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ANTIPLANE FRICTIONAL CONTACT OF
ELECTRO-VISCOELASTIC CYLINDERS

MOHAMED DALAH, MIRCEA SOFONEA

Abstract. We study a mathematical model that describes the antiplane shear
deformation of a cylinder in frictional contact with a rigid foundation. The

material is assumed to be electro-viscoelastic, the process is quasistatic, friction

is modelled with Tresca’s law and the foundation is assumed to be electrically
conductive. We derive a variational formulation of the model which is in

a form of a system coupling a first order evolutionary variational inequality
for the displacement field with a time-dependent variational equation for the

electric potential field. Then, we prove the existence of a unique weak solution

to the model. The proof is based on arguments of evolutionary variational
inequalities and fixed points of operators. Also, we investigate the behavior of

the solution as the viscosity converges to zero and prove that it converges to

the solution of the corresponding electro-elastic antiplane contact problem.

1. Introduction

Antiplane shear deformations are one of the simplest classes of deformations
that solids can undergo: in antiplane shear of a cylindrical body, the displacement is
parallel to the generators of the cylinder and is independent of the axial coordinate.
For this reason, the antiplane problems play a useful role as pilot problems, allowing
for various aspects of solutions in Solid Mechanics to be examined in a particularly
simple setting. Considerable attention has been paid to the modelling of such kind
of problems, see for instance [9, 10, 11] and the references therein. In particular, the
review article [9] deals with modern developments for the antiplane shear model
involving linear and nonlinear solid materials, various constitutive settings and
applications. Antiplane frictional contact problems were used in geophysics in order
to describe pre-earthquake evolution of the regions of hight tectonic activity, see
for instance [5, 6] and the references therein. The mathematical analysis of models
for antiplane frictional contact problems can be found in [1, 8, 13, 14, 17].

Currently there is a considerable interest in frictional or frictionless contact prob-
lems involving piezoelectric materials, i.e. materials characterized by the coupling
between the mechanical and electrical properties. This coupling, in a piezoelectric
material, leads to the appearance of electric potential when mechanical stress is
present, and conversely, mechanical stress is generated when electric potential is
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applied. The first effect is used in mechanical sensors, and the reverse effect is
used in actuators, in engineering control equipments. Piezoelectric materials for
which the mechanical properties are elastic are also called electro-elastic materials
and piezoelectric materials for which the mechanical properties are viscoelastic are
also called electro-viscoelastic materials. General models for piezoelectric materials
can be found in [2, 12, 19]. Static frictional contact problems for electro-elastic
materials were studied in [3, 16, 18, 21], under the assumption that the founda-
tion is insulated. Contact problems with normal compliance for electro-viscoelastic
materials were investigated in [15, 22]. There, variational formulations of the prob-
lems were considered and their unique solvability was proved. Antiplane problems
for piezoelectric materials were considered in [4, 23, 24]. We rarely actually load
piezoelectric bodies so as to cause them to deform in antiplane shear; however,
the governing equations and boundary conditions for antiplane shear problems in-
volving piezoelectric materials are beautifully simple and the solution has many of
the features of the more general case and may help us to solve the more complex
problem too.

The present paper represents a continuation of [23]; there a model for the an-
tiplane contact of an electro-elastic cylinder was considered under the assumption
that the foundation is electrically conductive; the variational formulation of the
model was derived and the existence of a unique solution to the model was proved
by using arguments of evolutionary variational inequalities. Unlike [23], in the
present paper we deal with an antiplane contact problem for an electro-viscoelastic
cylinder, which leads to a new mathematical model, different to that presented in
[23]. Our interest is to describe a simple physical process in which both frictional
contact, viscosity and piezoelectric effects are involved, and to show that the result-
ing model leads to a well-posed mathematical problem. Taking into account the
frictional contact between a viscous piezoelectric body and an electrically conduc-
tive foundation in the study of an antiplane problem leads to a new and interesting
mathematical model which has the virtue of relative mathematical simplicity with-
out loss of essential physical relevance.

Our paper is structured as follows. In Section 2 we present the model of the
antiplane frictional contact of an electro-viscoelastic cylinder. In Section 3 we in-
troduce the notation, list the assumption on problem’s data, derive the variational
formulation of the problem and state our main existence and uniqueness result,
Theorem 3.1. The proof of the theorem is provided in Section 4; it is based on ar-
guments of evolutionary variational inequalities and fixed point. Finally, in Section
5 we investigate the behavior of the solution as the viscosity converges to zero and
prove that it converges to the solution of the corresponding electro-elastic antiplane
contact problem studied in [23].

2. The model

We consider a piezoelectric body B identified with a region in R3 it occupies in a
fixed and undistorted reference configuration. We assume that B is a cylinder with
generators parallel to the x3-axes with a cross-section which is a regular region Ω
in the x1, x2-plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder
is assumed to be sufficiently long so that the end effects in the axial direction are
negligible. Thus, B = Ω×(−∞,+∞). The cylinder is acted upon by body forces of
density f0 and has volume free electric charges of density q0. It is also constrained
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mechanically and electrically on the boundary. To describe the boundary condi-
tions, we denote by ∂Ω = Γ the boundary of Ω and we assume a partition of Γ
into three open disjoint parts Γ1, Γ2 and Γ3, on the one hand, and a partition of
Γ1 ∪ Γ2 into two open parts Γa and Γb, on the other hand. We assume that the
one-dimensional measure of Γ1 and Γa, denoted meas Γ1 and meas Γa, are posi-
tive. The cylinder is clamped on Γ1 × (−∞,+∞) and therefore the displacement
field vanishes there. Surface tractions of density f2 act on Γ2 × (−∞,+∞). We
also assume that the electrical potential vanishes on Γa × (−∞,+∞) and a surface
electrical charge of density qb is prescribed on Γb × (−∞,+∞). The cylinder is in
contact over Γ3 × (−∞,+∞) with a conductive obstacle, the so called foundation.
The contact is frictional and is modeled with Tresca’s law. We are interested in the
deformation of the cylinder on the time interval [0, T ].

Below in this paper the indices i and j denote components of vectors and tensors
and run from 1 to 3, summation over two repeated indices is implied, and the
index that follows a comma represents the partial derivative with respect to the
corresponding spatial variable; also, a dot above represents the time derivative. We
use S3 for the linear space of second order symmetric tensors on R3 or, equivalently,
the space of symmetric matrices of order 3, and “ · ”, ‖ · ‖ will represent the inner
products and the Euclidean norms on R3 and S3; we have:

u · v = uivi, ‖v‖ = (v · v)1/2 for all u = (ui), v = (vi) ∈ R3,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 for all σ = (σij), τ = (τij) ∈ S3.

We assume that

f0 = (0, 0, f0) with f0 = f0(x1, x2, t) : Ω× [0, T ] → R, (2.1)

f2 = (0, 0, f2) with f2 = f2(x1, x2, t) : Γ2 × [0, T ] → R, (2.2)

q0 = q0(x1, x2, t) : Ω× [0, T ] → R, (2.3)

q2 = q2(x1, x2, t) : Γb × [0, T ] → R. (2.4)

The forces (2.1), (2.2) and the electric charges (2.3), (2.4) would be expected to give
rise to deformations and to electric charges of the piezoelectric cylinder correspond-
ing to a displacement u and to an electric potential field ϕ which are independent
on x3 and have the form

u = (0, 0, u) with u = u(x1, x2, t) : Ω× [0, T ] → R, (2.5)

ϕ = ϕ(x1, x2, t) : Ω× [0, T ] → R. (2.6)

Such kind of deformation, associated to a displacement field of the form (2.5), is
called an antiplane shear, see for instance [9, 11] for details.

We denote by ε(u) = (εij(u)) the strain tensor and by σ = (σij) the stress
tensor; we also denote by E(ϕ) = (Ei(ϕ)) the electric field and by D = (Di) the
electric displacement field. Here and below, in order to simplify the notation, we
do not indicate the dependence of various functions on x1, x2, x3 or t and we recall
that

εij(u) =
1
2

(ui,j + uj,i), Ei(ϕ) = −ϕ,i .

The material’s behavior is modelled by an electro-viscoelastic constitutive law
of the form

σ = 2θε(u̇) + ζ tr ε(u̇) I + 2µε(u) + λ tr ε(u) I− E∗E(ϕ), (2.7)
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D = Eε(u) + βE(ϕ), (2.8)

where ζ and θ are viscosity coefficients, λ and µ are the Lamé coefficients, tr ε(u) =
εii(u), I is the unit tensor in R3, β is the electric permittivity constant, E represents
the third-order piezoelectric tensor and E∗ is its transpose. We assume that

Eε =

e(ε13 + ε31)
e(ε23 + ε32)

eε33

 ∀ε = (εij) ∈ S3, (2.9)

where e is a piezoelectric coefficient. We also assume that the coefficients θ, µ, β
and e depend on the spatial variables x1, x2, but are independent on the spatial
variable x3. Since Eε ·v = ε · E∗v for all ε ∈ S3, v ∈ R3, it follows from (2.9) that

E∗v =

 0 0 ev1
0 0 ev2
ev1 ev2 ev3

 ∀v = (vi) ∈ R3. (2.10)

In the antiplane context (2.5), (2.6), using the constitutive equations (2.7), (2.8)
and equalities (2.9), (2.10) it follows that the stress field and the electric displace-
ment field are given by

σ =

 0 0 θu̇,1 +µu,1 +eϕ,1
0 0 θu̇,2 +µu,2 +eϕ,2

θu̇,1 +µu,1 +eϕ,1 θu̇,2 µu,2 +eϕ,2 0

 , (2.11)

D =

eu,1−βϕ,1eu,2−βϕ,2
0

 . (2.12)

We assume that the process is mechanically quasistatic and electrically static and
therefore is governed by the equilibrium equations

Div σ + f0 = 0, Di,i − q0 = 0 in B × (0, T ),

where Div σ = (σij,j) represents the divergence of the tensor field σ. Taking into
account (2.11), (2.12), (2.5), (2.6), (2.1) and (2.3), the equilibrium equations above
reduce to the following scalar equations

div(θ∇u̇+ µ∇u+ e∇ϕ) + f0 = 0 in Ω× (0, T ), (2.13)

div(e∇u− β∇ϕ) = q0 in Ω× (0, T ). (2.14)

Here and below we use the notation

div τ = τ1,1 + τ1,2 for τ = (τ1(x1, x2, t), τ2(x1, x2, t)),

∇v = (v,1, v,2), ∂νv = v,1 ν1 + v,2 ν2 for v = v(x1, x2, t).

We now describe the boundary conditions. During the process the cylinder is
clamped on Γ1 × (−∞,+∞) and the electric potential vanish on Γ1 × (−∞,+∞);
thus, (2.5) and (2.6) imply that

u = 0 on Γ1 × (0, T ), (2.15)

ϕ = 0 on Γa × (0, T ). (2.16)

Let ν denote the unit normal on Γ× (−∞,+∞). We have

ν = (ν1, ν2, 0) with νi = νi(x1, x2) : Γ → R, i = 1, 2. (2.17)
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For a vector v we denote by vν and vτ its normal and tangential components on
the boundary, given by

vν = v · ν, vτ = v − vνν. (2.18)

For a given stress field σ we denote by σν and στ the normal and the tangential
components on the boundary, that is

σν = (σν) · ν, στ = σν − σνν. (2.19)

From (2.11), (2.12) and (2.17) we deduce that the Cauchy stress vector and the
normal component of the electric displacement field are given by

σν = (0, 0, θ∂ν u̇+ µ∂νu+ e∂νϕ), D · ν = e∂νu− β∂νϕ. (2.20)

Taking into account (2.2), (2.4) and (2.20), the traction condition on Γ2 ×
(−∞,∞) and the electric conditions on Γb × (−∞,∞) are given by

θ∂ν u̇+ µ∂νu+ e∂νϕ = f2 on Γ2 × (0, T ), (2.21)

e∂νu− β∂νϕ = qb on Γb × (0, T ). (2.22)

We now describe the frictional contact condition and the electric conditions on
Γ3×(−∞,+∞). First, from (2.5) and (2.17) we infer that the normal displacement
vanishes, uν = 0, which shows that the contact is bilateral, that is, the contact is
kept during all the process. Using now (2.5), (2.11), (2.17)–(2.19) we conclude that

uτ = (0, 0, u), στ = (0, 0, θ∂ν u̇+ µ∂νu+ e∂νϕ). (2.23)
We assume that the friction is invariant with respect to the x3 axis and is modeled
with Tresca’s friction law, that is

‖στ‖ ≤ g, στ = − g u̇τ

‖u̇τ‖
if u̇τ 6= 0 on Γ3 × (0, T ). (2.24)

Here g : Γ3 → R+ is a given function, the friction bound, and u̇τ represents the
tangential velocity on the contact boundary, see [7, 20] for details. Using now (2.23)
it is straightforward to see that the friction law (2.24) implies

|θ∂ν u̇+ µ∂νu+ e∂νϕ| ≤ g,

θ∂ν u̇+ µ∂νu+ e∂νϕ = −g u̇

|u̇|
if u̇ 6= 0

(2.25)

on Γ3 × (0, T ).
Next, since the foundation is electrically conductive and the contact is bilateral,

we assume that the normal component of the electric displacement field or the free
charge is proportional to the difference between the potential on the foundation
and the body’s surface. Thus,

D · ν = k (ϕ− ϕF ) on Γ3 × (0, T ),

where ϕF represents the electric potential of the foundation and k is the electric
conductivity coefficient. We use (2.20) and the previous equality to obtain

e∂νu− β∂νϕ = k (ϕ− ϕF ) on Γ3 × (0, T ). (2.26)

Finally, we prescribe the initial displacement,

u(0) = u0 in Ω, (2.27)

where u0 is a given function on Ω.
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We collect the above equations and conditions to obtain the following mathemat-
ical model which describes the antiplane shear of an electro-viscoelastic cylinder in
frictional contact with a conductive foundation.

Problem P. Find the displacement field u : Ω × [0, T ] → R and the electric
potential ϕ : Ω × [0, T ] → R such that (2.13)–(2.16), (2.21), (2.22), (2.25)–(2.27)
hold.

Note that once the displacement field u and the electric potential ϕ which solve
Problem P are known, then the stress tensor σ and the electric displacement field
D can be obtained by using the constitutive laws (2.11) and (2.12), respectively.

3. Variational formulation

We derive now the variational formulation of the Problem P. To this end we
introduce the function spaces

V = {v ∈ H1(Ω) : v = 0 on Γ1}, W = {ψ ∈ H1(Ω) : ψ = 0 on Γa}
where, here and below, we write w for the trace γw of a function w ∈ H1(Ω) on
Γ. Since meas Γ1 > 0 and meas Γa > 0, it is well known that V and W are real
Hilbert spaces with the inner products

(u, v)V =
∫

Ω

∇u · ∇v dx ∀u, v ∈ V, (ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx ∀ϕ, ψ ∈W.

Moreover, the associated norms

‖v‖V = ‖∇v‖L2(Ω)2 ∀v ∈ V, ‖ψ‖V = ‖∇ψ‖L2(Ω)2 ∀ψ ∈W (3.1)

are equivalent on V and W , respectively, with the usual norm ‖ · ‖H1(Ω). By
Sobolev’s trace theorem we deduce that there exist two positive constants cV > 0
and cW > 0 such that

‖v‖L2(Γ3) ≤ cV ‖v‖V ∀v ∈ V, ‖ψ‖L2(Γ3) ≤ cW ‖ψ‖W ∀ψ ∈W. (3.2)

For a real Banach space (X, ‖ · ‖X) we use the usual notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X) where 1 ≤ p ≤ ∞, k = 1, 2, . . . ; we also denote by
C([0, T ];X) and C1([0, T ];X) the spaces of continuous and continuously differen-
tiable functions on [0, T ] with values in X, with the respective norms

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

In the study of the Problem P we assume that the viscosity coefficient and the
electric permittivity coefficient satisfy

θ ∈ L∞(Ω) and there exists θ∗ > 0 such that θ(x) ≥ θ∗ a.e. x ∈ Ω, (3.3)

β ∈ L∞(Ω) and there exists β∗ > 0 such that β(x) ≥ β∗ a.e. x ∈ Ω. (3.4)

We also assume that the Lamé coefficient and the piezoelectric coefficient satisfy

µ ∈ L∞(Ω) and µ(x) > 0 a.e. x ∈ Ω, (3.5)

e ∈ L∞(Ω). (3.6)

The forces, tractions, volume and surface free charge densities have the regularity

f0 ∈W 1,2(0, T ;L2(Ω)), f2 ∈W 1,2(0, T ;L2(Γ2)), (3.7)
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q0 ∈W 1,2(0, T ;L2(Ω)), q2 ∈W 1,2(0, T ;L2(Γb)). (3.8)

The friction bound and the electric conductivity coefficient satisfy

g ∈ L2(Γ3) and g(x) ≥ 0 a.e. x ∈ Γ3, (3.9)

k ∈ L∞(Γ3) and k(x) ≥ 0 a.e. x ∈ Γ3. (3.10)

Finally, we assume that the electric potential of the foundation and the initial
displacement are such that

ϕF ∈W 1,2(0, T ;L2(Γ3)), (3.11)

u0 ∈ V. (3.12)

Next, we define the bilinear forms aθ : V × V → R, aµ : V × V → R, ae :
V ×W → R, a∗e : W × V → R, and aβ : W ×W → R, by equalities

aθ(u, v) =
∫

Ω

θ∇u · ∇v dx, (3.13)

aµ(u, v) =
∫

Ω

µ∇u · ∇v dx, (3.14)

ae(u, ϕ) =
∫

Ω

e∇u · ∇ϕdx = a∗e(ϕ, u), (3.15)

aβ(ϕ,ψ) =
∫

Ω

β∇ϕ · ∇ψ dx+
∫

Γ3

k ϕψ dx, (3.16)

for all u, v ∈ V , ϕ,ψ ∈W . Assumptions (3.3)–(3.6), (3.10) imply that the integrals
above are well defined and, using (3.1) and (3.2), it follows that the forms aθ, aµ,
ae, a∗e and aβ are continuous; moreover, the forms aθ, aµ and aβ are symmetric
and, in addition, the form aθ is V -elliptic and the form aβ is W -elliptic, since

aθ(v, v) ≥ θ∗‖v‖2
V ∀v ∈ V, (3.17)

aβ(ψ,ψ) ≥ β∗‖ψ‖2
W ∀ψ ∈W. (3.18)

We also define the mappings f : [0, T ] → V , q : [0, T ] → W and j : V → R,
respectively, by

(f(t), v)V =
∫

Ω

f0(t)v dx+
∫

Γ2

f2(t)v da, (3.19)

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γ2

qb(t)ψ da+
∫

Γ3

k ϕF (t)ψ da, (3.20)

j(v) =
∫

Γ3

g|v| da, (3.21)

for all v ∈ V , ψ ∈W and t ∈ [0, T ]. The definition of f and q are based on Riesz’s
representation theorem; moreover, it follows from assumptions by (3.7)–(3.10), that
the integrals above are well-defined and

f ∈W 1,2(0, T ;V ), (3.22)

q ∈W 1,2(0, T ;W ). (3.23)

Performing integration by parts and using notation (3.13)–(3.16), (3.19)–(3.21)
it is straightforward to derive the following variational formulation of Problem P.
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Problem PV . Find a displacement field u : [0, T ] → V and an electric potential
field ϕ : [0, T ] →W such that

aθ(u̇(t), v − u̇(t)) + aµ(u(t), v − u̇(t)) + a∗e(ϕ(t), v − u̇(t))

+ j(v)− j(u̇(t)) ≥ (f(t), v − u̇(t))V ∀v ∈ V, t ∈ [0, T ],
(3.24)

aβ(ϕ(t), ψ)− ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ], (3.25)

u(0) = u0. (3.26)

Our main existence and uniqueness result, which we state now and prove in the
next section, is the following.

Theorem 3.1. Assume that (3.3)–(3.12) hold. Then there exists a unique solution
of problem PV . Moreover, the solution satisfies

u ∈W 2,2(0, T ;V ), ϕ ∈W 1,2(0, T ;W ). (3.27)

A couple of functions (u, ϕ) which solves Problem PV is called a weak solution of
the electro-mechanical problem P. We conclude by Theorem 3.1 that the antiplane
contact problem P has a unique weak solution, provided that (3.3)–(3.12) hold.

4. Proof of Theorem 3.1

The proof is based on an abstract result for evolutionary variational inequalities
that we present in what follows. Let X be a real Hilbert space with the inner
product (·, ·)X and the associated norm ‖ · ‖X and consider the problem of finding
u : [0, T ] → X such that

a(u̇(t), v − u̇(t))X + b(u(t), v − u̇(t))X + j(v)− j(u̇(t))

≥ (h(t), v − u̇(t))X ∀v ∈ X, t ∈ [0, T ],
(4.1)

u(0) = u0. (4.2)

In the study of the Cauchy problem (4.1)–(4.2) we assume that:
a : X ×X → R is a bilinear symmetric form and
(a) there exists M > 0 such that |a(u, v)| ≤ M‖u‖X‖v‖X for all
u, v ∈ X.
(b) there exists m > 0 such that a(v, v) ≥ m‖v‖2

X for all v ∈ X.

(4.3)

b : X × X → R is a bilinear form and there exists M ′ > 0 such
that |b(u, v)| ≤M ′‖u‖X‖v‖X for all u, v ∈ X. (4.4)

j : X → R is a convex lower semicontinuous functional. (4.5)

h ∈ C([0, T ];X). (4.6)

u0 ∈ X. (4.7)

The following existence, uniqueness and regularity result represent a particular
case of a more general result proved in [7, p. 230–234].

Theorem 4.1. Let (4.3)–(4.7) hold. Then
(1) There exists a unique solution u ∈ C1([0, T ];X) of problem (4.1) and (4.2).
(2) If u1 and u2 are two solutions of (4.1) and (4.2) corresponding to the data
h1, h2 ∈ C([0, T ];X), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖X ≤ c (‖h1(t)− h2(t)‖X + ‖u1(t)− u2(t)‖X) ∀ t ∈ [0, T ]. (4.8)

(3) If, moreover, h ∈W 1,p(0, T ;X), for some p ∈ [1,∞], then the solution satisfies
u ∈W 2,p(0, T ;X).
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We turn now to the proof of Theorem 3.1 which will be carried out in several
steps. We assume in what follows that (3.3)–(3.12) hold and, everywhere below,
we denote by c various positive constants which are independent of time and whose
value may change from line to line. Let η ∈ C([0, T ], V ) be given and, in the first
step, consider the following intermediate variational problem.

Problem. P1
η . Find a displacement field uη : [0, T ] → V such that

aθ(u̇η(t), v − u̇η(t)) + aµ(uη(t), v − u̇η(t)) + (η(t), v − u̇η(t))V

+ j(v)− j(u̇η(t)) ≥ (f(t), v − u̇η(t))V ∀ v ∈ V, t ∈ [0, T ],
(4.9)

uη(0) = u0. (4.10)

We have the following result for P1
η .

Lemma 4.2. (1) There exists a unique solution uη ∈ C1([0, T ];V ) to the problem
(4.9)–(4.10).
(2) If u1 and u2 are two solutions of (4.9)–(4.10) corresponding to the data η1,
η2 ∈ C([0, T ];V ), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖V ≤ c (‖η1(t)− η2(t)‖V + ‖u1(t)− u2(t)‖V ) ∀ t ∈ [0, T ]. (4.11)

(3) If, moreover, η ∈W 1,2(0, T ;V ), then the solution satisfies uη ∈W 2,2(0, T ;V ).

Proof. We apply Theorem 4.1 on the space X = V with the inner product (·, ·)V

and the associated norm ‖ · ‖V , with the choice a = aθ, b = aµ, h = f − η. Clearly
aθ and aµ satisfy conditions (4.3) and (4.4), respectively, and using (3.9) it follows
from that the functional j satisfies condition (4.5). Moreover, using (3.22) and the
regularity η ∈ C([0, T ], V ) it is easy to see that f − η ∈ C([0, T ];V ) i.e. h satisfies
(4.6). Finally, we note that (4.7) is satisfied too and, if η ∈ W 1,2(0, T ;V ) then
h = f − η ∈W 1,2(0, T ;V ). Lemma 4.2 is a direct consequence of Theorem 4.1. �

In the next step we use the solution uη ∈ C1([0, T ], V ), obtained in Lemma 4.2,
to construct the following variational problem for the electrical potential.

Problem P2
η . Find an electrical potential ϕη : [0, T ] →W such that

aβ(ϕη(t), ψ)− ae(uη(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ]. (4.12)

The well-posedness of problem P2
η follows.

Lemma 4.3. There exists a unique solution ϕη ∈ W 1,2(0, T ;W ) which satisfies
(4.12). Moreover, if ϕη1 and ϕη2 are the solutions of (4.12) corresponding to η1,
η2 ∈ C([0, T ];V ) then, there exists c > 0, such that

‖ϕη1(t)− ϕη2(t)‖W ≤ c ‖uη1(t)− uη2(t)‖V ∀ t ∈ [0, T ]. (4.13)

Proof. Let t ∈ [0, T ]. We use the properties of the bilinear form aβ and the Lax-
Milgram lemma to see that there exists a unique element ϕη(t) ∈ W which solves
(4.12) at any moment t ∈ [0, T ]. Consider now t1, t2 ∈ [0, T ]; using (4.12) and
(3.18) we find that

β∗ ‖ϕ(t1)−ϕ(t2)‖2
W ≤ ‖e‖L∞(Ω)‖u(t1)−u(t2)‖V +‖q(t1)−q(t2)‖W ‖ϕ(t1)−ϕ(t2)‖W

which implies

‖ϕ(t1)− ϕ(t2)‖W ≤ c (‖u(t1)− u(t2)‖V + ‖q(t1)− q(t2)‖W ). (4.14)
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We note that regularity uη ∈ C1([0, T ];V ) combined with (3.23) and (4.14) imply
that ϕη ∈ W 1,2(0, T ;W ). Also, arguments similar to those used in the proof of
(4.14) lead to (4.13), which concludes the proof. �

We now use Riesz’s representation theorem to define the element Λη(t) ∈ V by
equality

(Λη(t), v)V = a∗e(ϕη(t), v) ∀v ∈ V, t ∈ [0, T ]. (4.15)

Clearly, for a given η ∈ C([0, T ];V ) the function t 7→ Λη(t) belongs to C([0, T ];V ).
In the newt step we show that the operator Λ : C([0, T ];V ) → C([0, T ];V ) a unique
fixed point.

Lemma 4.4. There exists a unique η̃ ∈W 1,2(0, T ;V ) such that Λη̃ = η̃.

Proof. Let η1, η2 ∈ C([0, T ];V ) and denote by ui and ϕi the functions uηi
and ϕηi

obtained in Lemmas 4.2 and 4.3, for i = 1, 2. Let t ∈ [0, T ]. Using (4.15) and (3.15)
we obtain

‖Λη1(t)− Λη2(t)‖V ≤ c ‖ϕ1(t)− ϕ2(t)‖W ,

and, keeping in mind (4.13), we find

‖Λη1(t)− Λη2(t)‖V ≤ c ‖u1(t)− u2(t)‖V . (4.16)

On the other hand, since ui(t) = u0 +
∫ t

0

u̇i(s) ds, we have

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s)‖V ds, (4.17)

and using this inequality in (4.11) yields

‖u̇1(t)− u̇2(t)‖V ≤ c
(
‖η1(t)− η2(t)‖V +

∫ t

0

‖u̇1(s)− u̇2(s)‖V ds
)
.

It follows now from a Gronwall-type argument that∫ t

0

‖u̇1(s)− u̇2(s)‖V ds ≤ c

∫ t

0

‖η1(t)− η2(t)‖V ds. (4.18)

Combining (4.16)–(4.18) leads to

‖Λη1(t)− Λη2(t)‖V ≤ c

∫ t

0

‖η1(t)− η2(t)‖V ds

and, reiterating this inequality n times results in

‖Λnη1(t)− Λnη2(t)‖V ≤ cn

n!
‖η1(t)− η2(t)‖C([0,T ];V ).

This last inequality shows that for a sufficiently large n the operator Λn is a con-
traction on the Banach space C([0, T ];V ) and, therefore, there exists a unique
element η̃ ∈ C([0, T ];V ) such that Λη̃ = η̃. It follows from Lemma 4.3 that
ϕη ∈ W 1,2(0, T ;W ) and, therefore, the definition (4.15) of the operator Λ com-
bined with the properties of the bilinear form a∗e implies that Λη̃ ∈ W 1,2(0, T ;V );
this regularity combined with equality Λη̃ = η̃ shows that η̃ ∈W 1,2(0, T ;V ) which
concludes the proof. �

We have now all the ingredients to provide the proof of the Theorem 3.1.
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Existence. Let η̃ ∈W 1,2(0, T ;V ) be the fixed point of the operator Λ, and let ueη,
ϕeη be the solutions of problems P1

η and P2
η , respectively, for η = η̃. It follows from

(4.15) that
(η̃(t), v)V = a∗e(ϕeη(t), v) ∀v ∈ V, t ∈ [0, T ]

and, therefore, (4.9), (4.10) and (4.12) imply that (ueη, ϕeη) is a solution of problem
PV . Regularity (3.27) of the solution follows from Lemmas 4.2 (3) and 4.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the
fixed point of the operator Λ. It can also be obtained by using arguments similar
as those used in [7, 20].

5. A convergence result

In this section we investigate the behavior of the weak solution of the antiplane
frictional problem as the viscosity converges to zero. In order to outline the depen-
dence on the viscosity coefficient θ, we reformulate Problem PV as follows.

Problem Pθ
V . Find a displacement field uθ : [0, T ] → V and an electric potential

field ϕθ : [0, T ] →W such that

aθ(u̇θ(t), v − u̇θ(t)) + aµ(uθ(t), v − u̇θ(t)) + a∗e(ϕθ(t), v − u̇θ(t))

+ j(v)− j(u̇θ(t)) ≥ (f(t), v − u̇θ(t))V ∀v ∈ V, t ∈ [0, T ],
(5.1)

aβ(ϕθ(t), ψ)− ae(uθ(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ], (5.2)

uθ(0) = u0. (5.3)

We also consider the inviscid problem associated to (5.1)–(5.3); i.e., the problem
obtained for θ = 0, which is formulated as follows.

Problem P0
V . Find a displacement field u : [0, T ] → V and an electric potential

field ϕ : [0, T ] →W such that

aµ(u(t), v − u̇(t)) + a∗e(ϕ(t), v − u̇(t)) + j(v)− j(u̇(t))

≥ (f(t), v − u̇(t))V ∀v ∈ V, a.e. t ∈ (0, T ),
(5.4)

aβ(ϕ(t), ψ)− ae(u(t), ψ) = (q(t), ψ)W ∀ψ ∈W, t ∈ [0, T ], (5.5)

u(0) = u0. (5.6)

Clearly, Problem P0
V represents the variational formulation of the model in Sec-

tion 2, in the case when the piezoelectric cylinder is assumed to be electro-elastic.
Assume in what follows that (3.3)–(3.12) hold. Then, it follows from Theorem 3.1

that Problem Pθ
V has a unique solution (uθ, ϕθ) which satisfies uθ ∈W 2,2(0, T ;V ),

ϕθ ∈ W 1,2(0, T ;W ). In order to state an existence and uniqueness result in the
study of Problem P0

V we need additional assumptions. First, we reinforce (3.5)
with assumption

µ ∈ L∞(Ω) and there exists µ∗ > 0 such that µ(x) ≥ µ∗ a.e. x ∈ Ω (5.7)

and note that in this case the bilinear form aµ is V -elliptic, since it safisfies

aµ(v, v) ≥ µ∗‖v‖2
V ∀v ∈ V. (5.8)

Next, we employ the W -ellipticity of the form aβ , (3.18), and the Lax-Milgram
lemma to see that there exists a unique element ϕ0 ∈W such that

aβ(ϕ0, ψ)− ae(u0, ψ) = (q(0), ψ)W ∀ψ ∈W. (5.9)
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We use the element ϕ0 defined above to introduce the condition

aµ(u0, v)V + a∗e(ϕ0, v) + j(v) ≥ (f(0), v)V ∀v ∈ V. (5.10)

This inequality represents a compatibility condition on the initial data that is nec-
essary in many quasistatic problems, see for instance [20]. Physically, it is needed so
as to guarantee that initially the state is in equilibrium, since otherwise the inertial
terms cannot be neglected and the problems become dynamic. It follows from The-
orem 4.1 in [23] that, under assumptions (3.3)–(3.12), (5.7) and (5.10), the electro-
elastic Problem P0

V has a unique solution (u, ϕ) with regularity u ∈W 1,2(0, T ;V ),
ϕ ∈W 1,2(0, T ;W ).

Consider now the assumption
1
θ∗
‖θ‖2

L∞(Ω) → 0. (5.11)

We have the following convergence result.

Theorem 5.1. Assume that (3.3)–(3.12), (5.7), (5.10) and (5.11) hold. Then the
solution (uθ, ϕθ) of Problem Pθ

V converges to the solution u of Problem P0
V , i.e.

‖uθ − u‖C([0,T ];V ) → 0, ‖ϕθ − ϕ‖C([0,T ];W ) → 0. (5.12)

Proof. The equalities and inequalities below hold for almost any t ∈ (0, T ). We take
v = u̇(t) in (5.1), v = u̇θ(t) in (5.4) and add the resulting inequalities to obtain

aθ(u̇θ(t), u̇(t)− u̇θ(t)) + aµ(uθ(t)− u(t), u̇(t)− u̇θ(t))

+ a∗e(ϕθ(t)− ϕ(t), u̇(t)− u̇θ(t)) ≥ 0.

This implies that
aθ(u̇θ(t)− u̇(t), u̇θ(t)− u̇(t)) + aµ(uθ(t)− u(t), u̇θ(t)− u̇(t))

≤ aθ(u̇(t), u̇(t)− u̇θ(t)) + a∗e(ϕθ(t)− ϕ(t), u̇(t)− u̇θ(t)).
(5.13)

We use now assumption (3.3) to see that

θ∗‖u̇θ(t)− u̇(t)‖2
V + aµ(uθ(t)− u(t), u̇θ(t)− u̇(t))

≤ ‖θ‖L∞(Ω) ‖u̇(t)‖V ‖u̇θ(t)− u̇(t)‖V + a∗e(ϕθ(t)− ϕ(t), u̇(t)− u̇θ(t))

and combine this inequality with the elementary inequality

‖θ‖L∞(Ω) ‖u̇(t)‖ ‖u̇θ(t)− u̇(t)‖V ≤
‖θ‖2

L∞(Ω)

4θ∗
‖u̇(t)‖2

V + θ∗ ‖u̇θ(t)− u̇(t)‖2
V .

As a result we obtain

aµ(uθ(t)− u(t), u̇θ(t)− u̇(t)) ≤
‖θ‖2

L∞(Ω)

4θ∗
‖u̇(t)‖2

V + a∗e(ϕθ(t)− ϕ(t), u̇(t)− u̇θ(t)).

(5.14)
On the other hand, we recall that aβ and ae are bilinear continuous forms and

the functions uθ, u, ϕθ, ϕ and q have the regularity W 1,2. Therefore, the two sides
of equalities (5.2) and (5.5) are derivable with respect to the time variable. We
derive (5.2) and (5.5), subtract the resulting equalities and use the definition of the
form a∗e to obtain

aβ(ϕ̇θ(t)− ϕ̇(t), ψ) = ae(u̇θ(t)− u̇(t), ψ) = a∗e(ψ, u̇θ(t)− u̇(t)) ∀ψ ∈W.
We take now ψ = ϕ(t)− ϕθ(t) in the previous equality to find that

a∗e(ϕθ(t)− ϕ(t), u̇(t)− u̇θ(t)) = aβ(ϕ̇θ(t)− ϕ̇(t), ϕ(t)− ϕθ(t)). (5.15)
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Next, we write (5.2) and (5.5) at t = 0, use the initial condition uθ(0) = u(0) = u0

and the unique solvability of the variational equation (5.9) to see that

ϕθ(0) = ϕ(0) = ϕ0. (5.16)

We now combine (5.14) and (5.15) to obtain

aµ(uθ(t)− u(t), u̇θ(t)− u̇(t)) ≤
‖θ‖2

L∞(Ω)

4θ∗
‖u̇(t)‖2

V + aβ(ϕ̇θ(t)− ϕ̇(t), ϕ(t)− ϕθ(t)).

Let s ∈ [0, T ]. We integrate the previous inequality on [0, s] with the initial condi-
tions (5.3), (5.6) and (5.16) and use (3.18), (5.8) to obtain

µ∗

2
‖uθ(s)− u(s)‖2

V ≤
‖θ‖2

L∞(Ω)

2θ∗

∫ s

0

‖u̇(t)‖2
V dt. (5.17)

Next, we write (5.2) and (5.5) with t = s, ψ = ϕθ(s) − ϕ(s) and subtract the
resulting equalities to obtain

aβ(ϕθ(s)− ϕ(s), ϕθ(s)− ϕ(s)) = ae(uθ(s)− u(s), ϕθ(s)− ϕ(s)).

Then, we use the coercivity of the form aβ , (3.18), and the continuity of the form
ae; as a result we find that

‖ϕθ(s)− ϕ(s)‖W ≤
‖e‖L∞(Ω)

β∗
‖uθ(s)− u(s)‖V . (5.18)

Assume now that (5.11) hold. Then (5.17) and (5.18) yield the convergence result
(5.12) which concludes the proof. �

Consider now the case of homogeneous viscosity, i.e. the case when assumption
(5.11) is replaced by the assumption

θ(x) = θ a.e. x ∈ Ω,

where θ is given positive constant. In this case ‖θ‖L∞(Ω) = θ, θ∗ = θ and the
convergence (5.11) is equivalent to θ → 0. Therefore, by (5.12) we conclude that
the weak solution to the antiplane electro-viscoelastic problem with Tresca’s friction
law may be approached by the weak solution to the antiplane electro-elastic problem
with Tresca’s friction law, as the viscosity is small enough. From mechanical point
of view this convergence result shows that the electro-elasticity with friction may
be considered as a limit case of electro-viscoelasticity with friction as the viscosity
decreases.
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