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EXPONENTIAL STABILITY OF SWITCHED LINEAR SYSTEMS
WITH TIME-VARYING DELAY

VU N. PHAT, SATIRACOO PAIROTE

Abstract. We use a Lyapunov-Krasovskii functional approach to establish
the exponential stability of linear systems with time-varying delay. Our delay-

dependent condition allows to compute simultaneously the two bounds that

characterize the exponential stability rate of the solution. A simple procedure
for constructing switching rule is also presented.

1. Introduction

As an important class of hybrid systems, switched system is a family of differen-
tial equations together with rules to switch between them. A switched system can
be described by a differential equation of the form

ẋ = fα(t, x),

where {fα(.) : α ∈ Ω}, is a family of functions that is parameterized by some index
set Ω, and α(·) ∈ Ω depending on the system state in each time is a switching
rule/signal. The set Ω is typically a finite set. Switched systems arise in many
practical models in manufacturing, communication networks, automotive engine
control, chemical processes, and so on; see for example [3, 8, 11]. During the previ-
ous decade, the stability problem of switched linear systems has attracted a lot of
attention (see,; e.g. [4, 7, 10] and the references therein). The main approach for
stability analysis relies on the use of Lyapunov-Krasovskii functionals and LMI ap-
proach for constructing common Lyapunov function [9]. Although many important
results have been obtained for switched linear systems, there are few results concern-
ing the stability of the systems with time delay. Under commutative assumption
on the system matrices, the authors of [5] showed that when all subsystems are
asymptotically stable, the switched system is asymptotically stable under arbitrary
switching rule. The paper [16] studied the asymptotic stability for switched lin-
ear systems with time delay, but the result was limited to symmetric systems. In
[6, 14], delay-dependent asymptotic stability conditions are extended to switched
linear discrete-time linear systems with time delay. The exponential stability prob-
lem was considered in [17] for switched linear systems with impulsive effects by
using matrix measure concept and in [18] for nonholonomic chained systems with
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strongly nonlinear input/state driven disturbances and drifts. In recent paper [2],
studying a switching system composed of a finite number of linear delay differen-
tial equations, it was shown that the asymptotic stability of this kind of switching
systems may be achieved by using a common Lyapunov function method switching
rule. There are some other results concerning asymptotic stability for switched lin-
ear systems with time delay, but we do not find any result on exponential stability
even for the switched systems without delay except [17, 18]. On the other hand, it
is worth noting that the existing stability conditions for time-delay systems must
be solved upon a grid on the parameter space, which results in testing a nonlinear
Riccati-like equation or a finite number of LMIs. In this case, the results using fi-
nite gridding points are unreliable and the numerical complexity of the tests grows
rapidly. Therefore, finding simple stability conditions for switched linear systems
with time-delay is of interest.

In this paper, we study the exponential stability of a class of switched linear
systems with time-varying delay. The system studied in this paper is time-varying
under a switching rule dependent on continuous system states. A delay-dependent
condition for the exponential stability are formulated in terms of a generalized
Lyapunov equation for linear systems with time-varying delay, which allows easily to
compute simultaneously the two bounds that characterize the exponential stability
rate of the solution. A simple procedure for constructing switching rule is presented.
The results obtained in this paper can be partly considered as extensions of existing
results for linear time-delay systems and for switched linear systems without time
delays.

The organization of this paper is as follows. Following the introduction and
the problem motivation, Section 2 presents the notation, definitions and auxiliary
propositions. The main result is given in Section 3 and followed by an numerical
example and conclusion.

2. Problem formulation

The following notations will be used throughout this paper. R+ denotes the set
of all non-negative real numbers; Rn denotes the n−finite-dimensional Euclidean
space, with the Euclidean norm ‖.‖ and scalar product xT y of two vectors x, y.
Rn×m denotes the set of all (n × m)−matrices; λmax(A)(λmin(A), resp.) denotes
the maximal number (the minimum number, resp.) of the real part of eigenvalues
of A; AT denotes the transpose of the matrix A; Q ≥ 0(Q > 0, resp.) means Q is
semi-positive definite (positive definite, resp.).

Consider a switched linear system with time-varying delay of the form

Σα

{
ẋ(t) = Aαx(t) + Dαx(t− h(t)), t ∈ R+,

x(t) = φ(t), t ∈ [−h, 0],
(2.1)

where x(t) ∈ Rn is the continuous trajectory of system, Aα, Dα ∈ Rn×n are given
constant matrices, φ(t) ∈ C([−h, 0], Rn) is the initial function with the norm ‖φ‖ =
sups∈[−h,0] ‖φ(s)‖. α(x) : Rn → Ω := {1, 2, . . . , N} is the switching rule, which is
a piece-wise constant function depending on the state in each time. A switching
rule is a rule which determines a switching sequence for a given switching system.
Moreover, α(x) = i implies that the system realization is chosen as [Ai, Bi], i =
1, 2, . . . , N . It is seen that the system (2.1) can be viewed as an linear autonomous
switched system in which the effective subsystem changes when the state x(t) hits
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predefined boundaries; i.e., the switching rule is dependent on the system trajectory.
The time-varying delay function h(t) satisfies the following assumption

0 ≤ h(t) ≤ h, h > 0, ḣ(t) ≤ µ < 1.

This assumption means that the time delay may change from time to time, but
the rate of changing is bounded. Also, due to the upper bound, the delay can not
increase as fast as the time itself. In fact, the function h(t) can be different for each
subsystem; i.e., it should be denoted by hi(t), but we assume hi(t) be the same
value in this paper for convenient formulation.

The exponential stability problem for switched linear system (2.1) is to construct
a switching rule that makes the system exponentially stable.

Definition 2.1. Switched linear system (2.1) is exponentially stable if there exists
switching rule α(.) such that every solution x(t, φ) of the system Σα satisfies the
condition

∃M > 0, δ > 0 : ‖x(t, φ)‖ ≤ Me−δt‖φ‖, ∀t ∈ R+.

The numbers N > 0 and δ > 0 are called the stability factor and decay rate of the
system.

Definition 2.2 ([13]). System of symmetric matrices {Li}, i = 1, 2, . . . , N , is said
to be strictly complete if for every 0 6= x ∈ Rn there is i ∈ {1, 2, . . . , N} such that
xT Lix < 0.

Let us define the sets

Ωi = {x ∈ Rn : xT Lix < 0}, i = 1, 2, . . . , N.

It is easy to show that the system {Li}, i = 1, 2, . . . , N , is strictly complete if and
only if ∪N

i=1Ωi = Rn \ {0}.

Remark 2.3. As shown in [12], a sufficient condition for the strict completeness
of the system {Li} is that there exist numbers τi ≥ 0, i = 1, 2, . . . , N , such that∑N

i=1 τi > 0 and
N∑

i=1

τiLi < 0,

and in the case if N = 2, then the above condition is also necessary for the strict
completeness.

Before presenting the main result, we recall the following well-known matrix
inequality and Lyapunov stability theorem for time delay systems.

Proposition 2.4. For any ε > 0, x, y ∈ Rn, we have

−2xT y ≤ ε−1xT x + εyT y.

Proposition 2.5 ([1]). Let xt := {x(t + s), s ∈ [−h, 0]}. Consider nonlinear delay
system

ẋ(t) = f(t, xt),

x(t) = φ(t),

f(t, 0) = 0, t ∈ R+.

If there exists a Lyapunov function V (t, xt) satisfying the following conditions:
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(i) There exists λ1 > 0, λ2 > 0 such that λ1‖x(t)‖2 ≤ V (t, xt) ≤ λ2‖xt‖2, for
all t ∈ R+,

(ii) V̇f (t, xt) := ∂V
∂t + ∂V

∂x f(t, xt) ≤ 0, for all solutions x(t) of the system,
then the solution x(t, φ) is bounded: There exists N > 0 such that ‖x(t, φ)‖ ≤ N‖φ‖,
for all t ∈ R+.

3. Main result

For given positive numbers µ, δ, h, ε we set

β = (1− µ)−1,

Li(P ) = AT
i P + PAi + ε−1e2δhDT

i PDi + (εβ + 2δ)P.

SP
i = {x ∈ Rn : xT Li(P )x < 0},

S̄P
1 = SP

1 , S̄P
i = SP

i \
i−1⋃
j=1

S̄P
j , i = 2, 3, . . . , N,

λmax(D) = max
i=1,2,...,N

λmax(DT
i Di),

M =

√
λmax(P )
λmin(P )

+
ε−1(e2δh − 1)λmax(P )λmax(D)

2δ
.

The main result of this paper is summarized in the following theorem.

Theorem 3.1. Switched linear system (2.1) is exponentially stable if there exist
positive numbers ε, δ and symmetric positive definite matrix P ∈ Rn×n such that
one of the following conditions holds

(i) The system of matrices {Li(P )}, i = 1, 2, . . . , N , is strictly complete.
(ii) There exists τi ≥ 0, i = 1, 2, . . . , N , with

∑N
i=1 τi > 0 and

N∑
i=1

τiLi(P ) < 0. (3.1)

The switching rule is chosen in case (i) as α(x(t)) = i whenever x(t) ∈ S̄i, and in
case (ii) as

α(x(t)) = arg min{xT (t)Li(P )x(t)}.
Moreover, the solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤ Me−δt‖φ‖, t ∈ R+.

In the case N = 2, the conditions (i) and (ii) are equivalent.

Proof. For δ > 0, we utilize the following state transformation y(t) = eδtx(t). The
system (2.1) is transformed into

ẏ(t) = Āαy(t) + eδh(t)Dαy(t− h(t)), t ∈ R+,

y(t) = eδtφ(t), t ∈ [−h, 0],
(3.2)

where Āα := Aα + δI. Assume that the condition (i) of the theorem holds. For
every i = 1, 2, . . . , N , we consider the Lyapunov-Krasovskii functional

V (t, yt) = 〈Py(t), y(t)〉+ ε−1e2δh

∫ t

t−h(t)

〈DT
i PDiy(s), y(s)〉ds. (3.3)
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It is easy to see that there are positive numbers λ1, λ2 such that

λ1‖y(t)‖2 ≤ V (t, yt) ≤ λ2‖yt‖2, ∀t ∈ R+.

The derivative along the trajectory of the system (3.2) is

V̇ (t, yt) = 2〈P ẏ(t), y(t)〉+ ε−1e2δh〈DT
i PDiy(t), y(t)〉

− ε−1eδh(1− ḣ(t))〈DT
i PDiy(t− h(t)), y(t− h(t))〉

≤ 〈(AT
i P + PAi + 2δP + ε−1eδhDT

i PDi)y(t), y(t)〉

+ 2e2δh(t)〈PDiy(t− h(t)), y(t)〉

− ε−1eδh(1− µ)〈DT
i PDiy(t− h(t)), y(t− h(t))〉.

(3.4)

Since P is a symmetric positive definite matrix, there is P̄ = P 1/2 such that P =
P̄T P̄ . Using Proposition 2.4, for any ξ > 0, we have

2eδh(t)〈PDiy(t− h(t)), y(t)〉

= 2yT (t)P̄T P̄ eδh(t)Diy(t− h(t))

≤ ξyT (t)P̄T P̄ y(t) + ξ−1e2δh(t)yT (t− h(t))DT
i P̄T P̄Diy(t− h(t)).

Taking ξ = εβ > 0, and since h(t) ≤ h, we obtain

2eδh(t)〈PDiy(t− h(t)), y(t)〉

≤ εβyT (t)Py(t) + ε−1(1− µ)e2δhyT (t− h(t))DT
i PDiy(t− h(t)).

Then from (3.4) it follows that

V̇ (t, yt)) ≤ 〈(AT
i P + PAi + ε−1e2δhDT

i PDi + (εβ + 2δ)P )y(t), y(t)〉
= yT (t)Li(P )y(t).

(3.5)

By the assumption, the system of matrices {Li(P )} is strictly complete. We have

N⋃
i=1

SP
i = Rn \ {0}. (3.6)

Based on the sets SP
i we constructing the sets S̄P

i as above and we can verify that

S̄P
i

⋂
S̄P

j = {0}, i 6= j, S̄P
i

⋃
S̄P

j = Rn \ {0}. (3.7)

We then construct the following switching rule: α(x(t)) = i, whenever x(t) ∈ S̄P
i

(this switching rule is well-defined due to the condition (3.7)). From the state
transformation y(t) = eδtx(t) and taking (3.5) into account we obtain

V̇ (t, yt) = yT (t)Lα(P )y(t) = e2δtxT (t)Lα(P )x(t) ≤ 0, ∀t ∈ R+, (3.8)

which implies that the solution y(t) of system (3.2), by Proposition 2.5, is bounded.
Returning to the state transformation of y(t) = eδtx(t) guarantees the exponentially
stability with the decay rate δ of the system (2.1). To define the stability factor
M , integrating both sides of (3.8) from 0 to t and using the expression of V (t, yt)
from (3.3) we have

〈Py(t), y(t)〉+ ε−1eδh

∫ t

t−h(t)

〈DT
i PDiy(s), y(s)〉ds ≤ V (y(0)).
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Since DT
i PDi > 0, and

λmin‖y(t)‖2 ≤ 〈Py(t), y(t)〉,

we have

λmin‖y(t)‖2 ≤ λmax(P )‖y(0)‖2 + ε−1e2δh

∫ 0

h(0)

〈DT
i PDiy(s), y(s)〉ds.

We have∫ 0

−h(0)

〈DT
i PDiy(s), y(s)〉ds ≤ λmax(P )λmax(D)‖φ‖2

∫ 0

−h(0)

e2δsds

=
λmax(P )λmax(D)

2δ
(1− e−2δh(0))‖φ‖2

≤ λmax(P )λmax(D)
2δ

(1− e−2δh)‖φ‖2,

we have

‖y(t)‖2 ≤ [
λmax(P )
λmin(P )

+
ε−1e2δhλmax(P )λmax(D)

2δ
(1− e−2δh)]‖φ‖2.

Therefore,
‖y(t)‖ ≤ M‖φ‖, ∀t ∈ R+,

where

M =

√
λmax(P )
λmin(P )

+
ε−1(e2δh − 1)λmax(P )λmax(D)

2δ
.

We now assume the condition (ii), then we have
N∑

i=1

τiLi(P ) < 0.

where τi ≥ 0, i = 1, 2, . . . , N ,
∑N

i=1 τi > 0. Since the numbers τi are non-negative
and

∑N
i=1 τi > 0, there is always a number ε > 0 such that for any nonzero y(t) we

have
N∑

i=1

τiy
T (t)Li(P )y(t) ≤ −εyT (t)y(t).

Therefore,
N∑

i=1

τi min
i=1,...,N

{yT (t)Li(P )y(t)} ≤
N∑

i=1

τiy
T (t)Li(P )y(t) ≤ −εyT (t)y(t). (3.9)

The Lyapunov-Krasovskii functional V (.) is defined by (3.3) and the switching rule
is designed as follows

α(x(t)) = arg min
i=1,...,N

{xT (t)Li(P )x(t)}.

Combining (3.5) and (3.9) gives

V̇ (t, yt)) ≤ −η‖y(t)‖2 ≤ 0, ∀t ∈ R+,

where η = ε(
∑N

i=1 τi)−1. This implies that all the solution y(t) of system (3.2) are
bounded. The proof is then completed by the same way as in the part (i). �
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Remark 3.2. Note that conditions (i) and (ii) involve linear Lyapunov-type matrix
inequality, which is easy to solve. The following simple procedure can be applied
to construct switching rule and define the stability factor and decay rate of the
system.
Step 1. Define the matrices Li(P ).
Step 2. Find the solution P of the generalized Lyapunov inequality (3.1).
Step 3. Construct the sets SP

i , and then S̄P
i , and verify the condition (3.6), (3.7).

Step 4. The switching signal α(.) is chosen as α(x) = i, whenever x ∈ S̄P
i or as

α(x(t)) = arg min{xT (t)Li(P )x(t)}.

Example 3.3. Consider the switched linear system defined by

ẋ(t) = Aix(t) + Dix(t− h(t)), i = 1, 2

where

(A1, D1) =
([

0.39 0.09
0.09 −1.49

]
,

[
0.39 0.03
0.03 −0.29

])
,

(A2, D2) =
([

−1.99 −0.13
−0.13 0.59

]
,

[
−0.09 −0.01
−0.01 0.19

])
,

h(t) = sin2(0.1t).

We have h = 1, ḣ(t) = 0.1 sin(0.2t) and then µ = 0.1. By choosing the positive
definite matrix P > 0 as

P =
[

1 0.1
0.1 1

]
and ε = 0.1, δ = 0.001, one can verify condition (3.1) with τ1 = τ2 = 0.5. The
switching regions are given as

S1 = {(x1, x2) : 2.468x2
1 − 0.002x1x2 − 2.015x2

2 < 0},
S2 = {(x1, x2) : 2.468x2

1 − 0.002x1x2 − 2.015x2
2 > 0}.

According to Theorem 3.1, the system with the switching rule α(x(t)) = i if x(t) ∈
Si is exponentially stable.

In this case, it can be checked that

(L1(P ), L2(P )) =
([

2.468 −0.001
−0.001 −2.015

]
,

[
−3.809 −0.416
−0.416 1.626

])
.

Moreover, the sum

τ1L1(P ) + τ2L2(P ) =
[
−0.6705 −0.2085
−0.2085 −0.1945

]
is negative definite; i.e. the first entry in the first row and the first column
−0.6705 < 0 is negative and the determinant of the matrix is positive. The sets S1

and S2 (without bar) are given as

S1 = {(x1, x2) : 2.468x2
1 − 0.002x1x2 − 2.015x2

2 < 0},
S2 = {(x1, x2) : −3.809x2

1 − 0.831x1x2 + 1.626x2
2 < 0}.

These sets are equivalent to

S1 = {(x1, x2) : (x2 + 1.107x1)(x2 − 1.106x1) > 0},
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Figure 1. Region S1 (left), and Region S2 (right)

and
S2 = {(x1, x2) : (x2 + 1.296x1)(x2 − 1.807x1) < 0};

see figure 3.3. Obviously, the union of these sets is equal to R2.

Example 3.4. Consider switched linear uncertain delay system (2.1) with any
initial function φ(t), where N = 2, h(t) = sin2 0.5t, and

A1 =
(

a1 0
0 a2

)
, A2 =

(
a3 0
0 a4

)
,

D1 =
(

1 1
1 1

)
, D2 =

(
e−2 e2

e2 e−2

)
,

where

a1 = −1.875e4 − 3, a2 = −3.75e4 − 3,

a3 = −0.125e8 − 0.3125e4 − 3.5, a4 = −2e8 − 5e4 − 3.5.

We have h = 1, and since ḣ(t) = 0.5 sin t, µ = 0.5, β = 2. Taking ε = 1, δ = 2 and

P =
(

0.4e−4 0
0 0.1e−4

)
,

we find

L1(P ) =
(
−1 0.5
0.5 −0.25

)
, L2(P ) =

(
−0.25 0.5
0.5 −1

)
.

Therefore,

SP
1 = {(x1, x2) ∈ R2 : x1 6= 0.5x2},

SP
2 = {(x1, x2) ∈ R2 : x2 6= 0.5x1}.

So
SP

1

⋃
SP

2 = R2 \ {0}.
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Therefore, taking

S̄
P
1 = SP

1 S̄
P
2 = {(x1, x2) ∈ R2 : x1 = 0.5x2, x1 6= 0, x2 6= 0},

we have
S̄

P
1 ∪ S̄

P
2 = R2 \ {0}, S̄

P
1 ∩ S̄

P
2 = ∅.

Then, the switching signal is chosen as

α(x) =

{
1, if x ∈ S̄

P
1 ,

2, if x ∈ S̄
P
2 .

To find the exponent factor M , computing

λmax(P ) = 0.4e−4, λmin(P ) = 0.1e−4,

λmax(DT
1 D1) = 4 λmax(DT

2 D2) = e4 + e−4 + 2,

we have M ≈ 3.085. Therefore , the solution of the system satisfies the inequality

‖x(t, φ)‖ ≤ 3.085‖φ‖e−2t, ∀t ≥ 0.

Conclusions. We have presented a delay-dependent condition for the exponen-
tial stability of switched linear systems with time-varying delay. The condition
is formulated in terms of a generalized Lyapunov equation, which allows easily to
compute simultaneously the two bounds that characterize the exponential stability
rate of the solution. A simple procedure for constructing switching rule has been
given.

Acknowledgments. This paper was supported by the Basic Program in Natu-
ral Sciences, Vietnam and Thailand Research Fund Grant. The authors would
like to thank anonymous referees for his/her valuable comments and remarks that
improved the paper.

References

[1] J. K. Hale and S. M. Lunel, Introduction to Functional Differential Equation. New York,

Springer, 1993.
[2] S. Kim, S. A. Campbell and X. Liu; Stability of a class of linear switching systems with

time-delay. IEEE Trans. Circ. and Syst., II, 53(2006), 384-393.

[3] D. Liberzon, Switching in Systems and Control. Boston, MA: Birkhauser, 2003.
[4] D. Liberzon and A. S. Morse. Basic problems in stability and design of switched systems.

IEEE Control Systems Magazine, 1999,19(5): 59-69.
[5] K. S. Narendra and V. Balakrishnan, A common Lyapunov function for stable LTI systems

with commuting matrices. IEEE Trans. AC, 39(1994), 2469-2471.

[6] V. N. Phat, Robust stability and stabilizability of uncertain linear hybrid systems with state
delays. IEEE Trans. on CAS II, 2005,52(1): 94-98.

[7] V. N. Phat and S. Pairote, Global stabilization of linear periodically time-varying switched

systems via matrix inequalities. J. Contr. Theory Appl., 1(2006), 26-31.
[8] A. V. Savkin and R. J. Evans. Hybrid Dynamical Systems : Controller and Sensor Switching

Problems. Boston: Birkhauser, 2002.

[9] R. N. Shorten and K. S. Narendra. On the stability and existence of common Lyapunov
functions for stable swithching systems Proc. of the 37th IEEE Conf. on D&C, Florida,

1988,12: 3723-3724.

[10] Z. Sun and S. S. Ge. Analysis and synthesis of switched linear control systems. Automatica,
41(2005), 181–195.

[11] Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design. Springer, London, 2005.

[12] F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions. Linear Algebra
Appl., 25(1979), 219–237.



10 S. PAIROTE, V. N. PHAT EJDE-2007/159

[13] D. P. Stanford , Stability for a multi-rate sampled-data system. SIAM J. Contr. Optim.,

17(1979), 390–399.

[14] G. Xie and L. Wang, Quadratic stability and stabilization of discrete-time switched systems
with state delay. Proc. IEEE Confer. on Decision and Control, Atlantis, December 2004,

3235-3240.

[15] C. Wang, L. X. Zhang, H. J. Gao and L. G. Wu, Delay-dependent stability and stabilization
of a class of linear switched time-varying delay systems. Proc. IEEE Mech. Learning Cyber.,

Guangzhou, August 2005, 917-922.

[16] G. Zhai, Y. Sun, X. Chen and A. Michel, Stability and L2 gain analysis for switched symmetric
systems with time delay. Proc. Amer. Contr. Confere., Colorado, USA, June, 2003, 2682-

2687.

[17] Zairong Xi, G. Feng, Z. P. Jiang and D. Cheng, A switching algorithm for global expopnential
stabilization of uncertain chained systems. IEEE Trans. Aut. Contr., 48(2003), 1793-1798.

[18] G. D. Zong and Y. Q. Wu, Exponential stability of a class of switched and hybrid systems.
Proc. IEEE on Contr. Aut. Robotics and Vision, Kuming, China, December 2004, 2244-2249.

Vu N. Phat

Institute of Mathematics, 18 Hoang Quoc Viet Road, Hanoi, Vietnam

E-mail address: vnphat@math.ac.vn

Satiracoo Pairote

Department of Mathematics, Mahidol Univerity, Bangkok 10400, Thailand
E-mail address: scpsc@mucc.mahidol.ac.th


	1. Introduction
	2. Problem formulation
	3. Main result
	Conclusions
	Acknowledgments

	References

