(x,u) \quad \mbox{on } \partial\Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$, $\Delta_p u = \mathop{\rm div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-laplacian and $\partial/\partial\nu$ is the outer unit normal derivative. Problem \eqref{e1.1} appears naturally in several branches of pure and applied mathematics, such as the study of optimal constants for the Sobolev trace embedding (see \cite{FdP, FBR, FBMR, FBLDR}); the theory of quasiregular and quasiconformal mappings in Riemannian manifolds with boundary (see \cite{E, To}); non-Newtonian fluids, reaction diffusion problems, flow through porus media, nonlinear elasticity, glaciology, etc. (see \cite{AD,AEK, ACh, D}). The purpose of this note, is to prove the existence of at least three nontrivial solutions for \eqref{e1.1} under adequate assumptions on the sources terms $f$ and $g$. This result extends previous work by the author \cite{FB, FBR1}. Here, no oddness condition is imposed in $f$ or $g$ and a positive, a negative and a sign-changing solution are found. The proof relies on the Lusternik--Schnirelman method for non-compact manifolds (see \cite{S}). For a related result with Dirichlet boundary conditions, see \cite{St} and more recently \cite{BL, ZCL}. The approach in this note follows the one in \cite{St}. Throughout this work, by (weak) solutions of \eqref{e1.1} we understand critical points of the associated energy functional acting on the Sobolev space $W^{1,p}(\Omega)$: \begin{equation}\label{Phi} \Phi(v)=\frac1p\int_{\Omega} |\nabla v|^p + |v|^p\, dx - \int_{\Omega} F(x,v)\, dx - \int_{\partial\Omega} G(x,v)\, dS, \end{equation} where $F(x,u) = \int_0^u f(x,z)\, dz$, $G(x,u) = \int_0^u g(x,z)\, dz$ and $dS$ is the surface measure. We will denote \begin{equation}\label{FyG} \mathcal{F}(v)=\int_{\Omega} F(x,v)\, dx\quad\mbox{and}\quad \mathcal{G}(v)=\int_{\partial\Omega} G(x,v)\, dS, \end{equation} so the functional $\Phi$ can be rewritten as $$ \Phi(v) = \frac1p \|v\|_{W^{1,p}(\Omega)}^p - \mathcal{F}(v) - \mathcal{G}(v). $$ \section{Assumptions and statement of the results} The precise assumptions on the source terms $f$ and $g$ are as follows: \begin{enumerate} \item[(F1)] $f:\Omega\times\mathbb{R}\to\mathbb{R}$, is a measurable function with respect to the first argument and continuously differentiable with respect to the second argument for almost every $x\in\Omega$. Moreover, $f(x,0)=0$ for every $x\in\Omega$. \item[(F2)] There exist constants $pp^*/(p^*-q)$, $t=sq/(2+(q-2)s)>p^*/(p^*-2)$ and functions $a\in L^s(\Omega)$, $b\in L^t(\Omega)$, such that for $x\in\Omega$, $u,v\in \mathbb{R}$, \begin{gather*} |f_u(x,u)|\le a(x)|u|^{q-2} + b(x),\\ |(f_u(x,u)-f_u(x,v))u|\le (a(x)(|u|^{q-2}+|v|^{q-2})+b(x))|u-v|. \end{gather*} \item[(F3)] There exist constants $c_1\in (0,1/(p-1))$, $c_2>p$, $0p_*/(p_*-r)$, $\tau=\sigma r/(2+(r-2)\sigma)>p_*/(p_*-2)$ and functions $\alpha\in L^{\sigma}(\partial\Omega)$, $\beta\in L^{\tau}(\partial\Omega)$, such that for $y\in\partial\Omega$, $u,v\in \mathbb{R}$, \begin{gather*} |g_u(y,u)|\le \alpha(y)|u|^{r-2} + \beta(y),\\ |(g_u(y,u)-g_u(y,v))u|\le (\alpha(y)(|u|^{r-2}+|v|^{r-2})+\beta(y))|u-v|. \end{gather*} \item[(G3)] There exist constants $k_1\in (0,1/(p-1))$, $k_2>p$, $00 ,\; \|u_+\|_{W^{1,p}(\Omega)}^p = \langle \mathcal{F}'(u), u_+\rangle + \langle \mathcal{G}'(u), u_+\rangle \}, \\ M_2 = \{ u\in W^{1,p}(\Omega): \int_{\partial\Omega} u_-\, dS>0 ,\; \|u_-\|_{W^{1,p}(\Omega)}^p = \langle \mathcal{F}'(u), u_-\rangle + \langle \mathcal{G}'(u), u_-\rangle \},\\ M_3 = M_1\cap M_2, \end{gather*} where $u_+ = \max\{u,0\}$, $u_-=\max\{-u,0\}$ are the positive and negative parts of $u$, and $\langle\cdot,\cdot\rangle$ is the duality pairing of $W^{1,p}(\Omega)$. Finally we define \[ K_1 = \{ u\in M_1\ |\ u\ge 0\},\quad K_2 = \{ u\in M_2\ |\ u\le 0\},\quad K_3 = M_3. \] For the proof of the main theorem, we need the following Lemmas. \begin{lemma}\label{lema1} There exist $c_j>0$ such that, for every $u\in K_i$, $i=1,2,3$, $$ \|u\|_{W^{1,p}(\Omega)}^p\le c_1\Big(\int_{\Omega} f(x,u)u\, dx + \int_{\partial\Omega} g(x,u)u\, dS\Big) \le c_2 \Phi(u)\le c_3\|u\|_{W^{1,p}(\Omega)}^p. $$ \end{lemma} \begin{proof} Since $u\in K_i$, we have $$ \|u\|_{W^{1,p}(\Omega)}^p = \int_{\Omega} f(x,u)u\, dx + \int_{\partial\Omega} g(x,u)u\, dS. $$ This proves the first inequality. Now, by (F3) and (G3) \begin{gather*} \int_\Omega F(x,u)\, dx \le \frac{1}{k_2} \int_\Omega f(x,u)u\, dx,\\ \int_{\partial\Omega} G(x,u)\, dS \le \frac{1}{c_2} \int_{\partial\Omega} g(x,u)u\, dS. \end{gather*} So, for $C=\max\{\frac{1}{k_2};\frac{1}{c_2}\}<\frac{1}{p}$, we have $$ \Phi(u) \le \big(\frac{1}{p}-C\big) \|u\|_{W^{1,p}(\Omega)}^p. $$ This proves the third inequality. To prove the middle inequality we proceed as follows: \begin{align*} \Phi(u) &= \frac{1}{p}\|u\|_{W^{1,p}(\Omega)}^p - \int_{\Omega} F(x,u)\, dx - \int_{\partial\Omega} G(x,u)\, dS\\ & = \frac{1}{p}\Big(\int_\Omega f(x,u)u\, dx + \int_{\partial\Omega} g(x,u)u\,dS\Big) - \Big(\int_{\Omega} F(x,u)\, dx + \int_{\partial\Omega} G(x,u)\, dS\Big)\\ &\ge (\frac{1}{p}-C) \Big(\int_\Omega f(x,u)u\, dx + \int_{\partial\Omega} g(x,u)u\, dS\Big). \end{align*} This completes the proof. \end{proof} \begin{lemma}\label{lema2} There exists $c>0$ such that \begin{gather*} \|u_+\|_{W^{1,p}(\Omega)}\ge c\quad \mbox{for } u\in K_1,\\ \|u_-\|_{W^{1,p}(\Omega)}\ge c\quad \mbox{for } u\in K_2, \\ \|u_+\|_{W^{1,p}(\Omega)},\, \|u_-\|_{W^{1,p}(\Omega)}\ge c\quad \mbox{for } u\in K_3. \end{gather*} \end{lemma} \begin{proof} By the definition of $K_i$, by (F3) and (G3), we have \begin{align*} \|u_\pm\|_{W^{1,p}(\Omega)}^p &= \int_{\Omega} f(x,u)u_\pm\, dx + \int_{\partial\Omega} g(x,u)u_\pm\, dS \\ &\le c (\|u_\pm\|_{L^q(\Omega)}^q + \|u_\pm\|_{L^r(\partial\Omega)}^r). \end{align*} Now the proof follows by the Sobolev immersion Theorem and by the Sobolev trace Theorem, as $p0$ such that $\Phi(u)\ge c\|u\|_{W^{1,p}(\Omega)}^p$ for every $u\in W^{1,p}(\Omega)$ such that $\|u\|_{W^{1,p}(\Omega)}\le c$. \end{lemma} \begin{proof} By (F3), (G3) and the Sobolev immersions we have \begin{align*} \Phi(u) &= \frac{1}{p}\|u\|_{W^{1,p}(\Omega)}^p - \mathcal{F}(u) - \mathcal{G}(u)\\ & \ge \frac{1}{p}\|u\|_{W^{1,p}(\Omega)}^p - c(\|u\|_{L^q(\Omega)}^q + \|u\|_{L^r(\partial\Omega)}^r)\\ &\ge \frac{1}{p}\|u\|_{W^{1,p}(\Omega)}^p - c(\|u\|_{W^{1,p}(\Omega)}^q + \|u\|_{W^{1,p}(\Omega)}^r)\\ &\ge c\|u\|_{W^{1,p}(\Omega)}^p, \end{align*} if $\|u\|_{W^{1,p}(\Omega)}$ is small enough, as $p0\Big\},\\ \bar M_2 = \Big\{u\in W^{1,p}(\Omega): \int_{\partial\Omega} u_-\, dS>0\Big\},\\ \bar M_3 = \bar M_1\cap \bar M_2. \end{gather*} Observe that $M_i\subset \bar M_i$. By the Sobolev trace Theorem, the set $\bar M_i$ is open in $W^{1,p}(\Omega)$, therefore it is enough to prove that $M_i$ is a smooth sub-manifold of $\bar M_i$. In order to do this, we will construct a $C^{1,1}$ function $\varphi_i:\bar M_i\to \mathbb{R}^d$ with $d=1\ (i=1,2)$, $d=2$ $(i=3)$ respectively and $M_i$ will be the inverse image of a regular value of $\varphi_i$. In fact, we define: For $u\in \bar M_1$, $$ \varphi_1(u) = \|u_+\|_{W^{1,p}(\Omega)}^p - \langle \mathcal{F}'(u), u_+\rangle - \langle \mathcal{G}'(u), u_+\rangle. $$ For $u\in \bar M_2$, $$ \varphi_2(u) = \|u_-\|_{W^{1,p}(\Omega)}^p - \langle \mathcal{F}'(u), u_-\rangle - \langle \mathcal{G}'(u), u_-\rangle. $$ For $u\in \bar M_3$, $$ \varphi_3(u) = (k_1(u), k_2(u)). $$ Obviously, we have $M_i = \varphi_i^{-1}(0)$. We need to show that $0$ is a regular value for $\varphi_i$. To this end we compute, for $u\in M_1$, \begin{align*} \langle \nabla \varphi_1(u), u_+\rangle = & p\|u_+\|^p_{W^{1,p}(\Omega)} - \int_{\Omega} f_u(x,u)u_+^2 + f(x,u)u_+\, dx\\ & - \int_{\partial\Omega} g_u(x,u)u_+^2 + g(x,u)u_+\, dS\\ = & (p-1)\int_{\Omega}f(x,u)u_+\, dx - \int_{\Omega} f_u(x,u)u_+^2\, dx\\ & + (p-1)\int_{\partial\Omega}g(x,u)u_+\, dS - \int_{\partial\Omega} g_u(x,u)u_+^2\, dS. \end{align*} By (F3) and (G3) the last term is bounded by $$ (p-1- c_1^{-1})\int_{\Omega}f(x,u)u_+\, dx + (p-1- k_1^{-1})\int_{\partial\Omega}g(x,u)u_+\, dS. $$ Recall that $c_1, k_1<1/(p-1)$. Now, by Lemma \ref{lema1}, this is bounded by $$ -c\|u_+\|_{W^{1,p}(\Omega)}^p $$ which is strictly negative by Lemma \ref{lema2}. Therefore, $M_1$ is a smooth sub-manifold of $W^{1,p}(\Omega)$. The exact same argument applies to $M_2$. Since trivially $$ \langle \nabla \varphi_1(u), u_-\rangle = \langle \nabla \varphi_2(u), u_+\rangle =0 $$ for $u\in M_3$, the same conclusion holds for $M_3$. To see that $K_i$ is complete, let $u_k$ be a Cauchy sequence in $K_i$, then $u_k\to u$ in $W^{1,p}(\Omega)$. Moreover, $(u_k)_{\pm}\to u_{\pm}$ in $W^{1,p}(\Omega)$. Now it is easy to see, by Lemma \ref{lema2} and by continuity that $u\in K_i$. Finally, by the first part of the proof we have the decomposition $$ T_u W^{1,p}(\Omega) = T_u M_i \oplus \mathop{\rm span}\{u_+,u_-\}. $$ Now let $v\in T_u W^{1,p}(\Omega)$ be a unit tangential vector, then $v = v_1 + v_2$ where $v_i$ are given by \begin{gather*} v_2 = (\nabla \varphi_i(u)|_{\mbox{\small span}\{u_+,u_-\}})^{-1} \langle\nabla \varphi_i(u), v\rangle \in \mathop{\rm span}\{u_+,u_-\},\\ v_1 = v-v_2\in T_u M_i. \end{gather*} From these formulas and from the estimates given in the first part of the proof, the uniform continuity follows. \end{proof} Now, we need to check the Palais-Smale condition for the functional $\Phi$ restricted to the manifold $M_i$. \begin{lemma}\label{lema5} The functional $\Phi|_{K_i}$ satisfies the Palais-Smale condition. \end{lemma} \begin{proof} Let $\{u_k\}\subset K_i$ be a Palais-Smale sequence, that is $\Phi(u_k)$ is uniformly bounded and $\nabla \Phi|_{K_i}(u_k)\to 0$ strongly. We need to show that there exists a subsequence $u_{k_j}$ that converges strongly in $K_i$. Let $v_j\in T_{u_j}W^{1,p}(\Omega)$ be a unit tangential vector such that $$ \langle \nabla \Phi(u_j), v_j\rangle = \|\nabla \Phi(u_j)\|_{(W^{1,p}(\Omega))'}. $$ Now, by Lemma \ref{lema4}, $v_j = w_j + z_j$ with $w_j\in T_{u_j}M_i$ and $z_j\in \mathop{\rm span}\{(u_j)_+, (u_j)_-\}$. Since $\Phi(u_j)$ is uniformly bounded, by Lemma \ref{lema1}, $u_j$ is uniformly bounded in $W^{1,p}(\Omega)$ and hence $w_j$ is uniformly bounded in $W^{1,p}(\Omega)$. Therefore $$ \|\Phi(u_j)\|_{(W^{1,p}(\Omega))'} = \langle \nabla \Phi(u_j), v_j\rangle = \langle \nabla \Phi|_{K_i}(u_j), v_j\rangle\to 0. $$ As $u_j$ is bounded in $W^{1,p}(\Omega)$, there exists $u\in W^{1,p}(\Omega)$ such that $u_j \rightharpoonup u$, weakly in $W^{1,p}(\Omega)$. As it is well known that the unrestricted functional $\Phi$ satisfies the Palais-Smale condition (cf. \cite{FBR1} and \cite{R}), the lemma follows. See \cite{St} for the details. \end{proof} We obtain immediately the following result. \begin{lemma}\label{lema6} Let $u\in K_i$ be a critical point of the restricted functional $\Phi|_{K_i}$. Then $u$ is also a critical point of the unrestricted functional $\Phi$ and hence a weak solution to \eqref{e1.1}. \end{lemma} With all this preparatives, the proof of the Theorem follows easily. \begin{proof}[Proof of the Theorem] The proof now is a standard application of the Lusternik--Schnirelman method for non-compact manifolds. See \cite{S}. \end{proof} \begin{thebibliography}{00} \bibitem{AD} D. Arcoya and J.I. Diaz. {\it S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology}. J. Differential Equations, {\bf 150} (1998), 215--225. \bibitem{AEK} C. Atkinson and K. El Kalli. {\it Some boundary value problems for the Bingham model}. J. Non-Newtonian Fluid Mech. {\bf 41} (1992), 339--363. \bibitem{ACh} C. Atkinson and C.R. Champion. {\it On some boundary value problems for the equation $\nabla(F(|\nabla w|)\nabla w)=0$}. Proc. R. Soc. London A, {\bf 448} (1995), 269--279. \bibitem{BL} T. Bartsch and Z. Liu. {\it On a superlinear elliptic p-Laplacian equation}. J. Differential Equations, {\bf 198} (2004), 149--175. \bibitem{FdP} M. del Pino and C. Flores. {\it Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains}. Comm. Partial Differential Equations, {\bf 26} (11-12) (2001), 2189-2210. \bibitem{D} J.I. Diaz. {\it Nonlinear partial differential equations and free boundaries}. Pitman Publ. Program 1985. \bibitem{E} J. F. Escobar, {\it Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate}. Comm. Pure Appl. Math., {\bf 43} (1990), 857--883. \bibitem{FB} J. Fern\'andez Bonder. {\it Multiple positive solutions for quasilinear elliptic problems with sign-changing nonlinearities}. Abstr. Appl. Anal., {\bf 2004} (2004), no. 12, 1047--1056 \bibitem{FBR1} J. Fern\'andez Bonder and J.D. Rossi. {\it Existence results for the p-Laplacian with nonlinear boundary conditions}. J. Math. Anal. Appl., {\bf 263} (2001), 195--223. \bibitem{FBR} J. Fern\'andez Bonder and J.D. Rossi. {\it Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains}. Comm. Pure Appl. Anal. {\bf 1} (2002), no. 3, 359--378. \bibitem{FBLDR} J. Fern\'andez Bonder, E. Lami-Dozo and J.D. Rossi. {\it Symmetry properties for the extremals of the Sobolev trace embedding}. Ann. Inst. H. Poincar\'e Anal. Non Lin\`eaire, {\bf 21} (2004), no. 6, 795--805. \bibitem{FBMR} J. Fern\'andez Bonder, S. Mart\'{\i}nez and J.D. Rossi. {\it The behavior of the best Sobolev trace constant and extremals in thin domains}. J. Differential Equations, {\bf 198} (2004), no. 1, 129--148. \bibitem{R} P. Rabinowitz, {\it Minimax methods in critical point theory with applications to differential equations}, CBMS Regional Conf. Ser. in Math., no. 65, Amer. Math. Soc., Providence, R.I. (1986). \bibitem{S} J.T. Schwartz. {\it Generalizing the Lusternik-Schnirelman theory of critical points}. Comm. Pure Appl. Math., {\bf 17} (1964), 307--315. \bibitem{St} M. Struwe. {\it Three nontrivial solutions of anticoercive boundary value problems for the Pseudo-Laplace operator}. J. Reine Angew. Math. {\bf 325} (1981), 68--74. \bibitem{To} P. Tolksdorf. {\it Regularity for a more general class of quasilinear elliptic equations}. J. Differential Equations, {\bf 51} (1984), 126--150. \bibitem{ZCL} Z. Zhang, J. Chen and S. Li. {\it Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian}. J. Differential Equations, {\bf 201} (2004), 287--303. \end{thebibliography} \end{document}