\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2006(2006), No. 82, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2006/82\hfil Exponential decay] {Exponential decay for the semilinear wave equation with source terms} \author[J. Fan, H. Wu\hfil EJDE-2006/82\hfilneg] {Jishan Fan, Hongwei Wu} \address{Jishan Fan \newline Department of Mathematics, Suzhou University, Suzhou 215006, China} \curraddr{College of Information Science and technology, Nanjing Forestry University, Nanjing 210037, China} \email{fanjishan@njfu.edu.cn} \address{Hongwei Wu \newline Department of Mathematics, Southeast University, Nanjing, 210096, China} \email{hwwu@seu.edu.cn} \date{} \thanks{Submitted May 1, 2006. Published July 21, 2006.} \thanks{Supported by grant 10101034 from NSFC} \subjclass[2000]{35L05, 35L15, 35L20} \keywords{Wave equation; source terms; exponential decay; multiplier method} \begin{abstract} In this paper, we prove that for a semilinear wave equation with source terms, the energy decays exponentially as time approaches infinity. For this end we use the the multiplier method. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \numberwithin{equation}{section} \section{Introduction} \subsection*{Main results} Let $\Omega$ be a bounded subset of $\mathbb{R}^n$ with smooth boundary $\partial\Omega$. We are concerned with the mixed problems \begin{gather} u_{tt}-\Delta u+\delta u_t=|u|^{p-1}u,\quad x\in\Omega,\quad t\ge 0,\label{1.1}\\ u(0,x)=u_0(x)\in H^1_0(\Omega),\quad u_t(0,x)=u_1(x)\in L^2(\Omega),\quad x\in\Omega,\label{1.2}\\ u(t,x)|_{\partial\Omega}=0,\quad \mbox{for } t\ge 0.\label{1.3} \end{gather} Here $\delta>0$ and $10; \label{1.9}\\ E(t)+\int_0^t\int_{\Omega}\delta|u_t|^2dx\,dt=E(0); \label{1.10} \end{gather} If $E(0)0$ then we have \begin{gather} E(t)0,\quad \forall t\in[0,\infty); \label{1.11}\\ \theta\int_{\Omega}|\nabla u|^2dx\ge\int_{\Omega}|u|^{p+1}dx,\quad \theta\in(0,1),\ \forall t\in[0,\infty); \label{1.12}\\ \lim_{t\to +\infty}\int_{\Omega}(|u_t|^2+|\nabla u|^2)dx=0; \label{1.13}\\ \int_0^t\int_{\Omega}|\nabla u|^2dx\,dt\le C. \label{1.14} \end{gather} In this paper we will use the multiplier technique to prove the following result. \begin{theorem} \label{thm1} If $E(0)0$, then there exists positive constant $\gamma$ and $C>1$ such that \begin{equation} E(t)\le Ce^{-\gamma t},\quad \forall t\in[0,\infty).\label{1.15} \end{equation} \end{theorem} \subsection*{\label{sec:level2}Our results and their relationship to the literature} The Problem \begin{equation} \label{1.16} \begin{gathered} u_{tt}-\Delta u+a(x)|u_t|^{m-1}u_t+|u|^{p-1}u=0,\quad \text{in } \Omega, \\ u\big|_{\partial\Omega}=0,\quad (u,u_t)\big|_{t=0}=(u_0,u_1) \end{gathered} \end{equation} has been studied, among others, by Nakao \cite{Nakao1,Nakao2} and Zuazua \cite{Zuazua}. In \cite{Nakao1,Nakao2,Zuazua}, the authors assumed that $a(x)\ge 0$ in $\Omega$, $\inf a(x)>0$ in $\Omega_0\subset\subset\Omega$ and $m=1$. The case $m>1$ is still open \cite{Zuazua}. The following problem, with $m>1$ and $a(x)\ge a_0>0$ in $\bar{\Omega}$, \begin{equation} \label{1.17} \begin{gathered} u_{tt}-\Delta{u}+a(x)|u_t|^{m-1}u_t=|u|^{p-1}u,\quad \text{in}\ \Omega, \\ u\big|_{\partial\Omega}=0,\quad (u,u_t)\big|_{t=0}=(u_0,u_1) \end{gathered} \end{equation} has been studied by many authors, Ball \cite{Ball}, Ikehata \cite{Ikehata3}, Ikehata and Tanizawa\cite{Ikehata4}, Levine \cite{Levine1,Levine2}, Georgiev and Todorova \cite{Georgiev1}, Georgiev and Milani \cite{Georgiev2}, Todorova \cite{Todorova1}, Barbu, et al \cite{Barbu}, Todorova and Vitillaro \cite{Todorova2}, Messaoudi \cite{Messaoudi}, Serrin \cite{Serrin}, Kawashima, et al \cite{Kawashima}. Ball \cite{Ball} proved the existence of a global attactor when $m=1$. In \cite{Ikehata3,Ikehata4,Todorova2, Kawashima}, the authors obtained a time-decay result when $\Omega=\mathbb{R}^N$. In \cite{Levine1,Levine2,Georgiev1,Georgiev2,Todorova1,Barbu,Messaoudi,Serrin}, the authors mainly concerned the existence or nonexistence of global weak (or strong) solutions. By the multiplier method in \cite{Komornik}, Benaissa and Mimouni \cite{Benaissa} studied very recently the decay properties of the solutions to the wave equation of $p$-Laplacian type with a weak nonlinear dissipative. Here it should be noted that our main result Theorem \ref{thm1} is also true for the locally damping case i.e., $\delta=\delta(x)\ge 0$ in $\Omega$ and $\delta(x)\ge \delta_0>0$ in $\Omega_0\subset\subset\Omega$. We did not find references for the case with boundary damping term. \section{Proof of the Main Result} Take $x_0\in R^n$ and set $m(x):=x-x_0$. Let $\nu$ denote the outward normal vector to $\partial\Omega$. Set \begin{gather*} \Gamma(x_0):=\{x\in\partial\Omega: (x-x_0)\cdot\nu>0\},\\ \chi:=\int_{\Omega}\big(u_t(m\cdot\nabla u)+\frac{n}{p+1}u(u_t+\frac{\delta}{2}u)\big)dx\big|_0^T. \end{gather*} \begin{lemma}\label{lem2.1} There exists positive constant $C$ depending only on $n,p,\delta,\Omega$ such that \begin{equation} \int_0^TE(t)dt\le C\big\{\int_0^T\int_{\Gamma(x_0)}(m\cdot\nu)|\frac{\partial u}{\partial\nu}|^2d\Gamma dt+\int_0^T\int_{\Omega}|u_t|^2dx\,dt+|\chi|\big\}.\label{2.1} \end{equation} \end{lemma} \begin{proof} Multiplying (\ref{1.1}) by $q(x)\cdot\nabla u$ and integrating by parts gives, \cite{Zuazua,Lions}, \begin{equation} \begin{aligned} &\Big(\int_{\Omega}u_t(q\cdot\nabla u)dx\Big)\big|_0^T +\frac{1}{2}\int_0^T\int_{\Omega}(\mbox{div}q)(|u_t|^2-|\nabla u|^2)dx\,dt \\ &+\int_0^T\int_{\Omega}(\sum_{k,j=1}^n\frac{\partial q_k}{\partial x_j}\frac{\partial u}{\partial x_k}\frac{\partial u}{\partial x_j})dx\,dt +\int_0^T\int_{\Omega}(\mbox{div}q)\frac{|u|^{p+1}}{p+1}dx\,dt \\ &+\int_0^T\int_{\Omega}\delta u_t(q\cdot\nabla u)dx\,dt\\ &=\frac{1}{2}\int_0^T\int_{\partial\Omega}(q\cdot\nu)|\frac{\partial u}{\partial\nu}|^2d\Gamma \,dt. \end{aligned}\label{2.2} \end{equation} Here $q(x)\in W^{1,\infty}(\Omega)$. Applying identity (\ref{2.2}) with $q(x)=m(x)$, we deduce \begin{equation} \begin{aligned} &\Big(\int_{\Omega}u_t(m\cdot\nabla u)dx\Big)\big|_0^T +\frac{n}{2}\int_0^T\int_{\Omega}(|u_t|^2-|\nabla u|^2)dx\,dt +\int_0^T\int_{\Omega}|\nabla u|^2dx\,dt \\ &+\frac{n}{p+1}\int_0^T\int_{\Omega}|u|^{p+1}dx\,dt +\int_0^T\int_{\Omega}\delta u_t(m\cdot\nabla u)dx\,dt \\ &=\frac{1}{2}\int_0^T\int_{\partial\Omega}(m\cdot\nu)| \frac{\partial u}{\partial\nu}|^2d\Gamma dt \\ &\le \frac{1}{2}\int_0^T\int_{\Gamma(x_0)}(m\cdot\nu)| \frac{\partial u}{\partial\nu}|^2d\Gamma dt\,. \end{aligned}\label{2.3} \end{equation} We now multiply (\ref{1.1}) by $u$ and integrate by parts, then we have \begin{equation} \Big(\int_{\Omega}u(u_t+\frac{\delta}{2}u)dx\Big)\big|_0^T =\int_0^T\int_{\Omega}(|u_t|^2-|\nabla u|^2)dx\,dt+\int_0^T\int_{\Omega}|u|^{p+1}dx\,dt.\label{2.4} \end{equation} Combining (\ref{2.3}) and (\ref{2.4}) we obtain \begin{equation} \begin{aligned} &\chi+(\frac{n}{2}-\frac{n}{p+1})\int_0^T\int_{\Omega}|u_t|^2dx\,dt +(1+\frac{n}{p+1}-\frac{n}{2})\int_0^T\int_{\Omega}|\nabla u|^2dx\,dt \\ &+\int_0^T\int_{\Omega}\delta u_t(m\cdot\nabla u)dx\,dt\\ & \le \frac{1}{2}\int_0^T\int_{\Gamma(x_0)}(m\cdot\nu)|\frac{\partial u}{\partial\nu}|^2d\Gamma dt. \end{aligned}\label{2.5} \end{equation} On the other hand, for any given $\varepsilon>0$, \begin{equation} \begin{aligned} &\big|\int_0^T\int_{\Omega}\delta u_t(m\cdot\nabla u)dx\,dt\big| \\ &\le\varepsilon\|m\|_{L^{\infty}(\Omega)}^2\int_0^T\int_{\Omega}|\nabla u|^2dx\,dt+\frac{\delta^2}{2\varepsilon}\int_0^T\int_{\Omega}|u_t|^2dx\,dt. \end{aligned}\label{2.6} \end{equation} Taking $\varepsilon$ sufficiently small in (\ref{2.6}), then substituting (\ref{2.6}) into (\ref{2.5}) we obtain (\ref{2.1}). \end{proof} \begin{lemma}\label{lem2.2} With the above notation, \begin{equation} E(t)\le C\int_0^T\int_{\Omega}(|u_t|^2+|u|^{p+1})dx\,dt.\label{2.7} \end{equation} \end{lemma} \begin{proof} First, we construct a function $h(x)\in W^{1,\infty}(\Omega)$ such that $h(x)=\nu$ on $\Gamma(x_0)$; $h(x)\cdot\nu>0$ a.e in $\partial\Omega$; see\cite{Zuazua}. Applying (\ref{2.2}) with $q(x)=h(x)$, we have \begin{equation} \begin{aligned} \int_0^T\int_{\Gamma(x_0)}|\frac{\partial u}{\partial\nu}|^2d\Gamma dt &\le\int_0^T\int_{\partial\Omega}(h\cdot\nu)|\frac{\partial u}{\partial\nu}|^2d\Gamma dt \\ &\le C\int_0^T\int_{\Omega}(|u_t|^2+|\nabla u|^2)dx\,dt+2\Big(\int_{\Omega}u_t(h\cdot\nabla u)dx\Big)\big|_0^T . \end{aligned} \label{2.8} \end{equation} From (\ref{2.4}), we see that \begin{equation} \int_0^T\int_{\Gamma(x_0)}|\frac{\partial u}{\partial\nu}|^2d\Gamma dt\le C\int_0^T\int_{\Omega}(|u_t|^2+|u|^{p+1})dx\,dt+Y,\label{2.9} \end{equation} where $$ Y=\Big(\int_{\Omega}u(u_t+\frac{\delta}{2}u)dx\Big)\big|_0^T +2\Big(\int_{\Omega}u_t(h\cdot\nabla u)dx\Big)\big|_0^T. $$ Combining (\ref{2.1}), (\ref{2.9}) and (\ref{1.10}) we obtain \begin{equation} \begin{aligned} TE(T)&\le\int_0^TE(t)dt \\ & \le C\int_0^T\int_{\Omega}(|u_t|^2+|u|^{p+1})dx\,dt+|\chi|+|Y| \\ & \le C\int_0^T\int_{\Omega}(|u_t|^2+|u|^{p+1})dx\,dt+C(E(0)+E(T)) \\ & \le C\int_0^T\int_{\Omega}(|u_t|^2+|u|^{p+1})dx\,dt +C\Big(2E(T)+\delta \int_0^T\int_{\Omega}|u_t|^2dx\,dt\Big). \end{aligned} \label{2.10} \end{equation} Taking $T$ sufficiently large we get (\ref{2.7}). \end{proof} \begin{lemma}\label{lem2.3} \begin{equation} \int_0^T\int_{\Omega}|u|^{p+1}dx\,dt\le C\int_0^T\int_{\Omega}|u_t|^2dx\,dt.\label{2.11} \end{equation} \end{lemma} \begin{proof} We argue by contradiction. If (\ref{2.11}) is not satisfied for some $C>0$, then there exists a sequence of solutions $\{u_n\}$ of (\ref{1.1})-(\ref{1.3}) with \begin{equation} \lim_{n\to\infty}\frac{\int_0^T\int_{\Omega}|u_n|^{p+1}dx\,dt} {\int_0^T\int_{\Omega}|u_{nt}|^2dx\,dt}=\infty.\label{2.12} \end{equation} From (\ref{1.12}) and (\ref{1.14}) we have \begin{equation} \int_0^T\int_{\Omega}|u_n|^{p+1}dx\,dt\le\theta\int_0^T\int_{\Omega}|\nabla u_n|^2dx\,dt\le C.\label{2.13} \end{equation} Thus we get \begin{equation} \lim_{n\to\infty}\int_0^T\int_{\Omega}|u_{nt}|^2dx\,dt=0.\label{2.14} \end{equation} We extract a subsequence (still denote by $\{u_n\}$) such that \begin{gather} u_n\rightharpoonup u \quad \mbox{weakly in } H^1(\Omega\times(0,T)),\label{2.15}\\ u_n\to u\quad \mbox{strongly in } L^2(\Omega\times(0,T)),\label{2.16}\\ u_n\to u\quad \mbox{a.e. in } \Omega\times(0,T),\label{2.17}\\ |u_n|^{p-1}u_n\to |u|^{p-1}u \quad \mbox{strongly in } L^{\infty}(0,T;L^r(\Omega))\label{2.18} \end{gather} where $r\in [1,\frac{2n}{p(n-2)})$ if $n\ge 3$ and $r\in[1,\infty)$ if $n=1,2$. From (\ref{2.14}) we know that \begin{equation} u_t=0,\quad \mbox{a.e. in } \Omega\times(0,T)\label{2.19} \end{equation} and so we have \begin{gather} -\Delta u = |u|^{p-1}u,\quad \mbox{in } \Omega\times(0,T)\label{2.20}\\ u = 0,\quad \mbox{on } \partial\Omega\times(0,T).\label{2.21} \end{gather} From (\ref{2.13}) we get \begin{equation} \int_0^T\int_{\Omega}|u|^{p+1}dx\,dt\le\theta\int_0^T\int_{\Omega}|\nabla u|^2dx\,dt<\int_0^T\int_{\Omega}|\nabla u|^2dx\,dt \label{2.22} \end{equation} which contradicts (\ref{2.20}) and (\ref{2.21}). This proves (\ref{2.11}). \end{proof} By Lemmas \ref{lem2.2} and \ref{lem2.3}, we obtain \begin{equation} E(T)\le C\int_0^T\int_{\Omega}|u_t|^2dx\,dt. \label{2.23} \end{equation} This inequality, (\ref{1.10}), and semigroup properties complete the proof of Theorem \ref{thm1}. For properties of semigroups, we refer the reader to \cite{Rauch}. \subsection*{Acknowledgments} The authors are indebted to the referee who has given many valuable suggestions for improving the presentation of this article. \begin{thebibliography}{10} \bibitem{Ikehata1} R. Ikehata and T.Suzuki, {Stable and unstable sets for evolution equations of parabolic and hyperbolic type}, \textit{Hiroshima Math. J.}, 26(1996) 475-491. \bibitem{Nakao1} M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, \textit{Math. Annalen}, 305(1996) 403-407. \bibitem{Nakao2} M. Nakao, Decay of solutions of the wave equation with some localized dissipations, \textit{Nonlinear Anal. TMA}, 30(1997) 3775-3784. \bibitem{Zuazua} E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, \textit{Comm. PDE.}, 15(1990) 205-235. \bibitem{Ball} J. M. Ball, Global attactors for damped smeilinear wave equations, \textit{Discrete and Continuous Dynamical Systems}, 10(2004) 31-52. \bibitem{Ikehata3} R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, \textit{Nonlinear Anal. TMA}, 27(1996) 1165-1175. \bibitem{Ikehata4} R. Ikehata and K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $\mathbb{R}^N$ with noncompactly supported initial data, \textit{Nonlinear Anal.}, 61(2005) 1189-1208. \bibitem{Levine1} H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathcal{L}u$, \textit{Trans. Amer. Math. Soc.}, 192(1974) 1-21. \bibitem{Levine2} H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, \textit{SIMS J. Math. Anal.}, 5(1974) 138-146. \bibitem{Georgiev1} V. Georgiev and G. Todorova, Existence of the wave equation with nonlinear damping and source terms, \textit{J. Differential Equations}, 109(1994) 295-308. \bibitem{Georgiev2} V. Georgiev and A. Milani, On the asymptotic behavior of semilinear wave equations with degenerate dissipation and source terms, \textit{NoDEA}, 5(1998) 53-68. \bibitem{Todorova1} G. Tovorova, Stable and unstable sets for the cauchy problems for a nonlinear wave equation with nonlinear damping and source terms, \textit{J. Math. Anal. Appl.}, 239(1999) 213-226. \bibitem{Barbu} V. Barbu, I.Lasiecka and M. A. Rammsha, On nonlinear wave equations with degenerate damping and source terms, \textit{Trans. Amer. Math. Soc.}, 357(2005) 2571-2611. \bibitem{Todorova2} G. Todorova and E. Vitillaro, Enregy decay for the cauchy problem for a nonlinear wave equation, in preparation. \bibitem{Messaoudi} S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, \textit{Math. Nachr.}, 231(2001) 105-111. \bibitem{Serrin} J. Serrin, G. Todorora and E. Vitillaro, Existence of a nonlinear wave equation with damping and source terms, \textit{Differential and Integral Equations}, 16(2003) 13-50. \bibitem{Kawashima} S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to the Cauchy problem of the semilinear wave equation with a dissipative term, \textit{J. Math. Soc. Japan}, 47(1995) 617-653. \bibitem{Komornik} V. Komornik, \textit{Exact controllability and stabilization. The Multiplier Method}, Massion-John Wiley, Paris, 1994. \bibitem{Benaissa} A. Benaissa and S. Mimouni, Engery decay of solutions of a wave equation of $p$-Laplacian type with a weakly nonlinear dissipation, \textit{J. Inequalities in Pure and Applied Mathematics}, 7(2006), Article 15. \bibitem{Lions} J. Lions, \textit{ Contr$\hat{o}$labilit$\acute{e}$ exacte, perturbations et stabilisation de syst$\grave{e}$mes distribu$\acute{e}$s, Tome 1}, Contr$\hat{o}$labilit$\acute{e}$ exacte, RMA 8, Masson, 1988. \bibitem{Rauch} J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, \textit{Indiana Univ. Math. J.}, 24(1974) 79-86. \end{thebibliography} \end{document}