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PSEUDO ALMOST PERIODIC SOLUTIONS TO SOME
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

TOKA DIAGANA

Abstract. This paper studies some sufficient conditions for the existence and

uniqueness of a pseudo almost periodic mild solution to abstract hyperbolic
differential equations with infinite delay. Applications include the existence

and uniqueness of a pseudo almost periodic mild solution to the heat equation.

1. Introduction

Let (M, ‖ · ‖) be a Banach space. In Burton and Zhang [5], the degree-theoretic
by Granas [16] was used to obtain some sufficient conditions for the existence of
T -periodic solutions to the differential equations with infinite delay given by

du

dt
+ Lu =

∫ t

−∞
C(t, s)u(s)ds + f(u) + F (t), (1.1)

where −L is a sectorial linear operator on M, f : M 7→M, F : R 7→ M are some
M-valued smooth functions with F (t + T ) = F (t), (C(t, s))t≥s is a bounded linear
operator on M with C(t + T, s + T ) = C(t, s), for some T > 0. Abstract results
were then applied to some nonlinear heat equations with memory.

In this paper we study some sufficient condition for the existence and uniqueness
of a pseudo almost periodic (mild) solution to (1.1). One should point out that the
Banach fixed-point combined with techniques related to the theory of intermediate
spaces will be preferred to that of Granas’ theory used in [5]. In particular, we will
be studying the case when the sectorial operator −L is hyperbolic, equivalently,

σ(−L) ∩ iR = {∅}.

Upon making some assumptions, it will be shown that (1.1) has a uniqueMα-valued
pseudo almost periodic mild solution (Mα ⊂ M being an abstract intermediate
space). Applications include the study of pseudo almost periodic mild solutions
to the Cauchy problem for the heat equation in M = C[0, 1] given by the partial
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differential equations

ut(t, x) = uxx(t, x) + Hu(t, x) + f(u(t, x)) + F (t) +
∫ t

−∞
C(t, s)u(s, x)ds (1.2)

u(t, 0) = u(t, 1) = 0, ∀ t ∈ R, (1.3)

where H ∈ R is a constant, and f, F are some appropriate functions.
In fact, to study (1.1) we consider the problem, which consists of studying pseudo

almost periodic solutions to the differential equation
du

dt
+ Lu = Ku + f(u) + F (t), ∀t ∈ R, (1.4)

where −L is a sectorial linear operator on M, and K : M 7→ M is the linear
operator defined by

Ku(t) :=
∫ t

−∞
C(t, s)u(s)ds.

To deal with (1.4), as in [4, 13] we will make extensive use of some abstract
intermediate spacesMα for α ∈ (0, 1). In contrast with the fractional power spaces
considered in some recent papers of the author et al. [10, 11], the interpolation and
Hölder spaces, for instance, depend only on D(L) and M and can be explicitly
expressed in many concrete examples. The literature on those intermediate spaces
is very extensive; thus we refer the reader only to the excellent book by Lunardi [18],
which contains a comprehensive presentation on this topic and related issues.

The concept of the pseudo almost periodicity, which is the central question in
this paper was introduced in the literature in the early nineties by Zhang [19, 20, 21]
as a natural generalization of the well-known Bohr almost periodicity. Thus this
new concept is welcome to implement another existing generalization of almost
periodicity, the concept of asymptotically almost periodicity due to Fréchet [6, 15].
For more on these new and old concepts and related topics, see, e.g., [1, 2, 3, 7, 8,
9, 12, 19] and the references therein.

The existence of almost periodic, asymptotically almost periodic, and pseudo
almost periodic solutions is one of the most attracting topics in the qualitative
theory of differential equations due to their significance and applications in physics,
mathematical biology, chemistry, control theory, and many others.

Some contributions on almost periodic, asymptotically almost periodic, and
pseudo almost periodic solutions to abstract differential and partial differential
equations have recently been made in [3, 7, 8, 9, 10, 17]. However, the existence of
pseudo almost periodic to (1.1) in the case when −L is hyperbolic is an untreated
topic and this is the main motivation of the present paper. Among other things,
some sufficient conditions for the existence and uniqueness of a pseudo almost pe-
riodic (mild) solution to (1.1) are obtained whenever −L generates a hyperbolic
analytic semigroup (T (t))t≥0, which is not necessarily strongly continuous at 0.

2. preliminaries

This section is devoted to some preliminary facts needed in the sequel. We
basically use a similar setting as in [4, 13]. Throughout the rest of this paper,
(M, ‖·‖) stands for a Banach space, −L is a sectorial linear operator (Definition 2.1)
which is not necessarily densely defined.

If L is a linear operator on M, then ρ(L), σ(L), D(L), N(L), R(L) stand for
the resolvent, spectrum, domain, kernel, and range of L.
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If M0,M1 are Banach spaces, then the space (B(M0,M1), ‖ · ‖B(M0,M1)) de-
notes the Banach space of all bounded linear operators from M0 into M1 equipped
with its operator topology. If M0 = M1, then this is simply denoted B(M0).

2.1. Sectorial Linear Operators and Their Semigroups.

Definition 2.1. A linear operator L : D(L) ⊂ M 7→ M (not necessarily densely
defined) is said to be sectorial if the following hold: There exist constants ω ∈ R,
θ ∈ (π

2 , π), and M > 0 such that

ρ(L) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, | arg(λ− ω)| < θ},

‖R(λ, L)‖ ≤ M

|λ− ω|
, λ ∈ Sθ,ω,

(2.1)

where R(λ, L) = (λI − L)−1 for each λ ∈ ρ(L).

Remark 2.2. If −L is sectorial, it then generates an analytic semigroup (T (t))t≥0,
which maps (0,∞) into B(M) such that there exist M0,M1 > 0 with

‖T (t)‖ ≤ M0e
ωt, t > 0,

‖t(−L− ωI)T (t)‖ ≤ M1e
ωt, t > 0.

(2.2)

For the rest of the paper, we suppose that the analytic semigroup (T (t))t≥0

associated with −L is hyperbolic, that is, there exist a projection P and constants
M, δ > 0 such that each T (t) commutes with P , N(P ) is invariant with respect to
T (t), T (t) : R(Q) −→ R(Q) is invertible and

‖T (t)Px‖ ≤ Me−δt‖x‖ for t ≥ 0, (2.3)

‖T (t)Qx‖ ≤ Meδt‖x‖ for t ≤ 0, (2.4)

where Q := I − P and, for t ≤ 0, T (t) := (T (−t))−1.
Recall that if a semigroup (T (t))t≥0 is analytic, then (T (t))t≥0 is hyperbolic if

and only if
σ(−L) ∩ iR = ∅,

see for instance [14, Prop 1.15, p.305].

2.2. Intermediate Spaces.

Definition 2.3. Let α ∈ (0, 1). A Banach space (Mα, ‖ · ‖α) is said to be an
intermediate space between D(−L) (= D(L)) and M, or a space of class Jα, if
D(L) ⊂Mα ⊂M and there is a constant C > 0 such that

‖x‖α ≤ C.‖x‖1−α‖x‖α
L, x ∈ D(L), (2.5)

where ‖ · ‖L is the graph norm of L.

Concrete examples of Mα include D((−L)α) for α ∈ (0, 1), the domains of the
fractional powers of −L, the real interpolation spaces DL(α,∞), α ∈ (0, 1), defined
as follows

DL(α,∞) := {x ∈M : [x]α = sup
0<t≤1

‖t1−α(−L− ωI)e−ωtT (t)x‖ < ∞}

‖x‖α = ‖x‖+ [x]α,

and the abstract Hölder spaces DL(α) := D(L)
‖.‖α .
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For the hyperbolic analytic semigroup (T (t))t≥0, we can easily check that esti-
mations similar to (2.3) and (2.4) hold also with norms ‖ · ‖α. In fact, as the part
of A in R(Q) is bounded, it follows from the inequality (2.4) that

‖AT (t)Qx‖ ≤ C ′eδt‖x‖ for t ≤ 0.

Hence, from (2.5) there exists a constant C(α) > 0 such that

‖T (t)Qx‖α ≤ C(α)eδt‖x‖ for t ≤ 0. (2.6)

We have also

‖T (t)Px‖α ≤ ‖T (1)‖B(M,Mα)‖T (t− 1)Px‖ for t ≥ 1,

and then from (2.3), we obtain

‖T (t)Px‖α ≤ M ′e−δt‖x‖, t ≥ 1,

where M ′ depends on α. For t ∈ (0, 1], by (2.2) and (2.5)

‖T (t)Px‖α ≤ M ′′t−α‖x‖.

Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T (t)Px‖α ≤ M(α)t−αe−γt‖x‖ for t > 0. (2.7)

2.3. Pseudo Almost Periodic Functions. Let C(R,M) denote the collection
of continuous functions from R into M. Let (BC(R,M), ‖ ·‖∞) denote the Banach
space of all M-valued bounded continuous functions equipped with the sup norm
defined by ‖u‖∞ := supt∈R ‖u(t)‖ for each u ∈ B(R,M). (If Mα for α ∈ (0, 1) is
an intermediate space, then BC(R,Mα) will be equipped with the α- sup norm:
‖u‖∞,α = supt∈R ‖u(t)‖α for each u ∈ BC(R,Mα).) Similarly, BC(R× Ω), where
Ω ⊂M is an open subset, denotes the collection of all bounded continuous functions
G : R× Ω 7→ M.

Let f ∈ BC(R,M). Define the linear shift operator στ for some τ ∈ R by
(στf)(t) := f(t + τ) for each t ∈ R. Similarly, if G ∈ B(R × Ω), one defines the
function στG(·, x) for each x ∈ Ω by στG(t, x) := G(t + τ, x) for each t ∈ R.

Definition 2.4. A function f ∈ BC(R,M) is called (Bohr) almost periodic if for
each ε > 0 there exists lε > 0 such that every interval of length lε contains a number
τ with the property: ‖στf − f‖∞ < ε.

The number τ above is called an ε-translation number of f , and the collection of
all such functions will be denoted AP (M). The space (AP (M), ‖ · ‖∞) is a Banach
space.

Definition 2.5. A function F ∈ BC(R × Ω) is called almost periodic in t ∈ R
uniformly in x ∈ Γ ⊂ Ω (Γ being a compact subset of Ω), if for each ε > 0 there
exists lε > 0 such that every interval of length lε > 0 contains a number τ with the
property: ‖στF (·, x)− F (·, x)‖∞ < ε for each x ∈ Γ.

Here again, the number τ above is called an ε-translation number of F and the
class of such functions will be denoted AP (R× Ω).

Throughout the rest of the paper, we suppose Ω = M and set

AP0(M) := {f ∈ BC(R,M) : lim
r→∞

1
2r

∫ r

−r

‖f(s)‖ds = 0},
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and define AP0(R×M) as the collection of functions F ∈ BC(R×M) such that

lim
r→∞

1
2r

∫ r

−r

‖F (t, u)‖dt = 0

uniformly in u ∈M.

Definition 2.6. A function f ∈ BC(R,M) is called pseudo almost periodic if it
can be expressed as f = g+φ, where g ∈ AP (M) and φ ∈ AP0(M). The collection
of such functions will be denoted by PAP (M).

Remark 2.7. (1) The functions g and φ in Definition 2.6 are respectively
called the almost periodic and the ergodic perturbation components of f .

(2) The decomposition given in Definition 2.6 is unique.

From now on we equip BC(R,M), AP (M), and PAP (M) with the sup norm
‖ · ‖∞ previously defined. In view of the above, they all constitute Banach spaces.

Definition 2.8. A function f ∈ BC(R×M) for is called pseudo almost periodic
in t ∈ R uniformly in x ∈ M if it can be expressed as f = g + φ, where g ∈
AP (R×M) and φ ∈ AP0(R×M). The collection of such functions will be denoted
by PAP (R×M).

3. Main results

To study (1.4) we first study pseudo almost periodic solutions to the inhomoge-
neous differential equation

u′(t) + Lu(t) = h(t), t ∈ R, (3.1)

where −L is sectorial on M and h : R 7→ M is pseudo almost periodic.
Let (T (t))t≥0 denote the analytic semigroup defined on M whose infinitesimal

generator is −L.

Definition 3.1. A mild solution to (3.1) is a continuous function u : R → Mα

satisfying

u(t) = T (t− s)u(s) +
∫ t

s

T (t− σ)h(σ) dσ (3.2)

for all t ≥ s and all s ∈ R.

Proposition 3.2. Let −L be a sectorial linear operator on M, which is hyperbolic,
i.e., σ(−L) ∩ iR = {∅}. If h ∈ PAP (M), then (3.1) has a unique Mα-valued
pseudo almost periodic mild solution u(·), which can be expressed as

u(t) =
∫ t

−∞
T (t− s)Ph(s)ds−

∫ +∞

t

T (t− s)Qh(s)ds, t ∈ R. (3.3)

Proof. It is not hard to see that

u(t) =
∫ t

−∞
T (t− s)Ph(s)ds−

∫ +∞

t

T (t− s)Qh(s)ds, t ∈ R,

is well defined for each t ∈ R, and satisfies

u(t) = T (t− s)u(s) +
∫ t

s

T (t− σ)h(σ) dσ (3.4)

for all t ≥ s and all s ∈ R, and hence u is a mild solution to (3.1).
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For the uniqueness, let v be another bounded continuous mild solution, i.e.,
v satisfies (3.4). Then, using both the projection operator P and the estimates
(2.6)-(2.7) defined previously, it is not hard to see that

Pv(t) =
∫ t

−∞
T (t− s)Ph(s)ds, t ∈ R,

Qv(t) =
∫ t

+∞
T (t− s)Qh(s)ds, t ∈ R.

Thus from the decomposition of the space M it follows that v(t) = u(t).
It remains to prove that u ∈ PAP (Mα). Since h ∈ PAP (M), write h = φ + ζ

where φ ∈ AP (M) and ζ ∈ AP0(M). Thus Pu(t) and Qu(t) can be rewritten as

Pu(t) =
∫ t

−∞
T (t− s)Pφ(s)ds +

∫ t

−∞
T (t− s)Pζ(s)ds

Qu(t) =
∫ t

+∞
T (t− s)Qφ(s)ds +

∫ t

+∞
T (t− s)Qζ(s)ds.

Set Φ(t) =
∫ t

−∞ T (t−s)Pφ(s)ds, and Ψ(t) =
∫ t

−∞ T (t−s)Pζ(s)ds for each t ∈ R.
The next step consists of showing that Φ ∈ AP (Mα) and Ψ ∈ AP0(Mα).

Clearly, Φ ∈ AP (Mα). Indeed, since φ ∈ AP (M), therefore for every ε > 0
there exists θε > 0 such that for all ξ there is τ ∈ [ξ, ξ + θε] with

‖στΦ− Φ‖∞ < µ.ε

where µ = γ1−α

M(α)Γ(1−α) with Γ being the classical gamma function.
Now

Φ(t + τ)− Φ(t) =
∫ t

−∞
T (t− s)P (φ(s + τ)− φ(s)) ds.

Thus, using (2.7) it easily follows that ‖Φ(t + τ)− Φ(t)‖α < ε for each t ∈ R, and
hence ‖στΦ− Φ‖∞,α < ε, that is, Φ ∈ AP (Mα).

Next, we show that t 7→ Ψ(t) is in AP0(Mα). First, note that t 7→ Ψ(t) is a
bounded continuous function. It remains to show that

lim
r→∞

1
2r

∫ r

−r

‖Ψ(t)‖α dt = 0.

Once again using (2.7) it follows that

lim
r→∞

1
2r

∫ r

−r

‖Ψ(t)‖α dt ≤ I + J

where

I := lim
r→∞

M(α)
2r

∫ r

−r

dtMig(
∫ t

−r

(t− s)−αe−γ(t−s)‖ζ(s)‖dsMig),

and

J := lim
r→∞

M(α)
2r

∫ r

−r

dt

∫ −r

−∞
(t− s)−αe−γ(t−s)‖ζ(s)‖ds.



EJDE-2006/79 PSEUDO ALMOST PERIODIC SOLUTIONS 7

Now

I = lim
r→∞

M(α)
2r

∫ r

−r

‖ζ(t)‖ dt

(∫ t

−r

(t− s)−αe−γ(t−s)ds

)
= lim

r→∞

M(α)
2r

∫ r

−r

‖ζ(t)‖ dt

(∫ t+r

0

σ−αe−γσdσ

)
≤ lim

r→∞

M(α)
2r

∫ r

−r

‖ζ(t)‖ dt

(∫ +∞

0

σ−αe−γσdσ

)
= lim

r→∞

M(α)Γ(1− α)
2rγ1−α

∫ r

−r

‖ζ(t)‖ dt

=
M(α)Γ(1− α)

γ1−α
. lim

r→∞

1
2r

∫ r

−r

‖ζ(t)‖dt = 0.

Similarly,

J ≤ lim
r→∞

M(α).‖ζ‖∞
2r

∫ r

−r

dt

∫ +∞

t+r

σ−αe−γσdσ

≤ lim
r→∞

M(α).‖ζ‖∞
2r

∫ r

−r

dt

∫ +∞

2r

σ−αe−γσdσ

≤ lim
r→∞

M(α).‖ζ‖∞
2r

∫ r

−r

dt

∫ +∞

2r

(2r)−αe−γσdσ

= lim
r→∞

[
M(α).‖ζ‖∞.e−2γr

(2r)α.γ

]
= 0,

and hence Ψ belongs to AP0(Mα).
The proof for Qu(·) is similar to that of Pu(·). However one makes use of (2.6)

rather than (2.7). �

Definition 3.3. A mild solution of (1.4) is a continuous function u : R → Mα

satisfying the integral equation

u(t) = T (t− s)u(s) +
∫ t

s

T (t− σ) [f(u(σ)) + F (σ) + Ku(σ)] dσ (3.5)

for all t ≥ s and all s ∈ R.

To study (1.4) we require the following assumptions:
(H1) The sectorial operator −L is the generator of a hyperbolic analytic semi-

group (T (t))t≥0;
(H2) The operator K : Mα 7→ Mα is bounded. We then set ‖K‖B(Mα) = Kα.
(H3) The function f : PAP (Mα) 7→ PAP (Mα) and f is Lipschitz as follows:

there exists R > 0 such that

‖f(u(t))− f(v(t))‖ ≤ R . ‖u(t)− v(t)‖α

for all t ∈ R and u, v ∈ PAP (Mα).
(H4) F ∈ PAP (Mα).

Theorem 3.4. Under the assumptions (H1)-(H2)-(H3)-(H4), the evolution equa-
tion (1.4) has a unique pseudo almost periodic mild solution whenever

Θα = (R + Kα)
[
C(α)

δ
+

M(α)Γ(1− α)
γ1−α

]
< 1.



8 T. DIAGANA EJDE-2006/79

Proof. Using similar arguments as in the proof of Proposition 3.2, it can be easily
seen that each mild solution u to (1.4) is given by

u(t) =
∫ t

−∞
T (t− s)P [f(u(s)) + F (s) + Ku(s)]ds

−
∫ +∞

t

T (t− s)Q[f(u(s)) + F (s) + Ku(s)]ds, t ∈ R.

(3.6)

Now consider the nonlinear operator on C(R,Mα) given by

Dy(t) =
∫ t

−∞
T (t− s)P [f(y(s)) + F (s) + Ky(s)]ds

−
∫ +∞

t

T (t− s)Q[f(y(s)) + F (s) + Ky(s)]ds, t ∈ R,

(3.7)

for each y ∈ C(R,Mα).
From the boundedness of K as an operator of Mα it is clear that Ky(·) is also

pseudo almost periodic on Mα whenever y does. Under (H.3), if y ∈ PAP (Mα),
then f(y(·)) ∈ PAP (Mα). Considering Proposition 3.2, for h(s) = f(y(s))+F (s)+
Ky(s), it follows that the operator D maps PAP (Mα) into itself.

Let v, w ∈ PAP (Mα),

‖Dv(t)− Dw(t)‖α ≤ ‖
∫ t

−∞
T (t− s)P [f(v(s))− f(w(s))] ds‖α

+ ‖
∫ t

−∞
T (t− s)P [Kv(s))−Kw(s))] ds‖α

+ ‖
∫ +∞

t

T (t− s)Q [f(v(s))− f(w(s))] ds‖α

+ ‖
∫ +∞

t

T (t− s)Q [Kv(s)−Kw(s)] ds‖α.

Using (2.7) and (2.6) it follows that

‖Dv(t)− Dw(t)‖α ≤ R.M(α)
∫ t

−∞
(t− s)−αe−δ(t−s)‖v(s)− w(s)‖αds

+ Kα.M(α)
∫ t

−∞
(t− s)−αe−δ(t−s)‖v(s)− w(s)‖αds

+ R.C(α)
∫ +∞

t

eδ(t−s)‖v(s)− w(s)‖αds

+ Kα.C(α)
∫ +∞

t

eδ(t−s)‖v(s)− w(s)‖αds,

and hence ‖Dv − Dw‖∞,α ≤ Θα.‖v − w‖∞,α, where

Θα = (R + Kα)
[
C(α)

δ
+

M(α)Γ(1− α)
γ1−α

]
.

Clearly, if Θα < 1, then (1.4) has a unique fixed-point by the Banach fixed point
theorem, which obviously is the only pseudo almost periodic (mild) solution to
(1.4). �
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Example 3.5. To deal with the system (1.2)-(1.3), take M := C[0, 1], equipped
with the sup norm. Define the operator −L by

−L(ϕ) := ϕ′′ + H.ϕ, ∀ϕ ∈ D(−L),

where D(−L) := {ϕ ∈ C2[0, 1], ϕ(0) = ϕ(1) = 0} ⊂ C[0, 1] and H ∈ R is a constant.
Clearly −L is sectorial, and hence is the generator of an analytic semigroup. In

addition to the above, the resolvent and spectrum of −L are respectively given by

ρ(−L) = C− {−n2π2 + H : n ∈ N} and σ(−L) = {−n2π2 + H : n ∈ N}

so that σ(−L) ∩ iR = {∅} whenever H 6= n2π2. In particular, if H = mπ2 where
m ∈ N− {0} and m is not a square, then −L is hyperbolic.

Theorem 3.6. Under assumptions (H2)–(H4), suppose that the constant H 6= n2π2

for n ∈ N. Then the heat equation (1.2)-(1.3) has a unique Mα-valued pseudo
almost periodic mild solution whenever R + Kα is small enough.
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[13] T. Diagana and G. M. N’Guérékata, Pseudo Almost Periodic Mild Solutions To Hyperbolic
Evolution Equationa in Abstract Intermediate Banach Spaces. Applicable Analysis 85(2006),

Nos. 6-7, pp. 769–780.

[14] K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Grad-
uate texts in Mathematics, Springer Verlag 1999.

[15] A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377,

Springer-Verlag, New York-Berlin, 1974.
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