\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 13, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2006 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/13\hfil Positive periodic solutions] {Positive periodic solutions of neutral logistic equations with distributed delays} \author[Y. Li, G. Wang, H. Wang\hfil EJDE-2007/13\hfilneg] {Yongkun Li, Guoqiao Wang, Huimei Wang } \address{Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China} \email[Yongkun Li]{yklie@ynu.edu.cn} \email[Guoqiao Wang]{wgq81@126.com} \email[Huimei Wang]{wanghmei@163.com} \date{} \thanks{Submitted July 14, 2006. Published January 8, 2007.} \thanks{Supported by grants 10361006 from the National Natural Sciences Foundation China, \hfill\break\indent and 2003A0001M from the the Natural Sciences Foundation of Yunnan Province.} \subjclass[2000]{34K13, 34K40} \keywords{Positive periodic solution; neutral delay logistic equation; \hfill\break\indent strict-set-contraction} \begin{abstract} Using a fixed point theorem of strict-set-contraction, we establish criteria for the existence of positive periodic solutions for the periodic neutral logistic equation, with distributed delays, $$ x'(t)= x(t)\Big[a(t)-\sum_{i=1}^n a_i(t)\int_{-T_i}^0 x(t+\theta)\, \mathrm{d}\mu_i(\theta)- \sum_{j=1}^m b_j(t) \int_{-\hat{T}_j}^0 x'(t+\theta)\,\mathrm{d}\nu_j(\theta)\Big], $$ where the coefficients $a, a_i ,b_j$ are continuous and periodic functions, with the same period. The values $T_i, \hat{T}_j$ are positive, and the functions $\mu_i, \nu_j$ are nondecreasing with $\int_{-T_i}^0\,{\rm d} \mu_i=1$ and $\int_{-\hat{T}_j}^0\,{\rm d} \nu_j=1$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Consider the single species neutral logistic model, with discrete delays, \begin{equation} \label{e1.1} \frac{{\rm d} N(t)}{{\rm d} t}=N(t)\Big[a(t)-\beta(t)N(t) -\sum_{i=1}^n b_i(t) N_i(t-\tau_i(t)) -\sum_{j=1}^m c_j(t) N'_j(t-\sigma_j(t))\Big], \end{equation} where the functions $a(t), \beta(t), b_j(t), c_j(t), \tau_i(t), \sigma_j(t)$ are continuous $\omega$-periodic, and $a(t)\geq 0$, $\beta(t)\geq 0$, $b_i(t)\geq 0$, $c_j(t)\geq 0$ ($i=1,2,\dots,n$, $j=1,2,\dots,m$). An ecological justification of model \eqref{e1.1} can be found in \cite{g2,g3,k1,p1}. Using continuation theory for $k$-set-contractions, Lu \cite{l1}, Lu and Ge \cite{l2} studied the existence of positive periodic solutions of \eqref{e1.1}. Yang and Cao \cite{y1} used Mawhin's continuation theorem \cite{g1} to investigated the existence of positive periodic solutions of \eqref{e1.1}. The main results obtained in \cite{k1,l2} required $c_j\in C^1,\sigma_j\in C^2$ and $\sigma_j'<1$ ($j=1,2,\dots,n$). To the best of our knowledge, this is the first paper to study the existence of periodic solutions of neutral logistic equations with distributed delays. The main purpose of this paper is by using a fixed point theorem of strict-set-contraction \cite{c1,g4} to establish the existence of positive periodic solutions of the following neutral functional differential equation, with distributed delays, \begin{equation} \label{e1.2} x'(t)=x(t)\Big [a(t)-\sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta)- \sum_{j=1}^n b_j(t)\int_{-\hat{T}_j}^0x'(t+\theta)\,\mathrm{d}\nu_j(\theta) \Big]\,, \end{equation} where $a,a_i ,b_j \in C(\mathbb{R},\mathbb{R}^+)$ are $\omega$-periodic functions, $T_i, \hat{T}_j$ are postive constants, $\mu_i, \nu_j:[-T_i,0]\to[0,\infty)$ are nondecreasing functions and $\int_{-T_i}^0\,{\rm d} \mu_i=1$, $\int_{-\hat{T}_j}^0\,{\rm d}\nu_j=1$, for $i=1,2,\dots,n$, $j=1,2,\dots,m$. Note that \eqref{e1.1} is a special case of \eqref{e1.2}. For an ecological justification of \eqref{e1.1}, we refer the reader to \cite{k2}. For convenience, we introduce the following notation: \begin{gather*} \lambda=e^{-\int_{0}^{\omega}a(s)\,\mathrm{d}s},\quad \Delta=\int_{0}^{\omega}\Big[\lambda \sum_{i=1}^n a_i(s)-\sum_{j=1}^m b_j(s)\Big]\,\mathrm{d}s, \\ \Pi=\int_{0}^{\omega}\Big[\sum_{i=1}^n a_i(s)+\sum_{j=1}^m b_j(s)\Big]\, \mathrm{d}s, \quad f^M=\max_{t\in [0,\omega]}\{f(t)\},\\ f^m=\min_{t\in [0,\omega]}\{f(t)\}, \end{gather*} where $f$ is a continuous $\omega$-periodic function. Also we introduce the following assumptions: \begin{itemize} \item [(H1)] $\lambda:=\exp\big(-\int_{0}^{\omega}a(s)\,\mathrm{d}s\big)<1$. \item [(H2)] $\lambda \sum_{i=1}^n a_i(t)-\sum_{j=1}^m b_j(t)\geq0$. \item [(H3)] $(1+a^m) \frac{\lambda^2\Delta}{1-\lambda}\geq\max_{t\in [0,\omega]} \big\{\sum_{i=1}^n a_i(t)+\sum_{j=1}^m b_j(t)\big\}$. \item [(H4)] $\frac{\Pi(a^M-1)}{\lambda(1-\lambda)}\leq\min_{t\in [0,\omega]}\big\{\lambda \sum_{i=1}^n a_i(t)-\sum_{j=1}^m b_j(t)\big\}$. \item [(H5)] $\frac{1-\lambda}{\lambda^2\Delta}\big(\sum_{j=1}^m b_j^M\big)<1$. \end{itemize} \section{Preliminaries} To obtain the existence of periodic solutions to \eqref{e1.2}, we make the following preparations: Let $E$ be a Banach space and $K$ be a cone in $E$. The semi-order induced by the cone $K$ is denoted by ``$\leq$''. That is, $x\leq y$ if and only if $y-x\in K$. In addition, for a bounded subset $A\subset E$, let the Kuratowski measure of non-compactness be defined by \begin{align*} \alpha_{E}(A)=\inf\Big\{&\delta>0: \text{ there is a finite number of subsets }A_i\subset A\\ &\text{such that }A=\cup_iA_i \text{ and } \mathop{\rm diam} (A_i)\leq \delta\Big\}, \end{align*} where $\mathop{\rm diam}(A_i)$ denotes the diameter of the set $A_i$. Let $E, F$ be two Banach spaces and $D\subset E$, a continuous and bounded mapping $\Phi : \bar{\Omega} \to F$ is called $k$-set contractive if for every bounded set $S\subset D$ we have \[ \alpha_F(\Phi(S))\leq k\alpha_E(S). \] The mapping $\Phi$ is called strict-set-contractive if it is $k$-set-contractive for some $0 \leq k < 1$. From \cite{c1,g1}, we cite the following lemma which is useful for the proof of our main result. \begin{lemma}[\cite{c1,g4}] \label{lem2.1} Let $K$ be a cone of the real Banach space $X$ and $K_{r,R}=\{x\in K:r\leq ||x||\leq R\}$ with $R>r>0$. Suppose that $\Phi:K_{r,R}\to K$ is strict-set-contractive such that one of the following two conditions is satisfied: \begin{itemize} \item [(i)] ($\Phi x \nleq x$ for all $x \in K$, $\|x\|= r$) and ($\Phi x\ngeq x$ for all $x\in K$, $\|x\|=R$). \item [(ii)] ($\Phi x \ngeq x$ for all $x \in K$, $\|x\|= r$) and ($\Phi x\nleq x$ for all $x\in K$, $\|x\|=R$). \end{itemize} Then $\Phi$ has at least one fixed point in $K_{r,R}$. \end{lemma} To apply Lemma \ref{lem2.1} to \eqref{e1.2}, we set \[ C^0_\omega=\{x\in C^0(\mathbb{R},\mathbb{R}): x(t+\omega)=x(t)\} \] with the norm $|x|_0=\max_{t\in [0,\omega]}\{|x(t)|\}$, and \[ C^1_\omega=\{x\in C^1(\mathbb{R},\mathbb{R}): x(t+\omega)=x(t)\} \] with the norm $|x|_1=\max\{|x|_0, |x'|_0\}$. Then $C^0_\omega$ and $C^1_\omega$ are all Banach spaces. Define the cone $K$ in $C^1_{\omega}$ by \begin{equation} \label{e2.1} K=\{x\in C^1_{\omega}: x(t)\geq \lambda|x|_1, t\in [0,\omega]\}. \end{equation} Let the mapping $\Phi $ be defined by \begin{equation} \label{e2.2} \begin{aligned} (\Phi x)(t)&= \int_{t}^{t+\omega}G(t,s)x(s)\Big[\sum_{i=1}^n a_i(s) \int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad +\sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\,\mathrm{d}\nu_j(\theta) \Big]\,\mathrm{d}s, \end{aligned} \end{equation} where $x\in K, t\in \mathbb{R}$, and \[ G(t,s)=\frac{e^{-\int_{t}^{s}a(\theta)\,{\rm d}\theta}} {1-e^{-\int_{0}^{\omega}a(\theta)\,{\rm d}\theta}},\quad s\in [t,t+\omega]. \] It is easy to see that $G(t+\omega,s+\omega)=G(t,s)$ and \[ \frac{\lambda}{1-\lambda}\leq G(t,s)\leq\frac{1}{1-\lambda},\quad s\in [t,t+\omega]. \] Next, we give some lemmas concerning the $K$ and $\Phi$ defined above. \begin{lemma} \label{lem2.2} Assume that (H1)--(H3) hold. \begin{itemize} \item [(i)] If $a^M\leq 1$, then $\Phi: K\to K$ is well defined. \item [(ii)] If (H4) holds and $a^M>1$, then $\Phi: K\to K$ is well defined. \end{itemize} \end{lemma} \begin{proof} For any $x\in K$, it is clear that $\Phi x\in C^1(\mathbb{R},\mathbb{R})$. In view of \eqref{e2.2}, for $t\in \mathbb{R}$, we obtain \begin{align*} (\Phi x)(t+\omega)&= \int_{t+\omega}^{t+2\omega}G(t+\omega,s)x(s) \Big[\sum_{i=1}^n a_i(s)\int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + \sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\,\mathrm{d}\nu_j(\theta) \Big]\,\mathrm{d}s\\ &= \int_{t}^{t+\omega}G(t+\omega,u+\omega)x(u+\omega)\Big[ a(u+\omega)\int_{-T_i}^0x(u+\omega+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + b(u+\omega)\int_{-\hat{T}_j}^0x'(u+\omega+\theta)\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}u\\ &= \int_{t}^{t+\omega}G(t,u)x(u)\Big[ a(u)\int_{-T_i}^0x(u+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + b(u)\int_{-\hat{T}_j}^0x'(u+\theta)\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}u\\ &= (\Phi x)(t). \end{align*} That is, $(\Phi x)(t+\omega)=(\Phi x)(t)$, $t\in \mathbb{R}$. So $\Phi x \in C^1_{\omega}$. In view of (H2), for $x \in K$, $t\in [0,\omega]$, we have \begin{equation} \label{e2.3} \begin{aligned} & \sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta) + \sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0x'(t+\theta)\,\mathrm{d}\nu_j(\theta)\\ &\geq \sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta) - \sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0|x'(t+\theta)|\,\mathrm{d}\nu_j(\theta)\\ &\geq \sum_{i=1}^n a_i(t)\int_{-T_i}^0\lambda|x|_1\,\mathrm{d}\mu_i(\theta) - \sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0|x|_1\,\mathrm{d}\nu_j(\theta)\\ &\geq \lambda \sum_{i=1}^n a_i(t) -\sum_{j=1}^m b_j(t)]|x|_1\,\mathrm{d}\nu_j(\theta)\geq0. \end{aligned} \end{equation} Therefore, for $x\in K$, $t\in [0,\omega]$, we find \begin{align*} |\Phi x|_0 &\leq \frac{1}{1-\lambda}\int_{0}^{\omega}x(s) \Big[\sum_{i=1}^n a_i(s)\int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad +\sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\,\mathrm{d}\nu_j(\theta)\Big ]\,\mathrm{d}s \end{align*} and \begin{equation} \label{e2.4} \begin{aligned} (\Phi x)(t) &\geq \frac{\lambda}{1-\lambda}\int_{t}^{t+\omega}x(s)\Big[ \sum_{i=1}^n a_i(s)\int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + \sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\,\mathrm{d}\nu_j(\theta) \Big]\,\mathrm{d}s\\ &= \frac{\lambda}{1-\lambda}\int_{0}^{\omega}x(s)\Big[ \sum_{i=1}^n a_i(s)\int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + \sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}s\\ &\geq \lambda|\Phi x|_0. \end{aligned} \end{equation} Now, we show that $(\Phi x)'(t)\geq \lambda |(\Phi x)'|_0, t\in [0,\omega]$. From \eqref{e2.2}, we have \begin{align} (\Phi x)'(t) &= G(t,t+\omega)x(t+\omega)\Big[ a(t+\omega)\int_{-T_i}^0x(t+\omega+\theta)\,\mathrm{d}\mu_i(\theta) \nonumber\\ &\quad + b(t+\omega)\int_{-\hat{T}_j}^0x'(t+\omega+\theta)\,\mathrm{d}\nu_j(\theta) \Big] \nonumber\\ &\quad -G(t,t)x(t)\Big[ \sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta)\nonumber \\ &\quad +\sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0x'(t+\theta) \,\mathrm{d}\nu_j(\theta)\Big] +a(t)(\Phi x)(t) \label{e2.5}\\ &= a(t)(\Phi x)(t)-x(t)\Big[ \sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta) \nonumber\\ &\quad + \sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0x'(t+\theta)\,\mathrm{d}\nu_j (\theta)\Big]. \nonumber \end{align} It follows from \eqref{e2.3} and \eqref{e2.5} that if $(\Phi x)'(t)\geq 0$, then \begin{equation} \label{e2.6} (\Phi x)'(t)\leq a(t)(\Phi x)(t)\leq a^M (\Phi x)(t)\leq(\Phi x)(t). \end{equation} On the other hand, from \eqref{e2.4}, \eqref{e2.5} and (H3), if $(\Phi x)'(t) < 0$, then \begin{align*} %2.7 &-(\Phi x)'(t) \\ &= x(t)\Big[ \sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta) + \sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0x'(t+\theta)\,\mathrm{d} \nu_j(\theta)\Big]\\ &\quad -a(t)(\Phi x)(t)\\ &\leq |x|_1^2\Big[\sum_{i=1}^n a_i(t)+\sum_{j=1}^m b_j(t)\Big]-a^m(\Phi x)(t)\\ &\leq (1+a^m)\frac{\lambda^2}{1-\lambda}|x|_1^2\int_{0}^{\omega}\Big[\lambda \sum_{i=1}^n a_i(s)+ \sum_{j=1}^m b_j(s)\Big]\,\mathrm{d}s-a^m(\Phi x)(t)\\ &= (1+a^m)\int_{0}^{\omega}\frac{\lambda}{1-\lambda}\lambda|x|_1\Big[\lambda|x|_1 \sum_{i=1}^n a_i(s)-|x|_1 \sum_{j=1}^m b_j(s)\Big]\,\mathrm{d}s-a^m(\Phi x)(t)\\ &\leq (1+a^m)\int_{t}^{t+\omega}G(t,s)x(s)\Big[\sum_{i=1}^n a_i(s) \int_{-T_{1}}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad -\sum_{j=1}^m b_j(s) \int_{-T_{2}}^0 |x'(\theta+s)|\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}s-a^m(\Phi x)(t)\\ &\leq (1+a^m)\int_{t}^{t+\omega}G(t,s)x(s) \Big[\sum_{i=1}^n a_i(s)\int_{-T_{1}}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad +\sum_{j=1}^m b_j(s)\int_{-T_{2}}^0 x'(\theta+s)\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}s-a^m(\Phi x)(t)\\ &= (1+a^m)(\Phi_ix)(t)-a^m(\Phi x)(t)\\ &= (\Phi x)(t). \end{align*} It follows from the above inequality and \eqref{e2.6} that $|(\Phi x)'|_0\leq |\Phi x|_0$. So $|\Phi x|_1 = |\Phi x|_0$. By \eqref{e2.2} we have $(\Phi x)(t) \geq \lambda |\Phi x|_1$. Hence, $\Phi x \in K$. The proof of (i) is complete. (ii) In view of the proof of (i), we only need to prove that $(\Phi x)'(t) \geq 0$ implies \[ (\Phi x)'(t) \leq (\Phi x)(t). \] From \eqref{e2.3}, \eqref{e2.5}, (H2) and (H4), we obtain \begin{align*} (\Phi_ix)'(t) &\leq a(t)(\Phi x)(t)-\lambda|x|_1\Big[ \sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad -\sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0|x'(t+\theta)|\,\mathrm{d}\nu_j(\theta)\Big]\\ &\leq a(t)(\Phi x)(t)-\lambda|x|_1^2\Big[\lambda \sum_{i=1}^n a_i(t) - \sum_{j=1}^m b_j(t)\Big]\\ &\leq a^M(\Phi x)(t)-\lambda|x|_1^2\frac{a^M-1}{\lambda(1-\lambda)}\int_{0}^{\omega}\Big[\sum_{i=1}^n a_i(s) +\sum_{j=1}^m b_j(s)\Big]\,\mathrm{d}s\\ &\leq a^M(\Phi x)(t)-(a^M-1)\int_{t}^{t+\omega}\frac{1}{1-\lambda}|x|_1\Big[\sum_{i=1}^n a_i(s)|x|_1 +\sum_{j=1}^m b_j(s)|x|_1\Big]\,\mathrm{d}s \\ &\leq a^M(\Phi x)(t)-(a^M-1)\int_{t}^{t+\omega}G(t,s)x(s) \Big[\sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad +\sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0|x'(t+\theta)|\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}s \\ &\leq a^M(\Phi x)(t)-(a^M-1)\int_{t}^{t+\omega}G(t,s)x(s) \Big[\sum_{i=1}^n a_i(t)\int_{-T_i}^0x(t+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + \sum_{j=1}^m b_j(t)\int_{-\hat{T}_j}^0x'(t+\theta)\,\mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}s\\ &= a^M(\Phi x)(t)-(a^M-1)(\Phi x)(t)\\ &= (\Phi x)(t). \end{align*} The proof of (ii) is complete. \end{proof} \begin{lemma} \label{lem2.3} Assume that (H1)--(H3) hold and $R\sum_{j=1}^m b_j^M <1$. \begin{itemize} \item [(i)] If $a^M\leq 1$, then $\Phi : K \bigcap\bar{\Omega}_R \to K$ is strict-set-contractive, \item [(ii)] If (H4) holds and $a^M> 1$, then $\Phi : K \bigcap\bar{\Omega}_R \to K$ is strict-set-contractive, \end{itemize} where $\Omega_R=\{x\in C^1_{\omega}: |x|_1 1$, then system \eqref{e1.2} has at least one positive $\omega$-periodic solution. \end{itemize} \end{theorem} \begin{proof} We only need to prove (i), since the proof of (ii) is similar. Let $R=\frac{1-\lambda}{\lambda^2\Delta}$ and $0 < r < \frac{\lambda(1-\lambda)}{\Pi}$. Then we have $0< r< R$. From Lemma \ref{lem2.2} and \ref{lem2.3}, we know that $\Phi$ is strict-set-contractive on $K_{r,R}$. In view of \eqref{e2.5}, we see that if there exists $x^*\in K$ such that $\Phi x^* = x^*$, then $x^*$ is one positive $\omega$-periodic solution of \eqref{e1.2}. Now, we shall prove that condition (ii) of Lemma \ref{lem2.1} hold. First, we prove that $\Phi x \ngeq x$, for all $x \in K$, $|x|_1=r$. Otherwise, there exists $x \in K$, $|x|_1= r$ such that $\Phi x\geq x$. So $|x| > 0$ and $\Phi x - x \in K$, which implies that \begin{equation} \label{e3.1} (\Phi x)(t) - x(t) \geq \lambda |\Phi x - x |_1 \geq 0 \quad \text{for all } t \in [0,\omega]. \end{equation} Moreover, for $t \in [0,\omega]$, we have \begin{equation} \label{e3.2} \begin{aligned} (\Phi x)(t) &= \int_{t}^{t+\omega}G(t,s)x(s)\Big[ \sum_{i=1}^n a_i(s)\int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + \sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\,\mathrm{d}\nu_j(\theta) \Big]\,\mathrm{d}s\\ &\leq \frac{1}{1-\lambda}r|x|_0\int_{0}^{\omega}\Big[\sum_{i=1}^n a_i(s) +\sum_{j=1}^m b_j(s)\Big]\,\mathrm{d}s\\ &= \frac{1}{1-\lambda}\Pi|x|_0 < \lambda|x|_0. \end{aligned} \end{equation} In view of \eqref{e3.1} and \eqref{e3.2}, we have \[ |x|_0\leq |\Phi x|_0<\lambda|x|_0<|x|_0, \] which is a contradiction. Finally, we prove that $\Phi x\nleq x$ for all $x\in K$, $|x|_1=R$ also holds. For this case, we only need to prove that \[ \Phi x \nless x \quad x \in K,\, |x|_1= R. \] Suppose, for the sake of contradiction, that there exists $x \in K$ and $|x|_1= R$ such that $\Phi x < x$. Thus $x - \Phi x \in K \setminus \{0\}$. Furthermore, for any $t \in [0,\omega]$, we have \begin{equation} \label{e3.3} x(t)-(\Phi x)(t)\geq \lambda|x-\Phi x|_1>0. \end{equation} In addition, for any $t \in [0,\omega]$, we find \begin{equation} \label{e3.4} \begin{aligned} (\Phi x)(t)&= \int_{t}^{t+\omega}G(t,s)x(s)\Big[ \sum_{i=1}^n a_i(s)\int_{-T_i}^0x(s+\theta)\,\mathrm{d}\mu_i(\theta)\\ &\quad + \sum_{j=1}^m b_j(s)\int_{-\hat{T}_j}^0x'(s+\theta)\, \mathrm{d}\nu_j(\theta)\Big]\,\mathrm{d}s\\ &\geq \frac{\lambda}{1-\lambda}|x|_0^2\int_{0}^{\omega}\Big[\lambda \sum_{i=1}^n a_i(s) - \sum_{j=1}^m b_j(s)\Big]\,\mathrm{d}s\\ &= \frac{\lambda^2}{1-\lambda} \Delta R^2 = R. \end{aligned} \end{equation} From \eqref{e3.3} and \eqref{e3.4}, we obtain $|x|>|\Phi x|_0 \geq R$, which is a contradiction. Therefore, conditions (i) and (ii) hold. By Lemma \ref{lem2.1}, we see that $\Phi$ has at least one nonzero fixed point in $K$. Therefore, \eqref{e1.2} has at least one positive $\omega$-periodic solution. The proof of Theorem \ref{thm3.1} is complete. \end{proof} We remark that from the proof of our results, if some (or all) $\hat{T}_j (j=1,2,\dots,n)$ are replaced by $\infty$ the conclusion of Theorem \ref{thm3.1} remains valid. As an example of \eqref{e1.1}, consider the equation \begin{equation} \label{e3.5} x'(t)= x(t)\Big[\frac{1+\cos t}{4\pi}-(5-2\sin t)\int_{-1}^0 x(t+\theta){\rm d} \theta-\frac{1-\sin t}{20}\int_{-1}^0x'(t+\theta)\,\mathrm{d}\theta\Big]. \end{equation} Obviously, \[ a(t)=\frac{1+\cos t}{4\pi},\quad a_1(t)=5-2\sin t,\quad b_1(t)=\frac{1-\sin t}{20}. \] Furthermore, we have \begin{gather*} \lambda=e^{-\frac{1}{2}},\,\max_{0\leq t\leq 2\pi}\{\lambda a_1(t)-b_1(t)\}>1.7>0,\\ \Delta=\int_{0}^{2\pi}[\lambda a_1(s)-b_1(s)]\,\mathrm{d}s =10\pi e^{-\frac{1}{2}}-\frac{1}{10}\pi > 18, \\ \max_{0\leq t\leq 2\pi}\{ a_1(t)+b_1(t)\}=\frac{71}{10}, \\ (1+a^m)\frac{\lambda^2}{1-\lambda}\Delta>16>\frac{71}{10}>\max_{0\leq t\leq 2\pi}\{ a_1(t)+b_1(t)\}, \\ \frac{1-\lambda}{\lambda^2\Delta}b_1^M<5.95\times 10^{-3}<1. \end{gather*} Hence, (H1)--(H3), (H5) hold and $a^M\leq 1$. According to Theorem \ref{thm3.1}, system \eqref{e3.5} has at least one positive $2\pi$-periodic solution. \begin{thebibliography}{00} \bibitem{c1} N. P. C\'ac, J. A. Gatica; \emph{Fixed point theorems for mappings in ordered Banach spaces}, J. Math. Anal. Appl. 71 (1979) 547-557. \bibitem{g1} R. E. Gaines and J. L. Mawhin; \emph{Coincidence degree, and nonlinear differential equations}, Lecture Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, 1977. \bibitem{g2} K. Gopalsamy, X. He, L.Wen; \emph{On a periodic neutral logistic equation}, Glasgow Math. J. 33 (1991) 281-286. \bibitem{g3} K. Gopalsamy, B. G. Zhang; \emph{On a neutral delay logistic equation}, Dynam. Stability Systems 2 (1988) 183-195. \bibitem{g4} D. Guo; \emph{Positive solutions of nonlinear operator equations and its applications to nonlinear integral equations}, Adv. Math. 13(1984) 294-310 (in Chinese). \bibitem{k1} Y. Kuang, A. Feldstein; \emph{Boundedness of solutions of a nonlinear nonautonomous neutral delay equation}, J. Math. Anal. Appl. 156 (1991) 293-304. \bibitem{k2} Y. Kuang; \emph{Delay Differential Equations with Applications in Population Dynamics}, Academic Press, New York, 1993. \bibitem{l1} S. Lu; \emph{On the existence of positive periodic solutions for neutral functional differential equation with multiple deviating arguments}, J. Math. Anal. Appl. 280 (2003) 321-333. \bibitem{l2} S. Lu, W. Ge; \emph{Existence of positive periodic solutions for neutral population model with multiple delays}, Appl. Math. Comput. 153 (2004) 885-902. \bibitem{p1} E. C. Pielou; \emph{Mathematical Ecology}, Wiley-Interscience, New York, 1977. \bibitem{y1} Z. Yang, J. Cao; \emph{Existence of periodic solutions in neutral state-dependent delays equations and models}, J. Comput. Appl. Math. 174 (2005) 179-199. \end{thebibliography} \end{document}