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STEPANOV-LIKE ALMOST AUTOMORPHIC SOLUTIONS FOR
NONAUTONOMOUS EVOLUTION EQUATIONS

SAMIR FATAJOU, NGUYEN VAN MINH,

GASTON M. N’GUÉRÉKATA, ALEXANDER PANKOV

Abstract. We study the convolution of Stepanov-like almost automorphic

functions and L1 functions. Also we consider nonautonomous evolution equa-
tions, with a periodic operator coefficient and Stepanov-like almost automor-

phic forcing, and show that, under certain assumptions, any bounded mild

solution is almost automorphic.

1. Introduction

The notion of almost periodic function was introduced by Bohr in 1925. Shortly
after, in 1926, Stepanov found a wider class of almost periodic functions that are
commonly known now as Stepanov almost periodic functions. This last notion is
especially useful in the theory of evolution equations, both linear and nonlinear,
because spaces of Stepanov almost periodic functions are natural counterparts of
classical Lp spaces (see, e.g., [1, 15] and references therein). On the other hand, in
1955, Bochner [3] suggested another generalization of the concept of almost period-
icity - almost automorphy. This notion was also used extensively in the theory of
differential equations (see [10], [12], and references therein). Therefore, it seems to
be natural to generalize the notion of almost automorphy in the spirit of Stepanov.
Surprisingly enough, this has been done only very recently by N’Guérékata and
Pankov [14], where the concept of Stepanov-like (Sp-) almost automorphy was in-
troduced. Such a notion was, subsequently, utilized to study the existence of weak
Stepanov-like almost automorphic solutions to some parabolic evolution equations.
Then Diagana and N’Guérékata have studied in [6] the existence and uniqueness of
an almost automorphic solution to the semilinear equation

u′(t) = Au(t) + F (t, u(t)), t ∈ R, (1.1)

where A : D(A) ⊂ X 7→ X is a densely defined closed linear operator in a Banach
space X, which is also the infinitesimal generator of an exponentially stable C0-
semigroup (T (t))t≥0 on X and F : R× X 7→ X is Sp-almost automorphic for p > 1
and jointly continuous. This result generalizes the existence results obtained in
N’Guérékata [11].
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In the present paper, we study first the convolution of Stepanov-like almost auto-
morphic functions and some applications to evolution equations. Then we present
the conditions under which any bounded mild solution to the nonautonomous equa-
tion

x′(t) = A(t)x(t) + h(t), t ∈ R,
where A(t) generates a periodic evolutionary process and h is a Stepanov-like forcing
term, is almost automorphic. This main result generalizes [9, Theorem 3.2].

2. Almost Automorphy

Throughout the rest of this paper, the spaces (X, ‖ · ‖), C(R,X) and BC(R,X)
stands for a Banach space, the collection of all strongly continuous functions from
R into X, and the collection of all bounded continuous functions from R into X,
respectively. Note that (BC(R,X), ‖ · ‖∞), where ‖ · ‖∞ denotes the sup norm

‖ϕ‖∞ := sup
t∈R

‖ϕ(t)‖

for each ϕ ∈ BC(R,X), is a Banach space.

Definition 2.1 (Bochner). A function f ∈ C(R,X) is said to be almost automor-
phic in Bochner’s sense if for every sequence of real numbers (s′n), there exists a
subsequence (sn) such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.

If the convergence above is uniform in t ∈ R, then f is almost periodic in the
classical Bochner’s sense. Denote by AA(X) the collection of all almost automorphic
functions R → X.

Among other things, almost automorphic functions satisfy the following proper-
ties.

Theorem 2.2 ([10, Theorem 2.1.3]). If f, f1, f2 ∈ AA(X), then
(i) f1 + f2 ∈ AA(X),
(ii) λf ∈ AA(X) for any scalar λ,
(iii) fα ∈ AA(X) where fα : R → X is defined by fα(·) = f(·+ α),
(iv) the range Rf :=

{
f(t) : t ∈ R

}
is relatively compact in X, thus f is bounded

in norm,
(v) if fn → f uniformly on R where each fn ∈ AA(X), then f ∈ AA(X) too.

Theorem 2.3 ([5]). If g ∈ L1(R), then f ∗g ∈ AA(R), where f ∗g is the convolution
of f with g on R.

Note that (AA(X), ‖ · ‖∞) turns out to be a Banach space.

Remark 2.4. The function g in the Definition 2.1 above is measurable, but not
necessarily continuous. Moreover, if g is continuous, then f is uniformly continuous,
see details in [13, Theorem 2.6].
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Example 2.5. A classical example of an almost automorphic function, which is
not almost periodic is the function defined by

ϕ(t) = cos
( 1

2 + sin
√

2t+ sin t

)
, t ∈ R.

It can be shown that ϕ is not uniformly continuous, and hence is not almost periodic.

Let l∞(X) denote the space of all bounded (two-sided) sequence in X. It is
equipped with its corresponding sup norm defined for each sequence x = (xn)n∈Z ∈
l∞(X) by: ‖x‖∞ := supn∈Z ‖xn‖.

Definition 2.6. A sequence x = (xn)n∈Z ∈ l∞(X) is said to be almost automorphic
if for every sequence of integers (k′n), there exists a subsequence (kn) such that

yp := lim
n→∞

xp+kn

is well defined for each p ∈ Z, and

lim
n→∞

yp−kn
= xp

for each p ∈ Z. The collection of all these almost automorphic sequences is denoted
by aa(X).

In the sequel, we will denote by AAu(X) (u-a.a. for short) the closed subspace of
all functions f ∈ AA(X) with g ∈ C(R,X). Equivalently, f ∈ AAu(X) if and only
if f is a.a. and all convergences in Definition 2.1 are uniform on compact intervals;
i.e., in the Fréchet space C(R,X). Indeed, if f is a.a., then, by [10, Theorem 2.1.3
(iv)], its range is relatively compact.

Remark 2.7. Note that Definition 2.1 as well as the above-mentioned definition
of u-a.a. functions makes sense for functions with values in any metric space (see
[8]).

Obviously, the following inclusions hold:

AP (X) ⊂ AAu(X) ⊂ AA(X) ⊂ BC(X) ,

where AP (X) stands for the collection of all X-valued almost periodic functions.

Definition 2.8. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function
f(t) on R, with values in X, is defined by

f b(t, s) := f(t+ s).

Remark 2.9. A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a
certain unction f(t),

ϕ(t, s) = f b(t, s) ,
if and only if

ϕ(t+ τ, s− τ) = ϕ(s, t)
for all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

Definition 2.10 (see [15]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov
bounded functions, with the exponent p, consists of all measurable functions f on
R with values in X such that f b ∈ L∞

(
R, Lp(0, 1; X)

)
. This is a Banach space with

the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

( ∫ t+1

t

‖f(τ)‖p dτ
)1/p

.
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Definition 2.11 ([14]). The space ASp(X) of Sp-almost automorphic functions
(sp-a.a. for short) consists of all f ∈ BSp(X) such that f b ∈ AA

(
Lp(0, 1; X)

)
.

In other words, a function f ∈ Lploc(R; X) is said to be Sp-almost automorphic
if its Bochner transform f b : R → Lp(0, 1; X) is almost automorphic in the sense
that for every sequence of real numbers (s′n), there exists a subsequence (sn) and a
function g ∈ Lploc(R; X) such that( ∫ 1

0

‖f(t+ sn + s)− g(t+ s)‖pds
)1/p

→ 0,( ∫ 1

0

‖g(t− sn + s)− f(t+ s)‖pds
)1/p

→ 0

as n→∞ pointwise on R.

Remark 2.12. It is clear that if 1 ≤ p < q < ∞ and f ∈ Lqloc(R; X) is Sq-almost
automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is Sp-
almost automorphic for any 1 ≤ p < ∞. It is easily seen that f ∈ AAu(X) if and
only if f b ∈ AA(L∞(0, 1; X)). Thus, AAu(X) can be considered as AS∞(X).

Example 2.13 ([14]). Let x = (xn)n∈Z ∈ l∞(X) be an almost automorphic se-
quence and let ε0 ∈ (0, 1

2 ). Let f(t) = xn if t ∈ (n − ε0, n + ε0) and f(t) = 0,
otherwise. Then f ∈ ASp(X) for p ≥ 1 but f 6∈ AA(X), as f is discontinuous.

Theorem 2.14 ([14]). The following statements are equivalent:
(i) f ∈ ASp(X);
(ii) f b ∈ AAu(Lp(0, 1; X));
(iii) for every sequence (s′n) of real numbers there exists a subsequence (sn) such

that
g(t) := lim

n→∞
f(t+ sn) (2.1)

exists in the space Lploc(R; X) and

f(t) = lim
n→∞

g(t− sn) (2.2)

in the sense of Lploc(R; X).

Let now f, h : R → R and consider the convolution

(f ? h)(t) :=
∫

R
f(s)h(t− s)ds, t ∈ R,

if the integral exists.

Remark 2.15. The operator J : ASp(X) → ASp(X) such that (Jx)(t) := x(−t) is
well-defined and linear. Moreover it is an isometry and J2 = I.

Remark 2.16. The operator Ta defined by (Tax)(t) := x(t+ a) for a fixed a ∈ R
leaves ASp(X) invariant.

Theorem 2.17. A linear combination of Sp-almost automorphic functions (p ≥ 1)
is a Sp-almost automorphic function. Moreover if X is a Banach space over the
field K = R, or C and f ∈ ASp(X), ν ∈ AAu(K), then νf ∈ ASp(X).

The proof of this theorem is an immediate consequence of the results above.

Theorem 2.18. If a sequence (fk)∞k=1 of Sp almost automorphic functions is such
that ‖fk − f‖Sp →∞, as k →∞, then f ∈ ASp.
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As in [5], denote by LM(R) the set of all Lebesgue measurable functions R → R.
We also denote by Sp(R,X) the subspace of BSp(R,X) that consists of all Sp-almost
periodic functions [15].

3. Sp−almost automorphy of the convolution

Let us now discuss conditions which do ensure the Sp−almost automorphy of
the convolution function f ? h of f with h where f is Sp-almost automorphic and
h is a Lebesgue mesurable function satisfying additional assumptions.

Let f : R → X and h : R → R; the convolution function (if it does exist) of f
with h denoted f ? h is defined by:

(f ? h)(t) :=
∫

R
f(σ)h(t− σ)dσ =

∫
R
f(t− σ)h(σ)dσ = (h ? f)(t), for all t ∈ R.

Hence, if f ? h is well-defined, then f ? h = h ? f .
Let ϕ ∈ L1 and λ ∈ C. It is well-known that the operator Aϕ,λ defined by

Aϕ,λu = λu+ ϕ ? u (3.1)

acts continuously in BSp for each 1 ≤ p <∞; i.e., there exists K > 0 such that

‖Aϕ,λu‖Sp
≤ K‖u‖Sp ,∀u ∈ BSp. (3.2)

Moreover Aϕ,λ leaves Sp invariant (see [4]).
Now denote M := {AA(X), AAu(X), ASp(X)}.

Theorem 3.1. For every 1 ≤ p <∞, and Ω ∈M,

Aϕ,λ(Ω) ⊂ Ω.

Proof. The case Ω = AA(X) is considered in [5]. The two other cases follow from
the previous one, the identity (ϕ ? f)b = ϕ ? (f b) and the definitions of spaces AAu
and ASp, respectively. �

Now we present a result on invertibility of convolution operators in spaces of
almost automorphic functions that complements [4, Theorem 1]. Let a(ξ) = λ +
ϕ̂(ξ), where ϕ̂(ξ) is the Fourier transform of ϕ, be the symbol of the operator
Aϕ,λ, with ϕ ∈ L1(R). Since limξ→∞ ϕ(ξ) = 0, the symbol a(ξ) is a well-defined
continuous function on R = R ∪ {∞} and a(∞) = λ. Then we have the following

Theorem 3.2. Suppose that ϕ ∈ L1(R). The following two statements are equiv-
alent:

(i) a(ξ) 6= 0 for all ξ ∈ R;
(ii) the operator Aϕ,λ is invertible in any space Ω ∈M.

Proof. Suppose that a(ξ) 6= 0 for all ξ ∈ R. The function 1
a(ξ) is defined on R and,

by classical Wiener’s theorem, is of the form
1
a(ξ)

=
1
λ

+ ψ̂(ξ),

where ψ ∈ L1(R). Now it is easy to verify that the operator Aψ, 1λ is the inverse
operator to Aϕ,λ and, by Theorem 3.1, acts in all spaces Ω ∈M.

Conversely, suppose that A = Aϕ,λ is invertible in some space Ω ∈M. Then we
have that, with some α > 0,

α‖u‖Ω ≤ ‖Au‖Ω
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for all u ∈ Ω. The function u(t) = uξ(t) = exp(iξt) belongs to Ω and it is easily
seen that ‖u‖Ω = 1 and Au = a(ξ)u. Hence, |a(ξ)| ≥ α and we conclude. �

Now we can complement [4, Theorems 2 and 3] as follows. Let A = Aϕ,λ and Ω
be a functional space in which the operator A acts. We denote by ‖A|Ω‖ the norm
of A as a linear operator in Ω.

Theorem 3.3. Let ϕ ∈ L1(R), A = Aϕ,λ and p ≥ 1. Then

‖A|Sp‖ = ‖A|ASp‖ = ‖A|BSp‖,
‖A|AP ‖ = ‖A|AAu

‖ = ‖A|AA‖ = ‖A|BC‖.

Proof. We have the following chain of closed subspaces Sp ⊂ ASp ⊂ BSp. Hence,

‖A|Sp‖ ≤ ‖A|ASp‖ ≤ ‖A|BSp‖.
By [4, Theorem 2], we have that ‖A|Sp‖ = ‖A|BSp‖. This implies the first statement
of the theorem.

The second statement is similar. We need only to refer to [4, Theorem 3]. �

Application: A Volterra-like Equation. Consider the equation

x(t) = g(t) +
∫ +∞

−∞
a(t− σ)x(σ)dσ, t ∈ R, (3.3)

where g : R → R is a continuous function and a ∈ L1(R).

Theorem 3.4. Suppose g ∈ ASp(R) and ‖a‖L1 < 1. Then (3.3) above has a unique
Sp-almost automorphic solution.

Proof. It is clear that the operator

x ∈ ASp(X) →
∫ +∞

−∞
a(t− σ)x(σ)dσ ∈ ASp(X)

is well-defined. Now consider Γ : ASp(X) → ASp(X) such that

(Γx)(t) = g(t) +
∫ +∞

−∞
a(t− σ)x(σ)dσ, t ∈ R.

We can easily show that

‖(Γx)− (Γy)‖ ≤ ‖a‖L1‖x− y‖Sp .

The conclusion is immediate by the principle of contraction. �

4. Almost Automorphic Solutions

In this section, X will be a Banach space which does not contain any subspace
isomorphic to c0. We consider the equation

x′(t) = A(t)x(t) + h(t), t ∈ R, (4.1)

where h ∈ ASp(X) ∩ C(R, X) , and A(t) generates a 1-periodic exponentially
bounded evolutionary process (U(t, s))t≥s in X, that is, a two-parameter family of
bounded linear operators that satisfies the following conditions:

(1) U(t, t) = I for all t ∈ R,
(2) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,
(3) The map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X,
(4) U(t+ 1, s+ 1) = U(t, s) for all t ≥ s ( 1-periodicity),



EJDE-2007/121 STEPANOV-LIKE ALMOST AUTOMORPHIC SOLUTIONS 7

(5) ‖U(t, s)‖ ≤ Keω(t−s) for some K > 0, ω > 0 independent of t ≥ s.
An X-valued continuous function u on R is said to be a mild solution of (4.1) if

x(t) = U(t, s)x(s) +
∫ t

s

U(t, ξ)h(ξ)dξ, ∀t ≥ s; t, s ∈ R. (4.2)

Lemma 4.1. Let x be a bounded mild solution of (4.2) on R and let h be in
ASp(X) ∩ C(R, X). Then, x ∈ AA(X) if and only if the sequence {x(n)}n∈Z ∈
aa(X).

Proof. The proof is similar to [9, Lemma 3.1], with the necessary adaptations. The
necessity is obvious. For the Sufficiency, let the sequence {x(n)}n∈Z ∈ aa(X). We
need to prove that x ∈ AA(X). We divide the proof into two steps:
Step 1 : We first suppose that {n′k} is a given sequence of integers. Then there exist
a subsequence {nk} and a function g ∈ Lploc(R, X) such that

y(n) := lim
k→∞

x(n+ nk)

exists for each n ∈ Z and
lim
k→∞

y(n− nk) = x(n)

for each n ∈ Z, and

lim
k→∞

( ∫ 1

0

‖h(t+ nk + s)− g(t+ s)‖pds
)1/p

= 0;

lim
k→∞

( ∫ 1

0

‖g(t− nk + s)− h(t+ s)‖pds
)1/p

= 0,

for each t ∈ R.
For every fixed t ∈ R, let us denote by [t] the integer part of t. Then, define

y(η) := U(η, [t])y([t]) +
∫ η

[t]

U(η, ξ)g(ξ)dξ, η ∈ [[t], [t] + 1).

In this way, we can define y on the whole line R. Now we show that

lim
k→∞

x(t+ nk) = y(t).

In fact,
lim
k→∞

‖x(t+ nk)− y(t)‖ ≤ lim
k→∞

I1(t) + lim
k→∞

I2(t)

where

I1(t) = ‖U(t+ nk, [t] + nk)x([t] + nk)− U(t, [t])y([t])‖,

I2(t) =
∫ t

[t]

‖U(t, η)‖‖h(η + nk)− g(η)‖dη .

Now using the 1-periodicity of U(t, s) since nk ∈ Z and boundedness of U(t, [t]),
we get

lim
k→∞

I1(t) = lim
k→∞

‖U(t, [t])x([t] + nk)− U(t, [t])y([t])‖

≤ Ct lim
k→∞

‖x([t] + nk)− y([t])‖ = 0,

for each t ∈ R. Now for k sufficiently large, we get

I2(t) ≤ K

∫ t

[t]

eω(t−η)‖h(η + nk)− g(η)‖dη ≤ C ′t,ωε,
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which shows that
lim
k→∞

I2(t) = 0, for each t ∈ R.

Thus
lim
k→∞

‖x(t+ nk)− y(t)‖ = 0.

Similarly, we can show that

lim
k→∞

‖y(t− nk)− x(t)‖ = 0.

Step 2 : Now we consider the general case where {s′k}k∈Z may not be an integer
sequence. The main lines are similar to those in Step 1 combined with the strong
continuity of the process.

Set n′k = [s′k] for every k. Since {tk}k∈Z, where tk := s′k − [s′k], is a sequence in
[0, 1) we can choose a subsequence {nk} from {n′k} such that limk→∞ tk = t0 ∈ [0, 1]
and

y(n) := lim
k→∞

x(n+ nk)

exists for each n ∈ Z and

limk→∞y(n− nk) = x(n)

for each n ∈ Z, for a function y, as shown in Step 1.
Let us first consider the case 0 < t0 + t− [t0 + t]. We show that

lim
k→∞

x(tk + t+ nk) = lim
k→∞

x(t0 + t+ nk) = y(t0 + t). (4.3)

In fact, for sufficiently large k, from the above assumption we have [t0 +t] = [tk+t].
Using the 1-periodicity of the process (U(t, s))t≥s we have

‖x(tk + t+ nk)− x(t0 + t+ nk)‖ ≤ I3(k) + I4(k), (4.4)

where I3(t), I4(k) are defined and estimated as below. By the 1-periodicity of the
process (U(t, s))t≥s we have

I3(t) := ‖U(tk + t+ nk, [tk + t] + nk)x([tk + t] + nk)

− U(t0 + t+ nk, [t0 + t] + nk)x([t0 + t] + nk)‖
= ‖U(tk + t, [t0 + t])x([t0 + t] + nk)− U(t0 + t, [t0 + t])x([t0 + t] + nk)‖.

Using the strong continuity of the process (U(t, s))t≥s and the boundedness of the
range of the sequence {x(n)}n∈Z we have limk→∞ I3(k) = 0. Next, we define

I4(k) := ‖
∫ tk+t+nk

[tk+t]+nk

U(tk + t+ nk, η)h(η)dη −
∫ t0+t+nk

[t0+t]+nk

U(t0 + t+ nk, η)h(η)dη‖.

Using the Holder inequality we have

‖
∫ tk+t+nk

[tk+t]+nk

U(tk + t+ nk, η)h(η)dη‖ ≤ K

∫ tk+t+nk

[tk+t]+nk

eω(tk+t+nk−η)‖h(η)‖dη

≤ K(
∫ 1

0

eqω(tk+t+nk−η)dη)
1
q (‖h‖Sp)

=
K

qω
(eqω(tk+t+nk−1) − eqω(tk+t+nk)

1
q (‖h‖Sp).

By letting k →∞, we observe that the latter tends to zero since ω < 0. The same
treatment can be used for the second integral in I4, so that limk→∞ I4 = 0. So, in
view of Step 1, we see that (4.3) holds.
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Next, we consider the case when t0 + t− [t0 + t] = 0, that is, t0 + t is an integer.
If tk + t ≥ t0 + t, we can repeat the above argument. So, we omit the details. Now
suppose that tk + t < t0 + t. Then

‖x(tk + t+ nk)− x(t0 + t+ nk)‖ ≤ I5(k) + I6(k), (4.5)

where I5(k) and I6(k) are defined and estimated as below.

I5(k) := ‖U(tk + t+ nk, [tk + t] + nk)x([tk + t] + nk)

− U(t0 + t+ nk, t0 + t− 1 + nk)x(t0 + t− 1 + nk)‖
= ‖U(tk + t, t0 + t− 1)x(t0 + t− 1 + nk)

− U(t0 + t, t0 + t− 1)x(t0 + t− 1 + nk)‖.

Now using the strong continuity of the process (U(t, s))t≥s and the precompactness
of the range of the sequence {x(n)}n∈Z we obtain limk→∞ I5(k) = 0. Finally we
have

I6(k) := ‖
∫ tk+t+nk

[tk+t]+nk

U(tk + t+nk, η)h(η)dη−
∫ t0+t+nk

[t0+t]+nk−1

U(t0 + t+nk, η)h(η)dη‖

This can be treated as in the case of I4; i.e., limk→∞ I6(k) = 0. The proof is now
complete. �

Theorem 4.2. Let A(t) in (4.1) generate an exponentially bounded 1-periodic
strongly continuous evolutionary process, and let h ∈ ASp(X)∩C(R, X) . Assume
further that the space X does not contain ny subspace isomorphic to c0 and the
part of spectrum of the monodromy operator U(1, 0) on the unit circle is countable.
Then, every bounded mild solution of (4.1) on the real line is almost automorphic.

Proof. The theorem is an immediate consequence of [9, Lemmas 2.12 and 2.13] and
Lemma 4.1 above. In fact, we need only to prove the sufficiency. Let us consider
the discrete equation

x(n+ 1) = U(n+ 1, n)x(n) +
∫ n+1

n

U(n+ 1, ξ)h(ξ)dξ, n ∈ Z.

From the 1-periodicity of the process (U(t, s))t≥s, this equation can be re-written
in the form

u(n+ 1) = Bu(n) + yn, n ∈ Z, (4.6)

where

B := U(1, 0); yn :=
∫ n+1

n

U(n+ 1, ξ)h(ξ)dξ, n ∈ Z.

Note that yn is well-defined.
We are going to show that the sequence {yn}n∈Z defined as above is almost

automorphic. In fact, since h ∈ ASp(X) , for every sequence {n′k} there exists a
subsequence {nk} and a function g ∈ Lploc(R; X) such that( ∫ 1

0

‖h(t+ {nk}+ s)− g(t+ s)‖pds
)1/p

→ 0,( ∫ 1

0

‖g(t− {nk}+ s)− h(t+ s)‖pds
)1/p

→ 0
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as n→∞ pointwise on R. Now let

zn =
∫ n+1

n

U(n, ξ)g(ξ)dξ, n ∈ Z .

Then, by the 1-periodicity of (U(t, s))t≥s and the Holder inequality we have

‖yn+nk
− zn‖

= ‖
∫ n+nk+1

n+nk

U(n, ξ)h(ξ)dξ −
∫ n+1

n

U(n, ξ)g(ξ)dξ‖

= ‖
∫ 1

0

U(n+ nk, ξ + n+ nk)h(ξ + n+ nk)dξ −
∫ 1

0

U(n, ξ + n)g(ξ)dξ‖

= ‖
∫ 1

0

U(n, ξ + n)(h(ξ + n+ nk − g(ξ)dξ‖

≤
∫ 1

0

‖U(n, ξ + n)‖h(ξ + n+ nk)− g(ξ)dξ‖

≤ K

∫ 1

0

eωt‖h(ξ + n+ nk)− g(ξ)‖dξ

≤ K(
∫ 1

0

e−qωtdξ)
1
q

( ∫ 1

0

(‖h(ξ + n+ nk)− g(ξ)‖)pdξ
)1/p

→ 0, as k →∞

By [9, Lemma 2.13], since {x(n)} is a bounded solution of (4.6), X does not contain
any subspace isomorphic to c0, and the part of spectrum of U(1, 0) on the unit
circle is countable, {x(n)} ∈ aa(X). By Lemma 4.1, this yields that the solution
x ∈ AA(X). The proof is now complete. �
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B.P. 2390 Marrakech, Morocco
E-mail address: fatajou@hotmail.fr

Nguyen Van Minh

Department of Mathematics, University of West Georgia, Carrollton, GA 30018, USA
E-mail address: vnguyen@westga.edu

Gaston M. N’Guérékata
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