\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 81, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/81\hfil Complex oscillation of entire solutions] {Complex oscillation of entire solutions of higher-order linear differential equations} \author[T.-B. Cao\hfil EJDE-2006/81\hfilneg] {Ting-Bin Cao} \address{Ting-Bin Cao \newline Department of Mathematics, Shandong University, Jinan, 250100, China} \email{ctb97@163.com} \date{} \thanks{Submitted February 21, 2006. Published July 19, 2006.} \thanks{Supported by grants 10371065 from the NNSF of China, and Z2002A01 from the \hfill\break\indent NSF of Shandong Province} \subjclass[2000]{34M10, 30D35} \keywords{Linear differential equation; meromorphic function; iterated order; \hfill\break\indent iterated convergence exponent} \begin{abstract} In this paper, we investigate higher-order linear differential equations with entire coefficients of iterated order. We improve and extend a result of Bela\"{\i}di and Hamouda by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen and the Winman-Valiron theory. We also consider the nonhomogeneous linear differential equations by using the basic method and some lemmas from the present and other three authors. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction and main results} In this paper, we shall assume that the reader is familiar with the fundamental results and the standard notation of the Nevanlinna value distribution theory of meromorphic functions (see \cite{yang},\cite{hayman}). The term ``meromorphic function'' will mean meromorphic in the whole complex plane $\mathbb{C}$. For $k\geq 2$, we consider a linear differential equation \begin{equation} f^{(k)}+A_{k-1}f^{(k-1)}+\dots+A_{0}f=0, \label{e1.1} \end{equation} where $A_{0},\dots,A_{k-1}$ are entire functions with $A_{0}\not\equiv 0$. It is well known that all solutions of \eqref{e1.1} are entire functions, and if some of the coefficients of \eqref{e1.1} are transcendental, then \eqref{e1.1} has at least one solution with order $\sigma(f)=\infty$. Thus the question which arises is: What conditions on $A_{0},\dots,A_{k-1}$ will guarantee that every solution $f\not\equiv 0$ of \eqref{e1.1} has infinite order? For the above question, there are many results for second order linear differential equations (see for example \cite{frei,gundersen-2,chen-yang-2,chen}). In 2002, Bela\"{\i}di and Hamouda considered the higher order linear differential equations and obtained the following result. \begin{theorem}[Bela\"{\i}di and Hamouda \cite{belaidi-hamouda}] \label{thm1} Suppose that there exist a positive number $\mu$, and a sequence of points $(z_{j})_{j\in \mathbb{N}}$ with $\lim_{j\to\infty}z_{j}=\infty$, and two real numbers $\alpha, \beta (0\leq\beta<\alpha)$ such that \begin{gather*} |A_{0}(z_{j})|\geq\exp\{\alpha|z_{j}|^{\mu}\}, \\ |A_{n}(z_{j})|\leq\exp\{\beta|z_{j}|^{\mu}\} \quad (n=1,\dots,k-1), \end{gather*} as $j\to\infty$. Then every solution $f\not\equiv 0$ of \eqref{e1.1} has infinite order. \end{theorem} Now there exists another question: For so many solutions of infinite order, how to describe precisely the properties of growth of solutions of infinite order of \eqref{e1.1}? In this paper, we improve and extend Theorem \ref{thm1} by making use of the concept of iterated order. Let us define inductively, for $r\in [0,+\infty), \exp^{[1]}r=e^{r}$ and $\exp^{[n+1]}r=\exp(\exp^{[n]}r), n\in \mathbb{N}$. For all $r$ sufficiently large, we define $\log^{[1]}r=\log r$ and $\log^{[n+1]}r=$ $\log(\log^{[n]}r), n\in \mathbb{N}$. We also denote $\exp^{[0]}r$$=r=$$\log^{[0]}r$, $\log^{[-1]}r=\exp^{[1]}r$ and $\exp^{[-1]}r$$=\log^{[1]}r$. We recall the following definitions (see \cite{kinnunen,sato,cao-chen-zheng-tu}). \begin{definition} \label{def1} \rm The iterated $p$-order $\sigma _{p}(f)$ of a meromorphic function $f(z)$ is defined by $$ \sigma_{p}(f)=\limsup_{r\to \infty} \frac{\log^{[p]}T(r,f)}{\log r } \quad(p\in \mathbb{N}). $$ \end{definition} \begin{remark} \label{rmk1} \rm (1). If $p=1$, then we denote $\sigma _{1}(f)=\sigma(f)$; (2). If $p=2$. then we denote by $\sigma_{2}(f)$ the so-called hyper order (see \cite{yi-yang}); (3). If $f(z)$ is an entire function, then $$ \sigma _{p}(f)=\limsup_{r\to\infty} \frac{\log^{[p+1]}M(r,f)}{\log r }. $$ \end{remark} \begin{definition} \label{def2} \rm The growth index of the iterated order of a meromorphic function $f(z)$ is defined by $$ i(f)=\begin{cases} 0 & \text{if $f$ is rational}, \\ \min\{n\in \mathbb{N}:\sigma _{n}(f)<\infty\} & \text{if $f$ is transcendental and}\\ & \text{$\sigma_{n}(f)<\infty $ for some $n\in \mathbb{N}$}, \\ \infty & \text{if $\sigma _{n}(f)=\infty $ for all $n\in \mathbb{N}$.} \end{cases} $$ Similarly, we can define the iterated lower order $\mu_{p}(f)$ of a meromorphic function $f(z)$ and the growth index $i_{\mu}(f)$ of $\mu_{p}(f)$. \end{definition} \begin{definition} \label{def3} \rm The iterated convergence exponent of the sequence of $a$-points $(a\in \mathbb{C}\cup\{\infty\})$ is defined by $$ \lambda_{n}(f-a)=\lambda_{n}(f,a)=\limsup_{r\to \infty} \frac{\log^{[n]}N(r,\frac{1}{f-a})}{\log r}\quad(n\in \mathbb{N}), $$ and $\overline{\lambda}_{n}(f-a)$, the iterated convergence exponent of the sequence of distinct $a$-points is defined by $$ \overline{\lambda}_{n}(f-a)=\overline{\lambda}_{n}(f,a)= \limsup_{r\to\infty} \frac{\log^{[n]}\overline{N}(r,\frac{1}{f-a})}{\log r}\quad(n\in \mathbb{N}). $$ \end{definition} \begin{remark} \label{rmk3} \rm (1). $\lambda_{1}(f-a)=\lambda(f-a)$; (2). $\overline{\lambda}_{1}(f-a)=\overline{\lambda}(f-a)$. \end{remark} \begin{definition} \label{def4} \rm The growth index of the iterated convergence exponent of the sequence of a-points of a meromorphic function $f(z)$ with iterated order is defined by $$ i_{\lambda}(f-a)=i_{\lambda}(f,a) =\begin{cases} 0 & \text{if }n(r,\frac{1}{f-a})=O(\log r), \\ \min\{n\in \mathbb{N}:\lambda _{n}(f)<\infty\} &\text{if $\lambda_{n}(f-a)<\infty$ for }\\ &\text{some $n\in \mathbb{N}$}, \\ \infty &\text{if $\lambda _{n}(f-a)=\infty$ for }\\ &\text{all $n\in \mathbb{N}$}. \end{cases} $$ Similarly, we can define the growth index $i_{\overline{\lambda}}(f-a)$ of $\overline{\lambda}_{p}(f-a)$. \end{definition} Now we show one of our main result, which improves and extends Theorem \ref{thm1}. \begin{theorem} \label{thm2} Suppose there exist a sequence of points $(z_{j})_{j\in \mathbb{N}}$ with $\lim_{j\to\infty}z_{j}=\infty$, and two real numbers $\alpha, \beta$ ($0\leq\beta<\alpha$) such that for any $\varepsilon>0$, \begin{equation} |A_{0}(z_{j})|\geq\exp^{[p]}\{\alpha|z_{j}|^{\sigma-\varepsilon}\}\label{e1.2} \end{equation} and for $n=1,\dots,k-1$, \begin{equation} |A_{n}(z_{j})|\leq\exp^{[p]}\{\beta|z_{j}|^{\sigma-\varepsilon}\} \quad (),\label{e1.3} \end{equation} as $j\to\infty$, where $p$ is a positive integer number, and $\sigma$ satisfies $\sigma_{p}(A_{n})\leq\sigma_{p}(A_{0})=\sigma\, $ $(n=1,2,\dots,k-1)$. Then every solution $f\not\equiv 0$ of \eqref{e1.1} is of infinite order with $i(f)=p+1$ and $\sigma_{p+1}(f)=\sigma_{p}(A_{0})$. \end{theorem} When $p=1$ in Theorem \ref{thm2}, we obtain the following corollary. \begin{corollary} \label{coro1} Suppose there exist a sequence of points $(z_{j})_{j\in \mathbb{N}}$ with $\lim_{j\to\infty}z_{j}=\infty$, and two real numbers $\alpha, \beta (0\leq\beta<\alpha)$ such that for any given $\varepsilon>0$, \[ |A_{0}(z_{j})|\geq\exp\{\alpha|z_{j}|^{\sigma-\varepsilon}\} \] and for $n=1,\dots,k-1$, $$ |A_{n}(z_{j})|\leq\exp\{\beta|z_{j}|^{\sigma-\varepsilon}\} $$ as $j\to\infty$, where $\sigma$ satisfies $\sigma(A_{n})\leq\sigma(A_{0})=\sigma<\infty$$\,(n=1,2,\dots,k-1)$. Then every solution $f\not\equiv 0$ of \eqref{e1.1} satisfies $\sigma(f)=\infty$ and $\sigma_{2}(f)=\sigma(A_{0})$. \end{corollary} From Theorem \ref{thm2}, we can also deduce the following results. \begin{corollary}[Kinnunen \cite{kinnunen}] \label{coro2} Let $A_{0}, A_{1}, \dots, A_{k-1} $ be entire functions such that $i(A_{0})=p (0p+1$, or $q=p+1$ while $\sigma_{q}(F)>\sigma_{p}(A_{0})$, then all solutions $f$ of \eqref{e1.4} satisfy $i(f)=i(F)=q$ and $\sigma_{q}(f)=\sigma_{q}(F).$\par \item If either $qM(r,f)\cdot \nu_{f}(r)^{-\frac{1}{8}+\delta}$, where $\nu_{f}(r)$ denote the central index of $f$, then the estimation \begin{equation} \frac{f^{(n)}(z)}{f(z)}=\big(\frac{\nu_{f}(r)}{z}\big)^{n} \big(1+\eta_{k}(z)\big)\quad(n\in \mathbb{N}),\label{e2.1} \end{equation} holds for all $|z|=r$ outside a subset $E$ of finite logarithmic measure, where $$ \eta_{k}(z)=O\Big((\nu_{f}(r))^{-\frac{1}{8}+\delta}\Big). $$ \end{lemma} \begin{lemma}[{Kinnunen \cite[Remark 1.3]{kinnunen}}] \label{lem2} If $f$ is a meromorphic function with $i(f)=p\geq 1$, then $\sigma_{p}(f)=\sigma_{p}(f')$. \end{lemma} \begin{lemma}[Bank \cite{bank}] \label{lem3} Let $g:[0,\infty)\to \mathbb{R}$ and $h:[0,\infty)\to \mathbb{R}$ be monotone nondecreasing functions such that $g(r)\leq h(r)$ outside of an exceptional set $E_{2}$ of finite linear measure. Then for any $\alpha>1$, there exists $r_{0}$ such that $g(r) \leq h(\alpha r)$ for all $r>r_{0}$. \end{lemma} \begin{lemma}[Gundersen \cite{gundersen-1}] \label{lem4} Let $f$ be a transcendental meromorphic function of finite order $\sigma$. Let $\varepsilon>0$ be a constant, and $k$ and $j$ be integers satisfying $k>j\geq 0$. Then the following two statements hold: \begin{itemize} \item[(a)] There exists a set $E_{1}\subset(1,\infty)$ which has finite logarithmic measure, such that for all $z$ satisfying $|z|\not\in E_{1}\bigcup[0,1]$, we have \begin{equation} |\frac{f^{(k)}(z)}{f^{(j)}(z)}|\leq|z|^{(k-j)(\sigma-1+\varepsilon)}. \label{e2.2} \end{equation} \item[(b)] There exists a set $E_{2}\subset [0,2\pi)$ which has linear measure zero, such that if $\theta\in[0,2\pi)-E_{2}$, then there is a constant $R=R(\theta)>0$ such that \eqref{e2.2} holds for all $z$ satisfying $\arg z=\theta$ and $R\leq|z|$. \end{itemize} \end{lemma} \begin{lemma}[Gundersen \cite{gundersen-1}] \label{lem5} Let $f$ be a transcendental meromorphic function. Let $\alpha>1$ be a constant, and $k$ and $j$ be integers satisfying $k> j\geq 0$. Then the following two statements hold: \begin{itemize} \item[(a)] There exists a set $E_{1}\subset(1,\infty)$ which has finite logarithmic measure, and a constant $C>0$, such that for all $z$ satisfying $|z|\not\in E_{1}\bigcup[0,1]$, we have (with $r=|z|$) \begin{equation} \big|\frac{f^{(k)}(z)}{f^{(j)}(z)}\big| \leq C\big[\frac{T(\alpha r,f)}{r}(\log r)^{\alpha}\log T(\alpha r, f)\big]^{k-j}.\label{e2.3} \end{equation} \item[(b)] There exists a set $E_{2}\subset [0,2\pi)$ which has linear measure zero, such that if $\theta\in[0,2\pi)-E_{2}$, then there is a constant $R=R(\theta)>0$ such that \eqref{e2.3} holds for all $z$ satisfying $\arg z=\theta$ and $R\leq|z|$. \end{itemize} \end{lemma} \begin{lemma}[Cao, Chen, Zheng and Tu \cite{cao-chen-zheng-tu}] \label{lem6} Let $g(z)$ be an entire function of finite iterated order with $i(g)=m,i_{\mu}(g)=n,\sigma_{m}(g)=\sigma,\mu_{n}(g)=\mu$ (where $m,n\in \mathbb{N}$), and $\nu_{g}(r)$ denote the central index of $g$, then \begin{gather*} \limsup_{r\to\infty} \frac{\log^{[m]}\nu_{g}(r)}{\log r}=\sigma_{m}(g) =\sigma,\\ \liminf_{r\to\infty} \frac{\log^{[n]}\nu_{g}(r)}{\log r}=\mu_{n}(g)=\mu. \end{gather*} \end{lemma} \begin{lemma}[Cao, Chen, Zheng and Tu \cite{cao-chen-zheng-tu}] \label{lem7} Let $f(z)$ be a meromorphic solution of the differential equation $$ f^{(k)}+B_{k-1}f^{(k-1)}+\dots+B_{0}f=F, $$ where $B_{0},\dots,B_{k-1},F\not\equiv 0$ are meromorphic functions, such that \\ (1) $\max\{i(F),i(B_{j})(j=0,\dots,k-1)\}1$, from Lemma \ref{lem4} (a) and using similar discussion as to the proof of Theorem \ref{thm1} (see \cite[page 242-243]{belaidi-hamouda}), one can also deduce that $\sigma(f)=\infty$. By Lemma \ref{lem5} (a), There exist a set $E_{1}\subset(1,\infty)$ which has finite logarithmic measure, and positive constants $c$ and $M$ such that for all $z_{j}$ satisfying $|z_{j}|\not\in E_{1}\bigcup[0,1]$, we have (with $r_{j}=|z_{j}|$), \begin{equation} |\frac{f^{(t)}(z_{j})}{f(z_{j})}|\leq M\cdot\left[r^{c}_{j}\cdot T(2r_{j},f)\right]^{2k}\quad(t=1,\dots,k-1). \label{e3.2} \end{equation} Substituting \eqref{e1.2}, \eqref{e1.3} and \eqref{e3.2} into \eqref{e3.1}, we obtain $$ \exp^{[p]}\{\alpha|z_{j}|^{\sigma-\varepsilon}\}\leq|A_{0}(z_{j})| \leq M\cdot\left[r_{j}^{c}\cdot T(2r_{j},f)\right]^{2k} \cdot k\cdot\exp^{[p]}\{\beta|z_{j}|^{\sigma-\varepsilon}\} $$ as $z_{j}\to\infty$, $|z_{j}|\not\in E_{1}\bigcup[0,1]$. Since $\alpha>\beta\geq 0$, we get that $$ \exp\left((\alpha-\beta)|z_{j}|^{\sigma-\varepsilon}\right) \leq M\left[r_{j}^{c}T(2r_{j},f)\right]^{2k} k, $$ for $p=1$, $$ \exp\left((1-\gamma)\exp^{[p-1]}\{\alpha|z_{j}|^{\sigma-\varepsilon}\}\right) \leq M\left[r_{j}^{c} T(2r_{j},f)\right]^{2k} k, $$ for $p>1$, as $z_{j}\to\infty$, $|z_{j}|\not\in E_{1}\bigcup[0,1]$, where $\gamma$ $(0<\gamma<1)$ is a real number. Hence from Definition \ref{def1}, Definition \ref{def2} and Lemma \ref{lem3} , we can deduce that $i(f)\geq p+1$ and \begin{equation} \sigma_{p+1}(f)+\varepsilon\geq\sigma=\sigma_{p}(A_{0}).\label{e3.3} \end{equation} On the other hand, by Lemma \ref{lem1}, there exists a set $E_{2}\subset\{1,+\infty\}$ with finite logarithmic measure, when $|z|=r\not\in[0,1]\bigcup E_{2}$, and $|f(z)|=M(r,f)$, we have \begin{equation} \frac{f^{(m)}(z)}{f(z)}=\big(\frac{\nu_{f}(r)}{z}\big)^{m}(1+o(1)) \quad(m=1,\dots,k).\label{e3.4} \end{equation} Since $\sigma=\sigma_{p}(A_{0})\geq\sigma_{p}(A_{n}), (n=1,2,\dots,k-1)$, then for any given $\varepsilon(>0)$ and sufficiently large $r$, and by Definition \ref{def1}, we get \begin{equation} |A_{i}(z)|\leq \exp^{[p]}\{r^{\sigma+\varepsilon}\}\quad(i=0,\dots,k-1). \label{e3.5} \end{equation} Substituting \eqref{e3.4} and \eqref{e3.5} into \eqref{e1.1}, we get \begin{equation} \begin{aligned} &\big(\frac{\nu_{f}(r)}{|z|}\big)^{k}|1+o(1)| \\ &\leq\big(\frac{\nu_{f}(r)}{|z|}\big)^{k-1}|1+o(1)|(|A_{k-1}|+\dots+|A_{0}|) \\ &\leq k\big(\frac{\nu_{f}(r)}{|z|}\big)^{k-1}|1+o(1)|\exp^{[p]} \{r^{\sigma+\varepsilon}\}, \quad r\not\in[0,1]\bigcup E_{2}. \end{aligned}\label{e3.6} \end{equation} By Lemma \ref{lem3}, Lemma \ref{lem6} and \eqref{e3.6}, we obtain $i(f)\leq p+1$ and \begin{equation} \sigma_{p+1}(f)=\limsup_{r\to\infty} \frac{\log^{[p+1]}\nu_{f}(r)}{\log r} \leq\sigma+\varepsilon.\label{e3.7} \end{equation} Since $\varepsilon$ is arbitrary, we get from \eqref{e3.3} and \eqref{e3.7} that Theorem \ref{thm2} holds. \end{proof} \begin{proof}[Proof of Theorem \ref{thm3}] We can assume that $\{f_{1},\dots,f_{k}\}$ is an entire solution base of \eqref{e1.1}. By Theorem \ref{thm2}, we know that $i(f_{j})=p+1$ and $\sigma_{p+1}(f_{j})=\sigma_{p}(A_{0})$. Thus any solution of \eqref{e1.4} has the form \begin{equation} f(z)=B_{1}f_{1}+B_{2}f_{2}+\dots+B_{k}f_{k},\label{e4.1} \end{equation} where $B_{1},\dots,B_{k}$ are suitable entire functions satisfying \begin{equation} B_{j}'=F\cdot G_{j}(f_{1},\dots,f_{k})\cdot W(f_{1},\dots,f_{k})^{-1}\quad (j=1,\dots,k),\label{e4.2} \end{equation} where $G_{j}$ $(f_{1}$, $\dots,$$f_{k})$ is differential polynomials in $f_{1}$, $\dots,f_{k}$ and their derivatives, and $W(f_{1}$, $\dots$, $f_{k})$ is the Wronskian of $f_{1},\dots,f_{k}$. By Lemma \ref{lem2} and the above-mentioned, we obtain \begin{equation} i(f)\leq \max\{p+1,q\}.\label{e4.3} \end{equation} (1) If either $q>p+1$, or $q=p+1$ while $\sigma_{q}(F)>\sigma_{p}(A_{0})$, it follows from \eqref{e4.1}-\eqref{e4.3} and Eq.\eqref{e1.4} that $i(f)=i(F)=q$ and $\sigma_{q}(f)=\sigma_{q}(F)$. (2) If either $q\exp^{[p]}\{|z|^{\sigma-\varepsilon}\}, \\ |A_{n}(z)|<\exp^{[p]}\{|z|^{b+\varepsilon}\} \leq\exp^{[p]}\{\delta|z|^{\sigma-\varepsilon}\}\quad (n=1,\dots,k-1), \end{gather*} for sufficiently large $|z|$, where $\delta$ $(0<\delta<1)$ is a real number. By making use of the above two inequalities and Theorem \ref{thm2}, we get that Corollary \ref{coro2} follows. Corollary \ref{coro3} is just a special case of Corollary \ref{coro2} when $p=1$ \end{proof} \subsection*{Acknowledgements} The author is grateful to Professor Hong-Xun Yi for his inspiring guidance, and to the anonymous referee for his/her valuable suggestions and improvements to the present paper. \begin{thebibliography}{14} \bibitem{bank} Bank S., \emph{A general theorem concerning the growth of solutions of first-order algebraic differential equations}, Compositio Math. 25(1972), 61-70. \bibitem{belaidi-hamouda} Bela\"{\i}di B. and Hamouda S., \emph{Growth of solutions of an $n$-th order linear differential equation with entire coefficents}, Kodai Math. J. 25(2002), 240-245. \bibitem {cao-chen-zheng-tu} Cao T.-B., Chen Z.-X., Zheng X.-M. and \emph{Tu J., On the iterated order of meromorphic solutions of higher order linear differential equations}, Ann. of Diff. Eqs. 21(2005), no.2, 111-122. \bibitem{chen} Chen Z.-X., \emph{The growth of solutions of differential equation $f^{''}+e^{-z}f^{'}+Q(z)f=0$}, Science in China (series A), 31(2001), no.9, 775-784. \bibitem {chen-yang-1} Chen Z.-X. and Yang C.-C.; \emph{Quantitative estimations on the zeros and growths of entire solutions of linear differential equations, Complex Variable}, 42(2000), 119-133. \bibitem{chen-yang-2} Chen Z.-X. and Yang C.-C.; \emph{Some further results on the zeros and growths of entire solutions of second order linear differential equations}, Kodai Math. J. 22(1999), no.2, 273-285. \bibitem{frei} Frei M., \emph{\"{U}ber die subnormalen L\"{o}sungen der Differentialgleichungen $w^{"}+e^{-z}w^{'}+(konst.)f=0$}, Comment Math. Helv. 36(1961), 1-8. \bibitem{gundersen-1} Gundersen G., \emph{Estimates for the logarithmic derivative of a meromorphic function, Plus Similar Estimates}, J. London Math. Soc. 37(1988), no.2, 88-104. \bibitem{gundersen-2} Gundersen G., \emph{Finite order solutions of second order linear differential equations}, Tran. Amer. Math. Soc. 305(1988), no. 1, 415-429. \bibitem{hayman} Hayman W., \emph{Meromorphic Functions}, Clarendon Press, Oxford, 1964. \bibitem{he-xiao} He Y.-Z. and Xiao X.-Z., \emph{Algebroid Functions and Ordinary Differential Equations}, Beijing, Science Press, 1988. \bibitem{kinnunen} Kinnunen L., \emph{Linear differential equations with solutions of finite iterated order}, Southeast Asian Bull. Math. 22(1998), no.4, 385-405. \bibitem {sato} Sato D., \emph{On the rate of growth of entire functions of fast growth}, Bull. Amer. Math. Soc. 69(1963), 411-414. \bibitem{yang} Yang L., \emph{Value Distribution Theory and New Research}, Beijing, Science press, 1982. \bibitem{yi-yang} Yi H.-X. and Yang C.-C., \emph{The Uniqueness Theory of Meromorphic Functions}, Science Press, Beijing, 1995. \end{thebibliography} \end{document}