\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 167, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/167\hfil Streaming semigroups] {New approach to streaming semigroups with dissipative boundary conditions} \author[M. Boulanouar\hfil EJDE-2007/167\hfilneg] {Mohamed Boulanouar} \address{Mohamed Boulanouar \newline LMCM, University of Poitiers, 22 rue des Canadiens, Poitiers, France} \email{boulanouar@free.fr} \thanks{Submitted September 6, 2007. Published December 3, 2007.} \subjclass[2000]{47D06} \keywords{Streaming operator; general boundary conditions; semigroup} \begin{abstract} This paper concerns the generation of a $C_0$-semigroup by a streaming operator with general dissipative boundary conditions. Here, we give a third approach based on the construction of the generated semigroup without using the Hille-Yosida's Theorem. The first approach, based on the Hille-Yosida's Theorem, was given by Dautray \cite{Dautray}, Protopopescu \cite{Protopopescu} and Voigt \cite{Voigt}. The second approach, based on the characteristic method, was given by Beals \cite{Beals} and Protopopescu \cite{Protopopescu}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{proposition}[theorem]{Proposition} \newcommand{\abs}[1]{|#1|} \newcommand{\norm}[1]{\|#1\|} \section{Introduction} In this paper, we are concerned by generation Theorem and the explicit expression of the generated semigroup of the streaming operator $T_K$ defined by \begin{equation}\label{EQUATION:a} \begin{gathered} T_K\varphi(x,v)=-v\cdot\nabla_x\varphi(x,v), \quad \text{on the domain}\\ D(T_K)=\{\varphi\in W_-^p(\Omega): \gamma_-\varphi=K\gamma_+\varphi\} \end{gathered} \end{equation} where $(x,v)\in \Omega=X\times V$ with $X\subset \mathbb{R}^n$ is a smoothly bounded open subset and $d\mu$ is a Radon measure on $\mathbb{R}^n$ with support $V$. The traces $\gamma_+\varphi=\varphi_{\vert\Gamma_+}$ and $\gamma_-\varphi=\varphi_{\vert\Gamma_-}$ present respectively the outgoing and the incoming particles fluxes and $K$ is a bounded linear operator between the traces spaces $L^p(\Gamma_+)$ and $L^p(\Gamma_-)$ (see the next section for more explanations). In the phase space $\Omega=X\times V$, the function $\varphi(x,v)$ presents the density of all particles (neutrons, photons, molecules of gas,\dots) having, at the time $t=0$, the position $x\in X$ with the directional velocity $v\in V$. The boundary conditions $\gamma_-\varphi=K\gamma_+\varphi$ included in the domain $D(T_K)$ generalize naturally all well-known boundary conditions such as (vacuum, reflection, specular, periodic,\dots). For the convenience of reader and more explanations, we refer for instance to \cite{Beals}, \cite[Chapter XI and XII]{Protopopescu}, \cite[Chapter 21]{Dautray} and \cite{Voigt}. The existence of a strongly continuous semigroup generated by the streaming operator has been investigated by several authors and several important results have been cleared. When $\norm{K}<1$, the first approach, based on the characteristic method, has been used in \cite{Beals} and \cite[Theorem 4.3, p.386]{Protopopescu}. For the same case (i.e. $\norm{K}<1$), the second approach, based on the Hille-Yosida's Theorem, has been used in \cite[Theorem 2.2, p.410]{Protopopescu} \cite[Theorem 3, p.1118]{Dautray} and \cite[Theorem 4.3, p.66]{Voigt}. The motivation, of the present work, is to give the third approach when $\|K\|<1$ without using the Hille-Yosida's Theorem or characteristic method. This approach is concerned by two steps. The first one is devoted to the construction of a $C_0$-semigroup given in the Proposition \ref{Proposition3.1}. In the second step, we show that $T_K$ given by the relation \eqref{EQUATION:a} is the infinitesimal generator of this semigroup in the Theorem \ref{THEOREM4.1}. To obtain our objective, we use our technics successfully applied in \cite{Boulanouar3}\cite{Boulanouar4}. We point out that the present work is new and gives the explicit expression of the generated semigroup and all of this result doesn't hold for the case $\|K\|\geq1$. In \cite{Boulanouar2}, we give another and different treatment for the last case (i.e., $\|K\|\geq1$). \section{Setting of the problem} We consider the Banach space $L^p(\Omega)$ ($1\leq p<\infty$) with its natural norm \begin{equation}\label{e:NORME1} \norm{\varphi}_p= \Big[\int_{\Omega}\abs{\varphi(x,v)}^pdxd\mu\Big]^{1/p}, \end{equation} where $\Omega=X\times V$ with $X\subset \mathbb{R}^n$ be a smoothly bounded open subset and $d\mu$ be a Radon measure on $\mathbb{R}^n$ with support $V$. We also consider the partial Sobolev space $$ W^p(\Omega) =\big\{\varphi\in L^p(\Omega),\;\; v\cdot\nabla_x\varphi\in L^p(\Omega) \big\}, $$ with the norm $\norm{\varphi}_{W^p(\Omega )}= \big[\norm{\varphi}_p^p+\norm{v\cdot\nabla_x\varphi}_p^p \big]^{1/p}$. We set $n(x)$ the outer unit normal at $x\in\partial X$, where $\partial X$ is the boundary of $X$ equipped with the measure of surface $d\gamma$. We denote \begin{align*} \Gamma\;&=\partial X\times V,\\ \Gamma_0&=\{(x,v)\in\Gamma,\;\; v\cdot n(x)=0\},\\ \Gamma_+&=\{(x,v)\in\Gamma,\;\; v\cdot n(x)>0\},\\ \Gamma_-&=\{(x,v)\in\Gamma,\;\; v\cdot n(x)<0\},\\ \end{align*} and suppose that $d\gamma(\Gamma_0)=0$. For $(x,v)\in \Omega $, the time which a particle starting at $x$ with velocity $-v$ needs until it reaches the boundary $\partial X$ of $X$ is denoted by $$ t(x,v)=\inf\{t>0: x-tv\not \in X\}. $$ Similarly, if $(x,v)\in \Gamma_+$ we set $$ \tau(x,v)=\inf\{t>0: x-tv\not \in X\}. $$ We also consider the trace spaces $L^p(\Gamma_{\pm})$ equipped with the norms \begin{equation*}\label{} \norm{\varphi}_{L^p(\Gamma_{\pm})}= \Big[\int_{\Gamma_{\pm}}\abs{\varphi(x,v)}^pd\xi\Big]^{1/p}, \end{equation*} where $d\xi=\abs{v\cdot n(x)}d\gamma d\mu$. In this context we define the trace applications by $$\gamma_\pm\;\; :\;\; \varphi\to \varphi\vert_{\Gamma_\pm}, $$ and the Banach spaces \begin{gather*} W^p_-(\Omega)=\{ \varphi\in W^p(\Omega),\;\;\gamma_-\varphi\in L^p(\Gamma_-)\}\\ W^p_+(\Omega)=\{ \varphi\in W^p(\Omega),\;\;\gamma_+\varphi\in L^p(\Gamma_+)\}. \end{gather*} Note that, by \cite{Cessenat1}, \cite{Cessenat2}, we have $W^p_-(\Omega)=W^p_+(\Omega)$. Finally, we consider the boundary operator \begin{equation}\label{e:K} K\in\mathcal{L}(L^p(\Gamma_{+}),\;\; L^p(\Gamma_{-})), \end{equation} and we set $\norm{K}:=\norm{K}_{\mathcal{L}(L^p(\Gamma_{+}),L^p(\Gamma_{-}))}$ for the rest of this article. \begin{lemma}[{\cite[Theorem 2, pp.1087]{Dautray}}]\label{LEMMA2.1} The operator $T_0$ defined by \begin{equation}\label{T0:a} \begin{gathered} T_0\varphi(x,v)=-v\cdot\nabla_x\varphi(x,v), \quad \text{on the domain}\\ D(T_0)=\{\varphi\in W^p(\Omega),\;\;\gamma_-\varphi=0\} \end{gathered} \end{equation} generates, on $L^p(\Omega )$, the $C_0$-semigroup $\{U_0(t)\}_{t\geq0}$ of contractions given by \begin{equation*} U_0(t)\varphi(x,v)= \chi(t-t(x,v))\varphi(x-tv,v), \end{equation*} where \begin{equation}\label{LEMMA2.1:a} \chi(t-t(x,v)) =\begin{cases} 1&\text{if } t-t(x,v)\leq0,\\ 0& \text{otherwise}. \end{cases} \end{equation} \end{lemma} We complete this section by the following Lemma that we will need later. \begin{lemma}\label{LEM2.2} The following applications are contunous: \begin{enumerate} \item $\gamma_+ : D(T_0)\to L^p(\Gamma_+)$; \item $\gamma_+(\lambda-T_0)^{-1} : L^p(\Omega)\to L^p(\Gamma_+)$, for all $\lambda>0$; \item $t\geq0\to\gamma_+U_0(t)\varphi\in L^p(\Gamma_+)$, for all $\varphi\in D(T_0)$. \end{enumerate} \end{lemma} \begin{proof} (1). For all $\varphi\in D(T_0)$, we have $\gamma_-\varphi=0\in L^p(\Gamma_-)$ and thus the Green's formula holds on $D(T_0)$. Using the relation \begin{equation}\label{LEMMA3.1:xx} \mathop{\rm sgn} u\abs{u}^{p-1}v\cdot\nabla_xu=\frac{1}{p}v\cdot\nabla_x\abs{u}^p, \end{equation} we obtain \begin{equation}\label{LEM2.2:aa} \begin{aligned} -\int_\Omega \left[\mathop{\rm sgn}\varphi\abs{\varphi}^{p-1}T_0\varphi\right](x,v)dxd\mu &=\frac{1}{p}\int_{ X\times V} v\cdot\nabla_x(\abs{\varphi}^p)(x,v)dxd\mu\\ &=\frac{1}{p}\int_{\Gamma_+} \abs{\gamma_+\varphi(x,v)}^pd\xi -\frac{1}{p}\int_{\Gamma-} \abs{\gamma_-\varphi(x,v)}^pd\xi\\ &=\frac{1}{p}\norm{\gamma_+\varphi}_{L^p(\Gamma_+)}^p, \end{aligned} \end{equation} which implies, by H\"{o}lder's inequality, that \begin{align*} \norm{\gamma_+\varphi}_{L^p(\Gamma_+)}^p &\leq p\int_\Omega\abs{\varphi(x,v)}^{p-1}\abs{T_0\varphi(x,v)}dxd\mu\\ &\leq p\Big[\int_\Omega\abs{\varphi(x,v)}^{q(p-1)}dxd\mu\Big]^{\frac{1}{q}} \Big[\int_\Omega\abs{T_0\varphi(x,v)}^pdxd\mu\Big]^{1/p}\\ &\leq p\norm{\varphi}_p^{p/q}\norm{T_0\varphi}_p \end{align*} where $q\geq1$ is the conjugate of $p\geq1$ (i.e. $p^{-1}+q^{-1}=1$). Now, the Young's formula gives us \begin{equation*} \norm{\gamma_+\varphi}_{L^p(\Gamma_+)}^p\leq p\big[\frac{1}{q}\norm{\varphi}_p^p +\frac{1}{p}\norm{T_0\varphi}_p^p\big] \leq \max\{\frac{p}{q},1\}\norm{\varphi}_{D(T_0)}^p \end{equation*} which prove the continuity. \noindent (2). Let $\lambda>0$. We know from the previous Lemma that, for all $g\in L^p(\Omega)$, the function $\varphi=(\lambda-T_0)^{-1}g\in D(T_0)$ is the unique solution of the equation $\lambda\varphi=T_0\varphi+g$. Multiplying this last equation by $\mathop{\rm sgn}\varphi\abs{\varphi}^{p-1}$ and using the relation \eqref{LEMMA3.1:xx} we obtain \begin{align*} \lambda\int_\Omega\abs{\varphi}^p(x,v)dxd\mu &=\int_\Omega \big[\mathop{\rm sgn}\varphi\abs{\varphi}^{p-1}T_0\varphi\big](x,v)dxd\mu\\ &\quad +\int_\Omega \big[\mathop{\rm sgn}\varphi\abs{\varphi}^{p-1}\big](x,v)g(x,v)dxd\mu \end{align*} which implies, by the relation \eqref{LEM2.2:aa}, that \begin{equation*} \lambda\norm{\varphi}_p^p= -\frac{1}{p}\norm{\gamma_+\varphi}_{L^p(\Gamma_+)}^p +\int_\Omega \big[\mathop{\rm sgn}\varphi\abs{\varphi}^{p-1}g\big](x,v)g(x,v)dxd\mu \end{equation*} and therefore \begin{equation*} \norm{\gamma_+\varphi}_{L^p(\Gamma_+)}^p \leq p\int_\Omega \abs{\varphi}^{p-1}(x,v)\abs{g}(x,v)dxd\mu. \end{equation*} The H\"{o}der's inequality and $\norm{\varphi}_p=\norm{(\lambda-T_0)^{-1}g}_p\leq(\norm{g}_p/\lambda)$ which follows from the contractiveness of the semigroup $\{U_0(t)\}_{t\geq0}$ in the previous Lemma, infer that \begin{equation*} \norm{\gamma_+\varphi}_{L^p(\Gamma_+)}^p \leq p\norm{\varphi}_p^\frac{p}{q}\norm{g}_p \leq \frac{p}{\lambda^\frac{p}{q}}\norm{g}_p^\frac{p}{q}\norm{g}_p =\frac{p}{\lambda^\frac{p}{q}}\norm{g}_p^p. \end{equation*} Thus \begin{equation*} \norm{\gamma_+(\lambda-T_0)^{-1}g}_{L^p(\Gamma_+)} \leq\big[\frac{p}{\lambda^\frac{p}{q}}\big]^{1/p}\norm{g}_p \end{equation*} for all $g\in L^p(\Omega)$. The second statement is proved. \noindent (3). Let $h>0$. For all $\varphi\in D(T_0)$ we have \begin{align*} \norm{U_0(h)\varphi-\varphi}_{D(T_0)}&= \left[\norm{U_0(h)\varphi-\varphi}_p^p+ \norm{T_0\left[U_0(h)\varphi-\varphi\right]}_p^p\right]^{1/p}\\ &=\left[\norm{U_0(h)\varphi-\varphi}_p^p+ \norm{U_0(h)T_0\varphi-T_0\varphi}_p^p\right]^{1/p}\\ \end{align*} which implies $$ \lim_{h\searrow0}\norm{U_0(h)\varphi-\varphi}_{D(T_0)}=0 $$ and therefore the continuity at $t=0_+$ follows. Now, the continuity at $t>0$ follows from the previous relation and the fact that $\{U_0(t)\}_{t\geq0}$ is a semigroup (i.e., $U_0(t+s)=U_0(t)U_0(s)$). \end{proof} \section{Construction of the semigroup} In this section we give the expression of the generated semigroup $\{U_K(t)\}_{t\geq0}$ only for the case $\|K\|<1$. In order to show the proposition \ref{Proposition3.1} which is the main result of this section, we are going to show some preparatory Lemmas. \begin{lemma} The Cauchy's problem \begin{equation} \begin{gathered} \frac{du}{dt}+v\cdot\nabla_x u=0,\quad (t,x,v)\in(0,\infty)\times \Omega ;\\ \gamma_-u=f_-\in L^p(\mathbb{R}_+,L^p(\Gamma_-));\\ u(0)=f_0\in L^p(\Omega), \end{gathered} \label{Pff0} %\leqno\text{\rm P($f_-,f_0$)} \end{equation} admits an unique solution $u=u(t,x,v)=u(t)(x,v)$. Furthermore, for all $t\geq0$, we have \begin{equation}\label{LEM3.1:a} \norm{u(t)}_p^p+ \int_0^t\norm{\gamma_+u(s)}_{L^p(\Gamma_+)}^pds =\int_0^t\norm{f_-(s)}_{L^p(\Gamma_-)}^pds+\norm{f_0}_p^p. \end{equation} \end{lemma} \begin{proof} Let $f_-\in L^p(\mathbb{R}_+,L^p(\Gamma_-))$ and $f_0\in L^p(\Omega)$. First. The existence of the solutions $u$ of the Cauchy's problem \eqref{Pff0} is guaranteed by \cite[pp.1124]{Dautray} and it is given by \begin{equation}\label{LEMMA3.2:dd} u(t,x,v)=f_-(t-t(x,v),x-t(x,v)v,v)+U_0(t)\varphi(x,v). \end{equation} Next. If $u$ and $u'$ are two solution of the Cauchy's problem \eqref{Pff0}, then $w=u-u'$ is solution of the Cauchy's problem \eqref{Pff0} with $f_-=0,f_0=0$ which implies that $w=0$, by the relation \eqref{LEM3.1:a}, and therefore $u=u'$. Multiplying the first equation of the Cauchy's problem \eqref{Pff0} by $\mathop{\rm sgn} u\abs{u}^{p-1}$, using the relation \eqref{LEMMA3.1:xx} and integrating on $\Omega$, we obtain \begin{align*} \frac{1}{p}\frac{d\norm{u(t)}_p^p}{dt} &=\frac{1}{p}\int_{\Gamma_-}\abs{\gamma_-u(t,x,v)}^pd\xi -\frac{1}{p}\int_{\Gamma_+}\abs{\gamma_+u(t,x,v)}^pd\xi\\ &=\frac{1}{p}\int_{\Gamma_-}\abs{f_-(t,x,v)}^pd\xi -\frac{1}{p}\int_{\Gamma_+}\abs{\gamma_+u(t,x,v)}^pd\xi\\ &=\frac{1}{p}\norm{f_-(t)}_{L^p(\Gamma_-)}^p- \frac{1}{p}\norm{\gamma_+u(t)}_{L^p(\Gamma_+)}^p \end{align*} which implies, by integration with respect to $t$, that \begin{equation*} \norm{u(t)}_p^p-\norm{f_0}_p^p= \int_0^t\norm{f_-(s)}_{L^p(\Gamma_-)}^pds- \int_0^t\norm{\gamma_+u(s)}_{L^p(\Gamma_+)}^pds \end{equation*} and completes the proof. \end{proof} \begin{remark} \rm In the sequel, we use the fact that all expression on the form of the relation \eqref{LEMMA3.2:dd} is automatically solution of the Cauchy's problem \eqref{Pff0}. In the sequel, when it is necessary, we implicitly define by zero all function outside their domain (for instance $f_\varphi(\cdot)$ in the next Lemma or the the operator-value functions $A_K(\cdot)$ in the Lemma \ref{LEMMA3.3}) \end{remark} \begin{lemma}\label{LEMMA3.2} Let $\|K\|<1$. For all $\varphi\in L^p(\Omega)$, the equation \begin{equation}\label{LEMMA3.2:a} f(t)=V_K(t)\varphi+H_Kf(t), \end{equation} has an unique solution $f_\varphi\in L^p(\mathbb{R}_+, L^p(\Gamma_-))$, where \begin{gather}\label{LEMMA3.2:b} V_K(t)\varphi=K\left[\gamma_+U_0(t)\varphi\right],\\ \label{LEMMA3.2:c} H_Kf(t,x,v)= K\left[\gamma_+u(t)\right](x,v), \end{gather} with \begin{gather}\label{LEMMA3.2:d} u(t,x,v)=\xi(t-t(x,v))f(t-t(x,v),x-t(x,v)v,v), \\ \xi(t-t(x,v))=1-\chi(t-t(x,v)) =\begin{cases} 1& \text{if } t-t(x,v)\geq0,\\ 0 &\text{otherwise}. \end{cases} \end{gather} where $\chi$ is given by \eqref{LEMMA2.1:a}. Furthermore, the application \begin{equation}\label{LEMMA3.2:f} \varphi\in L^p(\Omega)\to f_\varphi\in L^p(\mathbb{R}_+,L^p(\Gamma_-)) \end{equation} is linear and bounded satisfying \begin{equation}\label{LEMMA3.2:e} \norm{f_\varphi}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}\leq \frac{\norm{K}}{(1-\norm{K})}\norm{\varphi}_p. \end{equation} \end{lemma} \begin{proof} Let $\varphi\in L^p(\Omega)$. Using the boundedness of $K$ we get that \begin{align*} \norm{V_K(\cdot)\varphi}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}^p&= \lim_{t\to\infty}\int_0^t\norm{V_K(s)\varphi}_{L^p(\Gamma_-)}^pds\\ &=\lim_{t\to\infty}\int_0^t \norm{K\left[\gamma_+U_0(s)\varphi\right]}_{L^p(\Gamma_-)}^pds\\ &\leq\norm{K}^p\lim_{t\to\infty}\int_0^t \norm{\gamma_+U_0(s)\varphi}_{L^p(\Gamma_+)}^pds. \end{align*} As the function $u(t,x,v)=U_0(t)\varphi(x,v)$ is solution of Cauchy's problem \eqref{Pff0} with $f_-=0,f_0=\varphi$, then the relation \eqref{LEM3.1:a} infers that \begin{equation}\label{LEMMA3.2:aa} \norm{V_K(\cdot)\varphi}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))} \leq\norm{K}\norm{\varphi}_p \end{equation} and therefore $V_K(\cdot)\varphi\in L^p(\mathbb{R}_+, L^p(\Gamma_-))$. Let $f\in L^p(\mathbb{R}_+, L^p(\Gamma_-))$. Using the boundedness of $K$, we get \begin{align*} \norm{H_Kf}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}^p&= \lim_{t\to\infty}\int_0^t\norm{H_Kf(s)}_p^pds\\ &=\lim_{t\to\infty}\int_0^t \norm{K\left[\gamma_+u(s)\right]}_{L^p(\Gamma_-)}^pds\\ &\leq\norm{K}^p\lim_{t\to\infty}\int_0^t\norm{\gamma_+u(s)}_{L^p(\Gamma_+)}^pds. \end{align*} As $u=u(t,x,v)$ given by the relation \eqref{LEMMA3.2:d} is solution of Cauchy's problem \eqref{Pff0} with $f_-=f,f_0=0$, then the relation \eqref{LEM3.1:a} infers that \[ \norm{H_Kf}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}^p \leq\norm{K}^p\lim_{t\to\infty}\int_0^t\norm{f(s)}_{L^p(\Gamma_-)}^pds \leq\norm{K}^p\norm{f}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}^p. \] Thus we have \begin{equation}\label{LEMMA3.2:bb} \norm{H_Kf}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))} \leq\norm{K}\norm{f}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))} \end{equation} and therefore $H_Kf\in L^p(\mathbb{R}_+, L^p(\Gamma_-))$. Since $\norm{K}<1$, for all $\varphi\in L^p(\Omega)$, the equation \eqref{LEMMA3.2:a} admits an unique solution $f_\varphi\in L^p(\mathbb{R}_+, L^p(\Gamma_-))$ given by \begin{equation*} f_\varphi=(I-H_K)^{-1}V_K(\cdot)\varphi \end{equation*} which implies the linearity of the application \eqref{LEMMA3.2:f}. Finally, using the relations \eqref{LEMMA3.2:aa} and \eqref{LEMMA3.2:bb} we get \begin{equation*} \norm{f}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}\leq \norm{K}\norm{\varphi}_p +\norm{K}\norm{f}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))} \end{equation*} Now, the relation \eqref{LEMMA3.2:e} follows. \end{proof} In the following Lemma, we give the second part of the semigroup given in the Proposition \ref{Proposition3.1}. \begin{lemma}\label{LEMMA3.3} Let $\|K\|<1$. For all $t\geq0$, the operator $A_K(t)$ given by \begin{equation*} A_K(t)\varphi(x,v)= \xi(t-t(x,v))f_\varphi(t-t(x,v),x-t(x,v)v,v) \end{equation*} is a linear and bounded from $L^p(\Omega)$ into itself, where $f_\varphi$ is given in the previous Lemma. Furthermore, for all $\varphi\in L^p(\Omega)$, we have \begin{enumerate} \item $A_K(0)=0$ and $\lim_{t\searrow0}\norm{A_K(t)\varphi}_p=0$; \item $t\geq0\to A_K(t)\varphi$ is continuous. \end{enumerate} \end{lemma} \begin{proof} (1). Let $t\geq0$ and $\varphi\in L^p(\Omega)$. As $u(t,x,v)=A_K(t)\varphi(x,v)$ is solution of the Cauchy's problem ${\rm P}(f_-=f_\varphi, f_0=0)$ with $f_\varphi\in L^p(\mathbb{R}_+, L^p(\Gamma_-))$, then the relation \eqref{LEM3.1:a} infers that \begin{equation*} \norm{A_K(t)\varphi}_p^p\leq\int_0^t\norm{f_\varphi(s)}_{L^p(\Gamma_-)}^pds \leq\norm{f_\varphi}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}^p, \end{equation*} which implies $A(0)=0$, $A_K(t)\varphi\in L^p(\Omega)$ and $\lim_{t\searrow0}\norm{A_K(t)\varphi}_p=0$. Furthermore, the previous relation together the relation \eqref{LEMMA3.2:e} imply the boundedness of the operator $A_K(t)$ from $L^p(\Omega)$ into itself. (2). Let $t\geq0$ and $\varphi\in L^p(\Omega)$. For all $h>0$, defining the function $u_h(t)=A_K(t+h)\varphi-A_K(t)\varphi$. As $u_h$ is the solution of the Cauchy's problem \eqref{Pff0} with $f_-=f_\varphi(\cdot+h)-f_\varphi,f_0=A_K(h)\varphi$ and $f_\varphi(\cdot+h)-f_\varphi\in L^p(\mathbb{R}_+, L^p(\Omega))$ and $f_0=A_K(h)\varphi\in L^p(\Omega)$, the relation \eqref{LEM3.1:a} infers \begin{equation*} \norm{A_K(t+h)\varphi-A_K(t)\varphi}_p^p\leq \int_0^t\norm{f_\varphi(s+h)-f_\varphi(s)}_{L^p(\Gamma_-)}^pds +\norm{A_K(h)\varphi}_p^p. \end{equation*} However, the operator $V_K$ defined by the relation \eqref{LEMMA3.2:b} satisfies $$ V_K(t+h)\varphi=K\left[\gamma_+U_0(t+h)\varphi\right]= K\left[\gamma_+U_0(t)U_0(h)\varphi\right]=V_K(t)\left[U_0(h)\varphi\right]. $$ Thus, by uniqueness of the solution of the equation \eqref{LEMMA3.2:a} we get that $f_\varphi(t+h)=f_{U_0(h)\varphi}(t)$ and therefore \begin{equation*} \norm{A_K(t+h)\varphi-A_K(t)\varphi}_p^p\leq \int_0^t\norm{f_{U_0(h)\varphi}(s)-f_\varphi(s)}_{L^p(\Gamma_-)}^pds +\norm{A_K(h)\varphi}_p^p. \end{equation*} Using the linearity of the application $\varphi\to f_\varphi$ in the previous Lemma and the relation \eqref{LEMMA3.2:e} we finally obtain \begin{align*} \norm{A_K(t+h)\varphi-A_K(t)\varphi}_p^p&\leq \int_0^t\norm{f_{U_0(h)\varphi-\varphi}(s)}_{L^p(\Gamma_-)}^pds +\norm{A_K(h)\varphi}_p^p\\ &\leq\norm{f_{U_0(h)\varphi-\varphi}}_{L^p(\mathbb{R}_+, L^p(\Gamma_-))}^p +\norm{A_K(h)\varphi}_p^p\\ &\leq\big[\frac{\norm{K}}{(1-\norm{K})}\big]^p\norm{U_0(h)\varphi-\varphi}_p^p+ \norm{A_K(h)\varphi}_p^p. \end{align*} Now the required continuity follows from the first part and the fact that $\{U_0(t)\}_{t\geq0}$ is a semigroup. \end{proof} The following Proposition is devoted to the explicit expression of a semigroup which will be, in the Theorem \ref{THEOREM4.1}, the generated semigroup by the streaming operator given by the relation \eqref{EQUATION:a}. \begin{proposition}\label{Proposition3.1} If $\norm{K}<1$, then the family $\{U_K(t)\}_{t\geq0}$ defined by \begin{equation}\label{Proposition3.1:a} U_K(t)=U_0(t)+A_K(t),\quad t\geq0, \end{equation} is a $C_0$-semigroup on $L^p(\Omega )$. Furthermore, for all $\varphi\in L^p(\Omega)$, we have \begin{equation}\label{Proposition3.1:b} U_K(t)\varphi(x,v)=U_0(t)(x,v)+ \xi(t-t(x,v))K\left[\gamma_+U_K(t-t(x,v))\varphi\right](x-t(x,v)v,v) \end{equation} for all $t\geq0$ and a.e. $(x,v)\in \Omega$. \end{proposition} \begin{proof} Let $t\geq0$ and $\varphi\in L^p(\Omega)$. Note that from the lemmas \ref{LEMMA2.1} and \ref{LEMMA3.3} the operator $U_K(t)$ is linear and bounded from $L^p(\Omega)$ into itself, $U_K(0)=U_0(0)+A_K(0)=0+I=I$ ($I$ is the identity operator of $L^p(\Omega)$) and \begin{equation*} \lim_{t\searrow0}\norm{U_K(t)\varphi-\varphi}_p \leq \lim_{t\searrow0}\norm{U_0(t)\varphi-\varphi}_p + \lim_{t\searrow0}\norm{A_K(t)\varphi}_p =0. \end{equation*} Now, let us shown the formula \eqref{Proposition3.1:b} and let $\varphi\in D(T_0)$. First. Using the definition of the operator $A_K(t)$ in the previous Lemma and all of the notations of the Lemma \ref{LEMMA3.2} we get that \begin{equation*} \gamma_-A_K(t)\varphi-K\left[\gamma_+A_K(t)\varphi\right]= f_\varphi(t)-K\left[\gamma_+A_K(t)\varphi\right] =K\left[\gamma_+U_0(t)\varphi\right] \end{equation*} a.e. $t\geq0$. As, the first point of the Lemma \ref{LEM2.2} and the boundedness of the operator $K$ imply the continuity of the application $t\geq0\to K\left[\gamma_+U_0(t)\varphi\right]\in L^p(\Gamma_-)$, then the previous equality holds for all $t\geq0$. \\ Next. The previous relation and the fact that $U_0(t)\varphi\in D(T_0)$ imply \begin{align*} \gamma_-U_K(t)\varphi-K\gamma_+U_K(t)\varphi=& \gamma_-A_K(t)\varphi-K\gamma_+U_K(t)\varphi\\ &=\gamma_-A_K(t)\varphi-K\gamma_+\left[U_0(t)\varphi+A_K(t)\varphi\right]\\ &=\gamma_-A_K(t)\varphi-K\gamma_+\left[U_0(t)\varphi\right]- K\gamma_+\left[A_K(t)\varphi\right]\\ &=K\gamma_+\left[U_0(t)\varphi\right]-K\gamma_+\left[U_0(t)\varphi\right]\\ &=0 \end{align*} for all $t\geq0$, which implies $\gamma_-U_K(t)\varphi=K\gamma_+U_K(t)\varphi$ and therefore \begin{equation*} \gamma_-A_K(t-t(x,v))\varphi(x-t(x,v)v,v) =K\left[\gamma_+U_K(t-t(x,v))\varphi\right](x-t(x,v)v,v) \end{equation*} for all $t\geq0$ and a.e. $(x,v)\in\Omega$. From other hand, the definition of $A_K(t)$ in the Lemma \ref{LEMMA3.3} infers that $\gamma_-A_K(t)\varphi(x,v)=f_\varphi(t,x,v)$ which implies \begin{align*} \gamma_-A_K(t-t(x,v))\varphi(x-t(x,v)v,v)&= f_\varphi(t-t(x,v),x-t(x,v)v,v)\\ &=A_K(t)\varphi(x,v) \end{align*} a.e. $(x,v)\in\Omega$ and for all $t\geq0$ because of the second point of the previous Lemma. Now, the two previous relation gives us \begin{equation*} A_K(t)\varphi(x,v) =K\left[\gamma_+U_K(t-t(x,v))\varphi\right](x-t(x,v)v,v) \end{equation*} for all $t\geq0$ and a.e. $(x,v)\in\Omega$. Replacing this relation in the relation \eqref{Proposition3.1:a}, we obtain the relation \eqref{Proposition3.1:b} which holds on $L^p(\Omega)$ because of the density of $D(T_0)$ in $L^p(\Omega)$. Now, in order to order to finish the proof, we have to show that $$G_K(t,t'):=U_K(t)U_K(t')-U_K(t+t')=0$$ for all $t,t'\geq0$. Using the relation \eqref{Proposition3.1:b}, a simple calculation shows $$ G_K(t,t')=A_K(t)U_K(t')+(U_0(t)A_K(t')-A_K(t+t')) $$ Let $\varphi\in D(T_0)$. Using the definition of $A_K(t)$ and $U_K(t)$ we easily get \begin{align*} G_K(t,t')\varphi(x,v) &=\xi(t-t(x,v))K\left[\gamma_+U_K(t-t(x,v))U_K(t')\varphi\right] (x-t(x,v)v,v)\\ &\quad +\left[\chi(t-t(x,v))\xi(t+t'-t(x,v))-\xi(t+t'-t(x,v))\right]\\ &\quad \times K\left[\gamma_+U_K(t+t'-t(x,v),t')\varphi\right](x-t(x,v)v,v). \end{align*} Now the definition of $\chi$ and $\xi$ implies \begin{equation*} G_K(t,t')\varphi(x,v)=\xi(t-t(x,v)) K\left[\gamma_+G_K(t-t(x,v),t')\varphi\right](x-t(x,v)v,v). \end{equation*} As $u_{t'}(t)=G_K(t,t')\varphi$ is solution of the following Cauchy's problem \eqref{Pff0} with $f_-=K[\gamma_+G_K(\cdot,t')\varphi], f_0=0$ and $f_-\in\mathcal{R}(K)\subset L^p(\Gamma_-)$, then the relation \eqref{LEM3.1:a} and the boundedness of $K$ infer that \begin{align*} \int_0^t\norm{\gamma_+G(s,t')\varphi}_{L^p(\Gamma_+)}^pds &\leq\int_0^t\norm{K\left[\gamma_+G_K(s,t')\varphi\right]}_{L^p(\Gamma_-)}^pds\\ &\leq\norm{K}^p\int_0^t\norm{\gamma_+G_K(s,t')\varphi}_{L^p(\Gamma_+)}^pds \end{align*} which implies \begin{equation*} \int_0^t\norm{\gamma_+G(s,t')\varphi}_{L^p(\Gamma_+)}ds=0 \end{equation*} because of $\norm{K}<1$. From other hand, the relation \eqref{LEM3.1:a} gives us \begin{align*} \norm{G_K(t,t')\varphi}_p^p &\leq\int_0^t\norm{K\left[\gamma_+G_K(s,t')\varphi\right]}_{L^p(\Gamma_-)}^pds\\ &\leq\norm{K}^p\int_0^t\norm{\gamma_+G_K(s,t')\varphi}_{L^p(\Gamma_+)}^pds. \end{align*} Now the two previous relations and the density of $D(T_0)$ in $L^p(\Omega)$ imply that $G_K(t,t')=0$ for all $t,t'\geq0$ and thus $\{U_K(t)\}_{t\geq0}$ is a strongly continuous semigroup on $L^p(\Omega)$. The proof is complete. \end{proof} Now, let us calculate the resolvent operator of the generator of the semigroup $\{U_K(t)\}_{t\geq0}$ given in the previous Proposition. But, before to state this result, recall that the Albedo operator $A$ associate to the following problem \begin{gather*} v\cdot\nabla_x u=0,\quad\text{on }\Omega\\ \gamma_-u=\psi\in L^p(\Gamma_-), \end{gather*} is defined by $A\psi(x,v)=\psi(x-\tau(x,v)v,v)$. Furthermore, a simple calculation shows that $\norm{A\psi}_{L^p(\Gamma_+)}=\norm{\psi}_{L^p(\Gamma_-)}$ for all $\psi\in L^p(\Gamma_-)$ and thus $\norm{A}_{\mathcal{L}(L^p(\Gamma_-),L^p(\Gamma_+))}=1$. \begin{proposition}\label{LEM10} Let $\norm{K}<1$ and suppose that $(B_K,D(B_K))$ is the generator of the semigroup $\{U_K(t)\}_{t\geq0}$. Then, for all $\lambda>0$, the resolvent of $B_K$ is linear and bounded operator from $L^p(\Omega)$ into itself given by \begin{equation}\label{LEM10:a} \begin{aligned} (\lambda-B_K)^{-1}g(x,v) &=(\lambda-T_0)^{-1}g(x,v)+ \epsilon_\lambda(x,v)\\ &\quad\times\left[K(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}g\right] (x-t(x,v)v,v) \end{aligned} \end{equation} where $I$ is the identity operator of $L^p(\Gamma_+)$, $\epsilon_\lambda(x,v)=e^{-\lambda t(x,v)}$ and $K_\lambda=\left[\gamma_+\epsilon_\lambda\right]AK$ with $A$ is the Albedo operator. \end{proposition} \begin{proof} For all $\lambda>0$ and all $\varphi\in D(T_0)$, we have \begin{equation}\label{LEM10:aa} \norm{K_\lambda}_{\mathcal{L}(L^p(\Gamma_+))}\leq \norm{A}_{\mathcal{L}(L^p(\Gamma_-),L^p(\Gamma_+))} \norm{K}_{\mathcal{L}(L^p(\Gamma_+),L^p(\Gamma_-))}<1 \end{equation} which implies that the operators $K_\lambda$ and $(I-K_\lambda)^{-1}$ belong to $\mathcal{L}(L^p(\Gamma_+))$ and therefore the relation \eqref{LEM10:a} admits a sense because of the second point of the Lemma \ref{LEM2.2}. Let $\lambda>0$ and $\varphi\in D(T_0)$. First, for a.e. $(x,v)\in \Gamma_+$, the relation \eqref{Proposition3.1:b} gives us \begin{align*} \gamma_+U_0(t)\varphi(x,v)=&\gamma_+U_K(t)\varphi(x,v)\\ &-\xi(t-\tau(x,v)) K\left[\gamma_+U_K(t-\tau(x,v))\varphi\right](x-\tau(x,v)v,v)\\ =&\gamma_+U_K(t)\varphi(x,v)\\ &-\xi(t-\tau(x,v)) AK\left[\gamma_+U_K(t-\tau(x,v))\varphi\right](x,v)\\ \end{align*} for all $t\geq0$ because the second point of the Lemma \ref{LEM2.2}. Next, the first point of the Lemma \ref{LEM2.2} and the previous relation imply that \begin{align*} &\gamma_+(\lambda-T_0)^{-1}\varphi(x,v)\\ &= \gamma_+\left[\int_0^\infty e^{-\lambda t}U_0(t)\varphi dt\right](x,v)\\ &=\int_0^\infty e^{-\lambda t}\gamma_+U_0(t)\varphi(x,v)dt\\ &=\int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi(x,v)dt\\ &\quad -\int_0^\infty e^{-\lambda t}\xi(t-\tau(x,v)) K\big[\gamma_+U_K(t-\tau(x,v))\varphi\big](x-\tau(x,v)v,v)dt. \end{align*} The change of variable $s=t-\tau(x,v)$ infers \begin{align*} &\gamma_+(\lambda-T_0)^{-1}\varphi(x,v)\\ &= \int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi(x,v)dt\\ &\quad -\int_0^\infty e^{-\lambda s} \left[(\gamma_+\epsilon_\lambda)K \left[\gamma_+U_K(s)\varphi\right]\right](x-\tau(x,v)v,v)ds\\ &=\int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi(x,v)dt\\ &\quad -(\gamma_+\epsilon_\lambda)A \Big[\int_0^\infty e^{-\lambda s}K \left[\gamma_+U_K(s)\varphi\right]ds\Big](x,v)\\ &=\int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi(x,v)dt - (\gamma_+\epsilon_\lambda)AK \left[\int_0^\infty e^{-\lambda s} \left[\gamma_+U_K(s)\varphi\right]ds\right](x,v)\\ &=\int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi(x,v)dt -K_\lambda\int_0^\infty e^{-\lambda s} \gamma_+U_K(s)\varphi(x,v)ds, \end{align*} where $A$ is the Albedo operator. Using the boundedness of $K_\lambda$ we get \begin{align*} \gamma_+(\lambda-T_0)^{-1}\varphi &=\int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi dt -K_\lambda\int_0^\infty e^{-\lambda s} \gamma_+U_K(s)\varphi ds\\ &=(I-K_\lambda) \int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi dt. \end{align*} The relation \eqref{LEM10:aa}, implies the invertibility of $(I-K_\lambda)$ and thus \begin{equation}\label{LEM10:cc} \int_0^\infty e^{-\lambda t}\gamma_+U_K(t)\varphi dt= (I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}\varphi. \end{equation} On the other hand, using the relation \eqref{Proposition3.1:b}, we get \begin{align*} &\left[(\lambda-B_K)^{-1}-(\lambda-T_0)^{-1}\right]\varphi(x,v)\\ &=\int_0^\infty e^{-\lambda t}\left[U_K(t)\varphi-U_0(t)\varphi\right](x,v)dt\\ &=\int_0^\infty \xi(t-t(x,v))e^{-\lambda t} K\left[\gamma_+U_K(t-t(x,v))\varphi\right](x-t(x,v)v,v)dt. \end{align*} The change of variable $s=t-t(x,v)$ and the boundedness of $K$ infer \begin{align*} &\left[(\lambda-B_K)^{-1}-(\lambda-T_0)^{-1}\right]\varphi(x,v)\\ &=\epsilon_\lambda(x,v)\int_0^\infty e^{-\lambda s} K\left[\gamma_+U_K(s)\varphi\right](x-t(x,v)v,v)ds\\ &=\epsilon_\lambda K\Big[\int_0^\infty e^{-\lambda s}\gamma_+U_K(s)\varphi ds\Big] (x-t(x,v)v,v). \end{align*} Combining, the last relation with the relation \eqref{LEM10:cc} and the density of $D(T_0)$ in $L^p(\Omega)$, we obtain \begin{equation*} (\lambda-B_K)^{-1}\varphi-(\lambda-T_0)^{-1}\varphi= \epsilon_\lambda K(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}\varphi \end{equation*} for all $\varphi\in L^p(\Omega)$. The proof is complete. \end{proof} \section{Generation Theorem} In this section, we state the main generation Theorem where we prove that operator $T_K$ given by the relation \eqref{EQUATION:a} is well the generator of the semigroup $\{U_K(t)\}_{t\geq0}$. \begin{lemma} Suppose that $\norm{K}<1$. If $\lambda>0$, then we have $\lambda\in\rho(T_K)$ and \begin{equation}\label{LEM4.1:a} (\lambda-B_K)^{-1}=(\lambda-T_K)^{-1}. \end{equation} \end{lemma} \begin{proof} Let $\lambda>0$, $g\in L^p(\Omega)$ and $\varphi=(\lambda-B_K)^{-1}g\in D(B_K)\subset L^p(\Omega)$. Using the relation \eqref{LEM10:a}, a simple calculation of derivative give us \begin{align*} v\cdot\nabla_x\varphi(x,v) &=v\cdot\nabla_x(\lambda-T_0)^{-1}g(x,v)\\ &\quad + v\cdot\nabla_x\left[\epsilon_\lambda(x,v) \left[K(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}g\right](x-t(x,v)v,v)\right]\\ &=g(x,v)-\lambda(\lambda-T_0)^{-1}g(x,v)\\ &\quad -\lambda\epsilon_\lambda(x,v) \left[K(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}g\right](x-t(x,v)v,v)\\ &\quad+\epsilon_\lambda(x,v)v\cdot\nabla_x \left[K(I-K_\lambda)^{-1} \gamma_+(\lambda-T_0)^{-1}g\right](x-t(x,v)v,v). \end{align*} The last term vanishes and we can write $v\cdot\nabla_x\varphi=g-\lambda\varphi$ which implies $$ \norm{v\cdot\nabla_x\varphi}_p=\norm{g-\lambda\varphi}_p \leq\norm{g}_p+\lambda\norm{\varphi}_p<\infty $$ and therefore $\varphi=(\lambda-B_K)^{-1}g\in W^p(\Omega)$. Furthermore, we trivially have $$\gamma_-(\lambda-B_K)^{-1}g= K(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}g\in L^p(\Gamma_-) $$ because the rang of $K$ is such that $\mathcal{R}(K)\subset L^p(\Gamma_-)$. Thus we have $(\lambda-B_K)^{-1}g\in W_-^p(\Omega)$. But, using all of the notations of the Proposition \ref{LEM10}, we get \begin{align*} \gamma_-(\lambda-B_K)^{-1}g&=K(I-K_\lambda)^{-1} \gamma_+(\lambda-T_0)^{-1}g\\ &=K\left[K_\lambda(I-K_\lambda)^{-1}+I\right]\gamma_+(\lambda-T_0)^{-1}g\\ &=K\left[K_\lambda(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}g +\gamma_+(\lambda-T_0)^{-1}g\right]\\ &=K\left[(\gamma_+\epsilon_\lambda)AK(I-K_\lambda)^{-1}\gamma_+(\lambda-T_0)^{-1}g +\gamma_+(\lambda-T_0)^{-1}g\right]\\ &=K\gamma_+(\lambda-B_K)^{-1}g \end{align*} which implies $(\lambda-B_K)^{-1}g\in D(T_K)$ and therefore $\varphi=(\lambda-B_K)^{-1}g$ is the solution of $(\lambda-T_K)\varphi=g$. The arbitrary of $g\in L^p(\Omega)$ infers that $\lambda\in\rho(T_K)$ and the invertibility of the operator $(\lambda-T_K)$. \end{proof} Now, we are able to state the main result of this work as follows. \begin{theorem}\label{THEOREM4.1} If $\norm{K}<1$, then the operator $T_K$ defined by the relation \eqref{EQUATION:a}, i.e, \begin{gather*} T_K\varphi(x,v)=-v\cdot\nabla_x\varphi(x,v), \quad \text{on the domain}\\ D(T_K)=\{\varphi\in W^p(\Omega),\;\gamma_\pm\varphi\in L^p(\Gamma_\pm),\quad \gamma_-\varphi=K\gamma_+\varphi\} \end{gather*} generates, on $L^p(\Omega)$, the strongly continuous semigroup $\{U_K(t)\}_{t\geq0}$ satisfying \begin{equation}\label{THEOREM4.1:a} \begin{aligned} U_K(t)\varphi(x,v)&=U_0(t)(x,v)\\ &\quad+\xi(t-t(x,v)) K\left[\gamma_+U_K(t-t(x,v))\varphi\right](x-t(x,v)v,v) \end{aligned} \end{equation} for all $t\geq0$ and a.e. $(x,v)\in \Omega$ and all $\varphi\in L^p(\Omega)$. Furthermore, \begin{equation}\label{THEOREM4.1:b} \norm{U_K(t)}_{\mathcal{L}(L^p(\Omega))}\leq1,\quad t\geq0. \end{equation} \end{theorem} \begin{proof} The existence of the semigroup $\{U_K(t)\}_{t\geq0}$ and the relation \eqref{THEOREM4.1:a} are guaranteed by the Proposition \ref{Proposition3.1}. Now, let us show the identity $B_K=T_K$. First. If $\varphi\in D(T_K)$, then the relation \eqref{LEM4.1:a} infers \begin{equation*} \varphi=(\lambda-T_K)^{-1}(\lambda-T_K)\varphi= (\lambda-B_K)^{-1}(\lambda-T_K)\varphi \end{equation*} which implies that $\varphi\in D(B_K)= \mathcal{R}((\lambda-B_K)^{-1}(\lambda-T_K))$ and therefore $D(T_K)\subset D(B_K)$. Inversely, if $\varphi\in D(B_K)$, the relation \eqref{LEM4.1:a} also infers \begin{equation*} \varphi=(\lambda-B_K)^{-1}(\lambda-B_K)\varphi= (\lambda-T_K)^{-1}(\lambda-B_K)\varphi \end{equation*} which implies that $\varphi\in D(T_K)= \mathcal{R}((\lambda-T_K)^{-1}(\lambda-B_K))$ and therefore $D(B_K)\subset D(T_K)$. Thus, $D(T_K)=D(B_K)$. Next. Since the relation \eqref{LEM4.1:a} we get, for all $\varphi\in D(T_K)=D(B_K)$, that $(\lambda-T_K)\varphi=(\lambda-B_K)\varphi$ which implies that $B_K\varphi=T_K\varphi$. Thus we have $B_K=T_K$. To complete the proof, let us show the relation \eqref{THEOREM4.1:b}. Let $\varphi\in D(B_K)=D(T_K)\subset L^p(\Omega)$. As $u(t)=U_K(t)\varphi$ is the solution of the following Cauchy's problem \eqref{Pff0} with $f_-=K[\gamma_+U_K(\cdot)\varphi],f_0=\varphi$, applying the relation \eqref{LEM3.1:a} together with the boundedness of the operator $K$ we get, for all $t\geq0$, that \begin{align*} \norm{U_K(t)\varphi}_p^p-\norm{\varphi}_p^p &=\int_0^t\norm{K\gamma_+U_K(s)\varphi}_{L^p(\Gamma_-)}^pds -\int_0^t\norm{\gamma_+U_K(s)\varphi(s)}_{L^p(\Gamma_+)}^pds\\ &\leq [\norm{K}^p-1] \int_0^t\norm{\gamma_+U_K(s)\varphi(s)}_{L^p(\Gamma_+)}^pds, \end{align*} which implies $\norm{U_K(t)\varphi}_p\leq\norm{\varphi}_p$ for all $t\geq0$ because of $\norm{K}<1$. Now, the density of $D(B_K)$ in $L^p(\Omega)$ archives the proof. \end{proof} \begin{remark} \rm First, we can positively close the conjecture \cite[p 103]{Voigt}. Next, it is clear that the previous Theorem and all of result of this work are based on the fact that $\norm{K}<1$ and we cannot apply these results for the case $\norm{K}\geq1$. In \cite{Boulanouar2}, we give others and different proofs to obtain the same main objective of the present work, but for the case $\norm{K}\geq1$. \end{remark} \subsection*{Acknowledgements} I would like to express my gratitude to the Professor S. Noui-Mehidi for his valuable help. \begin{thebibliography}{00} \bibitem{Beals} Beals R. \& Protopopescu V., \emph{Abstract time dependent transport equations}, J. Math. Anal. Appl., 121, pp.370-405, 1987. \bibitem{Boulanouar2} Boulanouar. M., \emph{New approach of streaming semigroup with multiplying boundary conditions.} To appear. \bibitem{Boulanouar3} M. Boulanouar. \emph{A Mathematical study in the Dynamic Population.} J. M. A. A, N.255, pp. 230--259, 2001. \bibitem{Boulanouar4} M. Boulanouar \emph{Une \'etude math\'ematique d'un mod\`ele de Rotenberg.} Journal de Math\'ematiques Pures et Appliqu\'ees, Vol.79, N.10, pp.1029--1055, 2000. \bibitem{Cessenat1} Cessenat. M., \emph{Th\'eor\`emes de trace $L^p$ pour des espaces de fonctions de la neutronique}, C. R. Acad. Sc. Paris, t.299, S\'erie.I, pp.831-834, 1984. \bibitem{Cessenat2} Cessenat. M., \emph{Th\'eor\`emes de trace pour des espaces de fonctions de la neutronique}, C. R. Acad. Sc. Paris. t.300, S\'erie.I, pp.89-92, 1985. \bibitem{Clement} Cl\'ement Ph. and al., \emph{One-Parameter Semigroups}, North-Holland, Amsterdam and New York, 1987. \bibitem{Dautray} Dautray R. \& J.L. Lions J. L., \emph{Analyse Math'ematique et Calcul Num'erique pour les Sciences et les Techniques}, Masson. Tome 3, Paris, 1985. \bibitem{Protopopescu} Greenberg W. \& van der Mee C. V. M. \& Protopopescu V., \emph{Boundary Value Problem in Abstract Kinetic Theory}, Birkh\"auser. Basel, 1987. \bibitem{Voigt} Voigt. J., \emph{Functional analytic treatment of the initial boundary value problem for collisionless gases} Habilitationsschrift, Universit\"{a}t M\"{u}nchen.1981. \end{thebibliography} \end{document}