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EXISTENCE RESULTS FOR NONLINEAR ELLIPTIC
EQUATIONS IN BOUNDED DOMAINS OF Rn

MALEK ZRIBI

Abstract. We establish existence results for the boundary-value problem

∆u+ f(., u) = 0 in a smooth bounded domain in Rn (n ≥ 2), where f satisfies

some appropriate conditions related to a Kato class. The proofs are based on
various techniques related to potential theory.

1. Introduction

Let Ω be a C1,1 bounded domain in Rn (n ≥ 2). In this paper we study the ex-
istence and the asymptotic behaviour of bounded solutions to the nonlinear elliptic
boundary-value problem

∆u+ f(., u) = 0 in Ω
u > 0, in Ω
u = g on ∂Ω,

(1.1)

where g is a nonnegative continuous function on ∂Ω and f satisfies some conve-
nient conditions. The question of existence of solutions of (1.1) has been studied
by several authors in both bounded and unbounded domains with various nonlin-
earities; see for example [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 21]
and references therein. Note that solutions of these problems are understood in
distributional sense.

Our tools are based essentially on some inequalities satisfied by the Green func-
tion G(x, y) of (−∆) in Ω which allow to some properties of functions belonging to
the Kato class K(Ω) which contains properly the classical one; see [1, 4]. The class
K(Ω) has been introduced in [15], for n ≥ 3 and [12, 20] for n = 2 as follows.

We denote by δ(x) the Euclidian distance between x and ∂Ω.

Definition 1.1. A Borel measurable function q in Ω belongs to the Kato class
K(Ω) if q satisfies

lim
α→0

(
sup
x∈Ω

∫
Ω∩B(x,α)

δ(y)
δ(x)

G(x, y)|q(y)|dy
)

= 0. (1.2)
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For the sake of simplicity we set Hg the bounded continuous solution of the
Dirichlet problem

∆u = 0 in Ω
u = g on ∂Ω,

where g is a nonnegative continuous function on ∂Ω. We also refer to V f the
potential of a measurable nonnegative function f , defined on Ω by

V f(x) =
∫

Ω

G(x, y)f(y)dy.

Our plan in this paper is as follows. The section 2 is devoted to collect some
preliminary results about the Green function G(x, y) and the properties of the Kato
class K(Ω).

In section 3, we establish an existence result for (1.1) where the combined ef-
fects of a singular and a sublinear term in the nonlinearity f are considered. Our
motivation in this section comes from paper [17], where Shi and Yao investigated
the existence of nonnegative solutions for the elliptic problem

∆u+K(x)u−γ + λuα = 0 in Ω

u(x) > 0 in Ω
, u = 0 on ∂Ω,

where γ and α in (0, 1) are two constants, λ is a real parameter and K is in C0,β(Ω).
Using this result. Sun and Li [19] gave a similar result in Rn (n ≥ 2). In fact they
proved an existence result for the problem

∆u+ p(x)u−γ + q(x)uα = 0 in Rn

u(x) > 0, x ∈ Rn

u(x) → 0, as |x| → ∞,

where γ and α in (0, 1) are two constants and p, q are two nonnegative functions in
Cβ

loc(Rn) such that p+ q 6= 0.
The pure singular elliptic equation

∆u+ p(x)u−γ = 0, γ > 0, x ∈ D ⊆ Rn (1.3)

has been extensively studied for both bounded and unbounded domains D in
Rn(n ≥ 2). We refer to [5, 6, 7, 9, 10] and references therein) for various exis-
tence and uniqueness results related to solutions for equation (1.3).

For more general situations Mâagli and Zribi showed in [14] that the problem

∆u+ ϕ(., u) = 0, x ∈ D
u = 0 on ∂D

lim
|x|→∞

u(x) = 0, if D is unbounded

admits a unique positive solution if ϕ is a nonnegative measurable function on
(0,∞), which is nonincreasing and continuous with respect to the second variable
and satisfies

(H0) For all c > 0, ϕ(., c) is in K∞
n (D), where K∞

n (D) is the classical Kato class;
see [21].
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On the other hand, the problem (1.1) with a sublinear term f(., u) have been
studied in Rn by Brezis and Kamin in [3]. Indeed, the authors proved the existence
and the uniqueness of a positive solution for the problem

∆u+ ρ(x)uα = 0 in Rn,

lim inf
|x|→∞

u(x) = 0,

with 0 < α < 1 and ρ is a nonnegative measurable function satisfying some appro-
priate conditions.

Thus a natural question to ask is for more general singular and sublinear terms
combined in the nonlinearity, whether or not (1.1) has a solution which we aim to
study in this section. In fact we are interested in solving the following problem (in
the sense of distributions)

∆u+ ϕ(., u) + ψ(., u) = 0, in Ω
u > 0, in Ω
u = 0 on ∂Ω .

(1.4)

Here ϕ and ψ are required to satisfy the following hypotheses:
(H1) ϕ is a nonnegative Borel measurable function on Ω × (0,∞), continuous

and nonincreasing with respect to the second variable.
(H2) For all c > 0, x→ ϕ(x, cδ(x)) is in K(Ω).
(H3) ψ is a nonnegative Borel measurable function on Ω×(0,∞), continuous with

respect to the second variable such that there exist a nontrivial nonnegative
function p and a nonnegative function q ∈ K(Ω) satisfying for x ∈ Ω and
t > 0,

p(x)h(t) ≤ ψ(x, t) ≤ q(x)f(t), (1.5)
where h is a measurable nondecreasing function on [0,∞) satisfying

lim
t→0+

h(t)
t

= +∞ (1.6)

and f is a nonnegative measurable function locally bounded on [ 0,∞)
satisfying

lim sup
t→∞

f(t)
t

< ‖V q‖∞. (1.7)

Using a fixed point argument, we shall prove the following existence result.

Theorem 1.2. Assume (H1)–(H3). Then the problem (1.4) has a positive solution
u ∈ Cb(Ω) such that for each x ∈ Ω,

aδ(x) ≤ u(x) ≤ V (ϕ(., aδ))(x) + bV q(x),

where a, b are positive constants.

Typical examples of nonlinearities satisfying (H1)-(H3) are:

ϕ(x, t) = p(x)(δ(x))γt−γ ; γ ≥ 0,

ψ(x, t) = q(x)tα log(1 + tβ), α, β ≥ 0

such that α+ β < 1, where p and q are two nonnegative functions in K(Ω).
In this section, using different techniques from those used by Shi and Yao [17],

we improve their results in the sense of distributional solutions.
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In section 4, we consider the nonlinearity f(x, t) = −ϕ(x, t) and we suppose that
g is nontrivial, then using a potential theory approach we investigate an existence
result and an uniqueness result for the problem

∆u− ϕ(., u) = 0 in Ω
u > 0 in Ω
u = g on ∂Ω,

(1.8)

where ϕ is required to satisfy the following three conditions:

(H4) ϕ is a nonnegative measurable function on Ω× [0,∞), continuous and non-
decreasing with respect to the second variable.

(H5) ϕ(., 0) = 0.
(H6) For all c > 0, ϕ(., c) is in K(Ω).

Our main result is the following.

Theorem 1.3. Assume (H4)-(H6). Then the problem (1.8) has a unique positive
solution u such that 0 < u(x) ≤ Hg(x) for each x ∈ Ω.

Note that if q ∈ K(Ω) and ϕ(x, t) ≤ q(x)t locally on t, then the solution u
satisfies cHg(x) ≤ u(x) ≤ Hg(x), for c ∈ (0, 1).

This result follows up the one of Lair and Wood in [9], who have considered the
equation

∆u = q(x)f(u),

in both bounded and unbounded domains of Rn (n ≥ 2) in the case f(u) = uγ ,
0 < γ ≤ 1. They studied the existence and nonexistence of positive large solutions
and positive bounded ones under adequate hypothesis on q. The result of Lair
and Wood have been generalized later by Bachar and Zeddini [2] to more general
functions f and q satisfying some restrictive conditions.

To simplify our statements, we define some convenient notation:
(i) B(Ω) denotes the set of Borel measurable functions in Ω and B+(Ω) the set of
nonnegative functions.
(ii) C0(Ω) := {w ∈ C(Ω) : limx→∂Ω w(x) = 0}. We recall that this space is Banach
with the uniform norm

‖w‖∞ = sup
x∈Ω

|w(x)|.

(iii) For q ∈ B(Ω), we put

‖q‖ := sup
x∈Ω

∫
Ω

δ(y)
δ(x)

G(x, y)|q(y)|dy.

(iv) Let f and g be two nonnegative functions on a set S. We call f � g, if there
is c > 0 such that

f(x) ≤ cg(x) for all x ∈ S.

We call f ∼ g, if there is c > 0 such that

1
c
g(x) ≤ f(x) ≤ cg(x) for all x ∈ S.
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2. Properties of the Green function and the Kato class

The existence results to prove, suggest collecting some estimates on the Green
function G and some properties of functions belonging to the Kato class K(Ω).
The proofs of the following estimates and inequalities of G can be found in [15] for
n ≥ 3 and [20] for n = 2.

Proposition 2.1. For each x, y ∈ Ω, we have

G(x, y) ∼


δ(x)δ(y)

|x−y|n−2
(
|x−y|2+δ(x)δ(y)

) if n ≥ 3,

log
(
1 + δ(x)δ(y)

|x−y|2
)

if n = 2.
(2.1)

Corollary 2.2. For x, y ∈ Ω,

δ(x)δ(y) � G(x, y). (2.2)

Theorem 2.3 (3G-Theorem). There exists C0 > 0 depending only on Ω, such that
for x, y, z ∈ Ω, we have

G(x, z)G(z, y)
G(x, y)

≤ C0

[ δ(z)
δ(x)

G(x, z) +
δ(z)
δ(y)

G(y, z)
]
. (2.3)

To recall some properties of the class K(Ω), we first give the following examples:

(1) By [15, Proposition 4], the function q(x) = 1/(δ(x))λ is in K(Ω) if and only
if λ < 2.

(2) By [18, Proposition 3], if p > n/2 and λ < 2 − n
p , then Lp(Ω)/(δ(.))λ ⊂

K(Ω).

The proof of the following Proposition can be found in [15, 20].

Proposition 2.4. Let q be a nonnegative function in K(Ω). Then

(i) ‖q‖ <∞.
(ii) The function x 7→ δ(x)q(x) is in L1(Ω).
(iii) We have

δ(x) � V q(x). (2.4)

For a fixed nonnegative function q in K(Ω), we put

Mq := {ϕ ∈ B(Ω), |ϕ| � q}.

Proposition 2.5. Let q be a nonnegative function in K(Ω), then the family of
functions

V (Mq) = {V ϕ : ϕ ∈Mq}
is uniformly bounded and equicontinuous in C0(Ω), and consequently it is relatively
compact in C0(Ω).

Proof. The result holds by similar arguments as in [15, proposition 3] and [20,
Proposition 8]. �

In the sequel, we use the notation

αq := sup
x,y∈Ω

∫
Ω

G(x, z)G(z, y)
G(x, y)

|q(z)|dz.
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Proposition 2.6. Let q be a function in K(Ω) and v be a nonnegative superhar-
monic function in Ω. Then for each x ∈ Ω,∫

Ω

G(x, y)v(y)|q(y)|dy ≤ αqv(x) (2.5)

and consequently, ‖q‖ ≤ αq ≤ 2C0‖q‖, where C0 is the constant given in (2.3).

For the proof of the above proposition, we refer the reader to [18, Proposition
2].

Corollary 2.7. Let q be a nonnegative function in K(Ω) and v be a nonnegative
superharmonic function in Ω, then for each x ∈ Ω such that v(x) <∞, we have

exp(−αq)v(x) ≤ (v − Vq(qv))(x) ≤ v(x).

Proof. The upper inequality is trivial. For the lower one, we consider the function
γ(λ) = v(x) − λVλq(qv)(x) for λ ≥ 0. The function γ is completely monotone on
[0,∞) and so log γ is convex in [0,∞). This implies

γ(0) ≤ γ(1) exp(−γ
′(0)
γ(0)

).

That is,

v(x) ≤ (v − Vq(qv))(x) exp(
V (qv)(x)
v(x)

).

So, the result holds by (2.5). �

3. First existence result

Proof of Theorem 1.2. Assume (H1)-(H3). Using the Schauder fixed point theorem,
we are going to construct a solution to problem (1.4). We note that by (2.2) there
exists a constant α1 > 0 such that for each x, y ∈ Ω

α1δ(x)δ(y) ≤ G(x, y). (3.1)

Now, using (H3), there exists a compact K of Ω such that

0 < α :=
∫

K

δ(y)p(y)dy <∞.

We put β := min{δ(x) : x ∈ K}. Then from (1.6), we conclude that there exists
a > 0 such that

α1αh(aβ) ≥ a. (3.2)
Furthermore, since q ∈ K(Ω), then by Proposition 2.5 we have obviously that
‖V q‖∞ < ∞. So taking 0 < η < 1/‖V q‖∞, we deduce by (1.7) that there exists
ρ > 0 such that for t ≥ ρ we have f(t) ≤ ηt. Put γ = sup0≤t≤ρ f(t). So we have
that

0 ≤ f(t) ≤ ηt+ γ, t ≥ 0. (3.3)
Next by (2.4), we note that there exists a constant α2 > 0 such that

α2δ(x) ≤ V q(x), ∀x ∈ Ω. (3.4)

¿From (H2) and Proposition 2.5, we have that ‖V ϕ(., aδ)‖∞ <∞. Hence, put

b = max{ a
α2
,
η‖V ϕ(., aδ)‖∞ + γ

1− η‖V q‖∞
}
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and consider the closed convex set

Λ = {u ∈ C0(Ω) : aδ(x) ≤ u(x) ≤ V ϕ(., aδ)(x) + bV q(x),∀x ∈ Ω}.

Obviously, by (3.4) we have that the set Λ is nonempty. Define the integral operator
T on Λ by

Tu(x) =
∫

Ω

G(x, y)[ϕ(y, u(y)) + ψ(y, u(y))]dy, ∀x ∈ Ω.

Let us prove that TΛ ⊂ Λ. Let u ∈ Λ and x ∈ Ω, then by (H1), (H3) and (3.3) we
have

Tu(x) ≤ V ϕ(., aδ)(x) +
∫

Ω

G(x, y)q(y)f(u(y))dy

≤ V ϕ(., aδ)(x) +
∫

Ω

G(x, y)q(y)[ηu(y) + γ]dy

≤ V ϕ(., aδ)(x) +
∫

Ω

G(x, y)q(y)[η(‖V ϕ(., aδ)‖∞ + b‖V q‖∞) + γ]dy

≤ V ϕ(., aδ)(x) + bV q(x).

Moreover from the monotonicity of h, (3.1) and (3.2), we have

Tu(x) ≥
∫

Ω

G(x, y)ψ(y, u(y))dy

≥ α1δ(x)
∫

Ω

δ(y)p(y)h(aδ(y))dy

≥ α1δ(x)h(aβ)
∫

K

δ(y)p(y)dy

≥ α1αh(aβ)δ(x)

≥ aδ(x).

On the other hand, we have that for each u ∈ Λ,

ϕ(., u) ≤ ϕ(., aδ) and ψ(., u) ≤ [η(‖V ϕ(., aδ)‖+ b‖V q‖∞) + γ]q. (3.5)

This implies by Proposition 2.5 that TΛ is relatively compact in C0(Ω). In partic-
ular, we deduce that TΛ ⊂ Λ.

Next, we prove the continuity of T in Λ. Let (uk)k be a sequence in Λ which
converges uniformly to a function u in Λ. Then since ϕ and ψ are continuous with
respect to the second variable, we deduce by the dominated convergence theorem
that

∀x ∈ Ω, Tuk(x) → Tu(x) as k →∞.

Now, since TΛ is relatively compact in C0(Ω), then we have the uniform conver-
gence. Hence T is a compact operator mapping from Λ to itself. So the Schauder
fixed point theorem leads to the existence of a function u ∈ Λ such that

u(x) =
∫

Ω

G(x, y)[ϕ(y, u(y)) + ψ(y, u(y))]dy, ∀x ∈ Ω. (3.6)

Finally, we need to prove that u is solution of the problem (1.4). Since q and
ϕ(., aδ) are in K(Ω), we deduce by (3.5) and Proposition 2.4, that y 7→ ϕ(y, u(y))+
ψ(y, u(y)) ∈ L1(Ω). Moreover, since u ∈ C0(Ω), we deduce from (3.6), that
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V (ϕ(., u) + ψ(., u)) ∈ L1(Ω). Hence u satisfies in the sense of distributions the
elliptic equation

∆u+ ϕ(., u) + ψ(., u) = 0, in Ω.
This completes the proof. �

Example 3.1. Let α, β ≥ 0 such that 0 ≤ α + β < 1, γ > 0 and p, q ∈ K+(Ω).
Then the problem

∆u+ p(x)(u(x))−γ(δ(x))γ + q(x)(u(x))α log(1 + (u(x))β) = 0, in Ω
u > 0, in Ω

(3.7)

has a solution u ∈ C0(Ω) satisfying aδ(x) ≤ u(x) ≤ V p(x)+bV q(x), where a, b > 0.

Remark 3.2. Taking in Example 3.1 λ < 2,

p(x) = q(x) =
1

(δ(x))λ
,

we deduce from [15] that the solution of (3.7) satisfies the following:
(i) u(x) � (δ(x))2−λ, if 1 < λ < 2.
(ii) u(x) � δ(x) log (

√
5+1)d

2δ(x) , if λ = 1,
(iii) u(x) � δ(x), if λ < 1, where d = diam(Ω).
Note that in Example 3.1, we have the result obtained by Shi and Yao [17].

4. Second existence result

In this section, we shall prove Theorem 1.3. The proof is based on a comparison
principle given by the following Lemma. For u ∈ B(Ω), put u+ = max(u, 0).

Lemma 4.1. Let ϕ and ψ satisfying (H4)-(H6). Assume that ϕ ≤ ψ on Ω × R+

and there exist continuous functions u, v on Ω satisfying
(a) ∆u− ϕ(., u+) ≤ ∆v − ψ(., v+) in Ω (in the distributional sense)
(b) u, v ∈ Cb(Ω)
(c) u ≥ v on ∂Ω.

Then u ≥ v in Ω.

Proof. Suppose that the open set D = {x ∈ Ω : u(x) < v(x)} is nonempty. Put
z = u− v. Then z satisfies

∆z = ϕ(., u+)− ψ(., v+)

= (ϕ(., u+)− ψ(., u+)) + (ψ(., u+)− ψ(., v+)) ≤ 0 in D
z ≥ 0 on ∂D

z ∈ Cb(D).

Hence from the maximum principle, we conclude that z ≥ 0 in D. Therefore, we
get a contradiction with the definition of D. This completes the proof. �

In the sequel, we recall that for each function q ∈ B+(Ω) such that V q <∞, we
denote by Vq the unique kernel which satisfies the following resolvent equation (see
[11, 16]):

V = Vq + Vq(qV ) = Vq + V (qVq). (4.1)
So for each u ∈ B(Ω) such that V (q|u|) <∞, we have

(I − Vq(q.))(I + V (q.))u = (I + V (q.))(I − Vq(q.))u = u. (4.2)
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Proof of Theorem 1.3. As consequence of the comparison principle in Lemma 4.1,
we deduce that problem (1.8) has at most one solution. The existence of a such
solution is assured by the Schauder fixed point Theorem. Indeed, we consider the
convex set

Λ = {u ∈ Cb(Ω) : u ≤ ‖g‖∞}.
We define the integral operator T on Λ by

Tu(x) = Hg(x)− V (ϕ(., u+))(x).

Since Hg(x) ≤ ‖g‖∞, for x ∈ Ω, we deduce that for each u ∈ Λ,

Tu ≤ ‖g‖∞ in Ω.

Furthermore, putting q = ϕ(., ‖g‖∞), we have by (H4) and (H6) that q is in K(Ω)
and V (ϕ(., u+)) is in V (Mq). This together with the fact that Hg is in Cb(Ω)
imply by Proposition 2.5 that TΛ is relatively compact in Cb(Ω) and in particular
TΛ ⊂ Λ.

¿From the continuity of ϕ with respect to the second variable, we deduce that
T is continuous in Λ and so it is a compact operator from Λ to itself. Then by
the Schauder fixed point Theorem, we deduce that there exists a function u ∈ Λ
satisfying

u(x) = Hg(x)− V (ϕ(., u+))(x).

Finally, since ϕ(., u+) ∈Mq, we conclude by Proposition 2.4 that u satisfies in the
sense of distributions the following

∆u− ϕ(., u+) = 0

lim
x→∂Ω

u(x) = g.

Hence by (H5) and Lemma 4.1, we conclude that u ≥ 0 in Ω and so it is a solution
of (1.8). �

Corollary 4.2. Suppose that ϕ satisfies (H4)-(H6) and g is a nontrivial nonnega-
tive continuous function in ∂Ω. Suppose that there exists a function q ∈ K(Ω) such
that

0 ≤ ϕ(x, t) ≤ q(x)t on Ω× [0, ‖g‖∞]. (4.3)

Then the solution u of (1.8) given by Theorem 1.3 satisfies

e−αqHg(x) ≤ u(x) ≤ Hg(x).

Proof. Since u satisfies the integral equation

u(x) = Hg(x)− V (ϕ(., u))(x),

using (4.1), we obtain

u− Vq(qu) = (Hg − Vq(qHg))− (V (ϕ(., u))− Vq(qV (ϕ(., u)))

= (Hg − Vq(qHg))− Vq(ϕ(., u)).

That is,
u = (Hg − Vq(qHg)) + Vq(qu− ϕ(., u)).

Now since 0 < u ≤ ‖g‖∞ then by (4.3), we have that u ≥ Hg − Vq(qHg). Conse-
quently, the result holds from Corollary 2.7. �
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Example 4.3. Let g be a nontrivial nonnegative continuous function in ∂Ω. Let
σ > 0 and q ∈ K+(Ω). Then the problem (in the sense of distributions)

∆u− q(x)uσ = 0, in Ω
u = g on ∂Ω

has a positive bounded continuous solution u satisfying, in Ω,

0 ≤ Hg(x)− u(x) ≤ ‖g‖σ
∞V q(x).

Furthermore, if σ ≥ 1, by Corollary 4.2, for each x ∈ Ω,

e−αqHg(x) ≤ u(x) ≤ Hg(x).
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[11] H. Mâagli; Perturbation semi-linéaire des ré solvantes et des semi-groupes, Potential Ana.
3, (1994) 61-87.
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