\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 48, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2007/48\hfil Existence and asymptotic expansion] {Existence and asymptotic expansion of solutions to a nonlinear wave equation with a memory condition at the boundary} \author[N. T. Long, L. X. Truong\hfil EJDE-2007/48\hfilneg] {Nguyen Thanh Long, Le Xuan Truong} % in alphabetical order \address{Nguyen Thanh Long \hfill\break Department of Mathematics, Hochiminh City National University, 227 Nguyen Van Cu, Q5, HoChiMinh City, Vietnam} \email{longnt@hcmc.netnam.vn, longnt2@gmail.com} \address{Le Xuan Truong \hfill\break Department of Mathematics, Faculty of General Science, University of Technical Education in HoChiMinh City, 01 Vo Van Ngan Str., Thu Duc Dist., HoChiMinh City, Vietnam} \email{lxuantruong@gmail.com} \thanks{Submitted October 27, 2006. Published March 20, 2007.} \subjclass[2000]{35L20, 35L70} \keywords{Nonlinear wave equation; linear integral equation; \hfill\break\indent existence and uniqueness; asymptotic expansion} \begin{abstract} We study the initial-boundary value problem for the nonlinear wave equation \begin{gather*} u_{tt} - \frac{\partial }{\partial x} (\mu ({x,t})u_x ) + K|u |^{p - 2} u + \lambda |u_t |^{q - 2} u_t = f(x,t), \\ u(0,t) = 0 \\ - \mu (1,t)u_x (1,t) = Q(t), \\ u(x,0) = u_0 (x),\quad u_t (x,0) = u_1 (x), \\ \end{gather*} where $p\geq 2$, $q \geq 2$, $K, \lambda$ are given constants and $u_0, u_1, f,\mu$ are given functions. The unknown function $u(x,t)$ and the unknown boundary value $Q(t)$ satisfy the linear integral equation \[ Q(t)=K_1(t)u(1,t)+\lambda_1(t)u_t(1,t)-g(t)-\int_0^t {k(t-s)u(1,s)ds}, \] where $K_1, \lambda_1, g, k$ are given functions satisfying some properties stated in the next section. This paper consists of two main sections. First, we prove the existence and uniqueness for the solutions in a suitable function space. Then, for the case $K_1(t)=K_1\geq 0$, we find the asymptotic expansion in $K,\lambda, K_1$ of the solutions, up to order $N+1$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In this paper, we consider the following problem: Find a pair of functions $(u,Q)$ satisfying \begin{gather} \label{e1.1} u_{tt}-\frac{\partial }{\partial x}(\mu (x,t)u_{x}) +F(u,u_t)=f(x,t), \quad 00. \end{equation} To make such a difficult condition simpler, Santos transformed \eqref{e1.6} into \eqref{e1.3}, \eqref{e1.5} with $K_1(t)=\frac{g'(0)}{g(0)}$, and $\lambda _1(t)=\frac{1}{g(0)}$ positive constants. In the case $\lambda _1(t)\equiv 0$, $K_1(t)=h\geq 0$, $\mu (x,t)\equiv 1$, the problem \eqref{e1.1}--\eqref{e1.5} is formed from the problem \eqref{e1.1}--\eqref{e1.4} wherein, the unknown function $u(x,t)$ and the unknown boundary value $Q(t)$ satisfy the following Cauchy problem for ordinary differential equations \begin{equation} \label{e1.7} \begin{gathered} Q''(t)+\omega ^2Q(t)=hu_{tt}(1,t),\quad 00$, $Q_0$, $Q_1$ are given constants [6]. An and Trieu [1] studied a special case of problem \eqref{e1.1}--\eqref{e1.4} and \eqref{e1.7} with $u_0=u_1=Q_0=0$ and $F(u,u_t)=Ku+\lambda u_t$, with $K\geq 0$, $\lambda \geq 0$ are given constants. In the later case the problem \eqref{e1.1}--\eqref{e1.4} and \eqref{e1.7} is a mathematical model describing the shock of a rigid body and a linear viscoelastic bar resting on a rigid base [1]. From \eqref{e1.7} we represent $Q(t)$ in terms of $Q_0$, $Q_1$, $\omega $, $h$, $u_{tt}(1,t)$ and then by integrating by parts, we have \begin{equation} \label{e1.8} Q(t)=hu(1,t)-g(t)-\int_0^t k(t-s)u(1,s)ds, \end{equation} where \begin{gather} \label{e1.9} g(t)=-(Q_0-hu_0(1))\cos \omega t -\frac{1}{\omega }(Q_1-hu_1(1))\sin \omega t, \\ \label{e1.10} k(t)=h\omega \sin \omega t. \end{gather} Bergounioux, Long and Dinh [2] studied problem \eqref{e1.1}, \eqref{e1.4} with the mixed boundary conditions \eqref{e1.2}, \eqref{e1.3} standing for \begin{gather} \label{e1.11} u_{x}(0,t)=hu(0,t)+g(t)-\int_0^t k(t-s)u(0,s)ds, \\ \label{e1.12} u_{x}(1,t)+K_1u(1,t)+\lambda _1u_t(1,t)=0, \end{gather} where \begin{gather} \label{e1.13} g(t)=(Q_0-hu_0(0))\cos \omega t+\frac{1}{\omega }(Q_1-hu_1(0))\sin \omega t, \\ \label{e1.14} k(t)=h\omega \sin \omega t. \end{gather} where $h\geq 0$, $\omega >0$, $Q_0$, $Q_1$, $K$, $\lambda $, $K_1$, $\lambda _1$ are given constants. Long, Dinh and Diem [7] obtained the unique existence, regularity and asymptotic behavior of the problem \eqref{e1.1}, \eqref{e1.4} in the case of $\mu (x,t)\equiv 1$, $Q(t)=K_1u(1,t)+\lambda u_t(1,t)$, $u_{x}(0,t)=P(t)$ where $P(t)$ satisfies \eqref{e1.7} with $u_{tt}(1,t)$ is replaced by $u_{tt}(0,t)$. Long, Ut and Truc [9] gave the unique existence, stability, regularity in time variable and asymptotic behavior for the solution of problem \eqref{e1.1}--\eqref{e1.5} when $F(u,u_t)=Ku+\lambda u_t$. In this case, the problem \eqref{e1.1}--\eqref{e1.5} is the mathematical model describing a shock problem involving a linear viscoelastic bar. The present paper consists of two main parts. In Part 1 we prove a theorem of global existence and uniqueness of weak solutions $(u, Q)$ of problem \eqref{e1.1} - \eqref{e1.5}. The proof is based on a Galerkin type approximation associated to various energy estimates-type bounds, weak-convergence and compactness arguments. The main difficulties encountered here are the boundary condition at $x=1$ and with the advent of the nonlinear term of $F(u,u_t)$. In order to solve these particular difficulties, stronger assumptions on the initial conditions $u_0$, $u_1$ and parameters $K$, $ \lambda $ will be modified. We remark that the linearization method in the papers [3, 7] cannot be used in [2, 5, 6]. In addition, in the case of $ K_1(t)\equiv K_1\geq 0$, we receive a theorem related to the asymptotic expansion of the solutions with respect to $K$, $\lambda $, $K_1$ up to order $N+1$. The results obtained here may be considered as the generalizations of those in An and Trieu [1] and in Long, Dinh, Ut and Truc [2, 3], [5-10]. \section{The existence and uniqueness theorem of solution} Put $\Omega =(0,1)$, $Q_{T}=\Omega \times (0,T)$, $T>0$. We omit the definitions of usual function spaces: $C^{m}(\overline{\Omega }) $, $L^{p}(\Omega) $, $W^{m,p}(\Omega) $. We denote $W^{m,p}=W^{m,p}(\Omega) $, $ L^{p}=W^{0,p}(\Omega) $, $H^{m}=W^{m,2}(\Omega) $, $1\leq p\leq \infty $, $m=0,1,\dots $ The norm in $L^2$ is denoted by $\|\cdot \|$. We also denote by $\langle \cdot ,\cdot \rangle $ the scalar product in $ L^2$ or pair of dual scalar product of continuous linear functional with an element of a function space. We denote by $\|\cdot \|_{X}$ the norm of a Banach space $X$ and by $X'$ the dual space of $X$. We denote by $L^{p}(0,T;X)$, $1\leq p\leq \infty $ for the Banach space of the real functions $u:(0,T)\rightarrow X$ measurable, such that $$ \|u\|_{L^{p}(0,T;X)}=\Big(\int_0^{T}\| u(t)\|_{X}^{p}dt\Big) ^{1/p}<\infty \quad \text{for } 1\leq p<\infty, $$ and $$ \|u\|_{L^{\infty }(0,T;X)}= \mathop{\rm ess\,sup}_{00$, $K_1(t)\geq 0$, \item[(H4)] $ k\in H^{1}(0,T)$, \item[(H5)] $ \mu \in C^{1}(\overline{Q_{T}})$, $\mu _{tt}\in L^{1}(0,T;L^{\infty })$, $\mu (x,t)\geq \mu_0>0$, for all $(x,t)\in \overline{Q_{T}}$, \item[(H6)] $f, f_t\in L^2(Q_{T})$. \end{itemize} Then we have the following theorem. \begin{theorem} \label{thm2.2} Let (H1)--(H6) hold. Then, for every $T>0$, there exists a unique weak solution $(u, Q)$ of problem \eqref{e1.1}--\eqref{e1.5} such that \begin{equation} \label{e2.4} \begin{gathered} u\in L^{\infty }(0,T;V\cap H^2), \\ u_t\in L^{\infty }(0,T;V), \quad u_{tt}\in L^{\infty }( 0,T;L^2),\\ u(1,\cdot )\in H^2(0,T),\quad Q\in H^{1}( 0,T). \end{gathered} \end{equation} \end{theorem} \begin{remark} \label{rmk2.1} \rm (i) Noting that with the regularity obtained by \eqref{e2.4}, it follows that the component $u$ in the weak solution $(u, Q)$ of problem \eqref{e1.1}--\eqref{e1.5} satisfies \begin{equation} \label{e2.5} \begin{gathered} u\in L^{\infty }(0,T;V\cap H^2)\cap C^{0}( 0,T;V) \cap C^{1}(0,T;L^2), \\ u_t\in L^{\infty }(0,T;V), u_{tt}\in L^{\infty }( 0,T;L^2),\quad u(1,\cdot )\in H^2(0,T). \end{gathered} \end{equation} \noindent (ii) From \eqref{e2.4} we can see that $u$, $u_{x}$, $u_t$, $u_{xx}$, $u_{xt}$, $u_{tt}\in L^{\infty }(0,T;L^2) \subset L^2(Q_{T})$. Also if $(u_0,u_1)\in (V\cap H^2)\times H^{1}$, then the component $u$ in the weak solution $(u, Q)$ of problem \eqref{e1.1}--\eqref{e1.5} belongs to $H^2(Q_{T})\cap L^{\infty }(0,T;V\cap H^2) \cap C^{0}(0,T;V)\cap C^{1}(0,T;L^2)$. So the solution is almost classical which is rather natural since the initial data $u_0$ and $u_1$ do not belong necessarily to $V\cap C^2(\overline{\Omega })$ and $C^{1}(\overline{\Omega })$, respectively. \end{remark} \begin {proof}[Proof of the Theorem 2.2] The proof consists of Steps four steps. \noindent{\bf Step 1.} The Galerkin approximation. Let $\{w_{j}\}$ be a denumerable base of $ V\cap H^2$. We find the approximate solution of problem \eqref{e1.1}- \eqref{e1.5} in the form \begin{equation} \label{e2.6} u_{m}(t)=\sum_{j=1}^{m} c_{mj}(t)w_{j}, \end{equation} where the coefficient functions $c_{mj}$ satisfy the system of ordinary differential equations as follows \begin{gather} \label{e2.7} \begin{aligned} &\langle u_{m}''(t),w_{j}\rangle +\langle \mu (t)u_{mx}(t),w_{jx}\rangle +Q_{m}(t)w_{j}(1) +\langle F(u_{m}(t),u_{m}'(t)),w_{j}\rangle\\ &=\langle f\,(t),w_{j}\rangle, 1\leq j\leq m, \end{aligned} \\ \label{e2.8} Q_{m}(t)=K_1(t)u_{m}(1,t)+\lambda _1(t)u_{m}'(1,t)-\int_0^t k(t-s)u_{m}(1,s)ds-g(t), \\ \label{e2.9} \begin{gathered} u_{m}(0)=u_{0m}=\sum_{j=1}^{m}\alpha _{mj}w_{j}\rightarrow u_0 \quad \text{ strongly in } V\cap H^2, \\ u_{m}'(0)=u_{1m}=\sum_{j=1}^{m}\beta _{mj}w_{j}\rightarrow u_1\quad \text{strongly in }H^{1}. \end{gathered} \end{gather} From the assumptions of Theorem 2.2, system \eqref{e2.7}--\eqref{e2.9} has solution $( u_{m}, Q_{m})$ on an interval $[0,T_{m}]$. The following estimates allow one to take $T_{m}=T$ for all $m$. \noindent{\bf Step 2.} A priori estimates: \emph{A priori estimates I.} Substituting \eqref{e2.8} into \eqref{e2.7}, then multiplying the $j^{th}$ equation of \eqref{e2.7} by $c_{mj}'(t)$, summing up with respect to $j$ and afterwards integrating with respect to the time variable from $0$ to $t$, we get after some rearrangements \begin{equation} \label{e2.10} \begin{aligned} S_{m}(t)&=S_{m}(0)+\int_0^t ds\int_0^{1}\mu '(x,s)u_{mx}^2(x,s)dx+\int_0^t K_1'(s)u_{m}^2(1,s)ds\\ &\quad +2 \int_0^t g(s)u_{m}'(1,s)ds +2\int_0^t u_{m}'(1,s)(\int_0^{s}k(s-\tau )u_{m}(1,\tau )d\tau) ds\\ &\quad +2\int_0^t \langle f(s),u_{m}'(s)\rangle ds, \end{aligned} \end{equation} where \begin{equation} \label{e2.11} \begin{aligned} S_{m}(t)&=\|u_{m}'(t)\|^2+\|\sqrt{\mu( t)}u_{mx}(t)\|^2+K_1(t)u_{m}^2(1,t)+\frac{2K}{p} \|u_{m}(t)\|_{L^{p}}^{p} \\ &\quad +2\lambda \int_0^t \|u_{m}'(s)\| _{L^{q}}^{q}ds+2\int_0^t \lambda _1(s)| u_{m}'(1,s)|^2ds . \end{aligned} \end{equation} Using the inequality \begin{equation} \label{e2.12} 2ab\leq \beta a^2+\frac{1}{\beta }b^2,\quad \forall a,b\in \mathbb{R}, \forall \beta >0, \end{equation} and the following inequalities \begin{gather} \label{e2.13} S_{m}(t)\geq \|u_{m}'(t)\|^2+\mu _0\|u_{mx}(t)\|^2+2\lambda_0\int_0^t | u_{m}'(1,s)|^2ds, \\ \label{e2.14} |u_{m}(1,t)|\leq \|u_{m}(t)\|_{C^{0}( \overline{\Omega })}\leq \|u_{mx}(t)\|\leq \sqrt{\frac{ S_{m}(t)}{\mu _0}}, \end{gather} we shall estimate respectively the following terms on the right-hand side of \eqref{e2.10} as follows \begin{gather} \label{e2.15} \int_0^t ds\int_0^{1}\mu '(x,s)u_{mx}^2(x,s)dx\leq \frac{1}{\mu _0}\|\mu '\| _{C^{0}(\overline{Q_{T}}) }\int_0^t S_{m}(s)ds, \\ \label{e2.16} \int_0^t K_1'(s)u_{m}^2(1,s)ds\leq \frac{1}{\mu _0} \int_0^t |K_1'(s)|S_{m}(s)ds, \\ \label{e2.17} 2\int_0^t g(s)u_{m}'(1,s)ds\leq \frac{1}{\beta }\| g\|_{L^2(0,T)}^2+\frac{\beta }{2\lambda _0} S_{m}(t), \\ \label{e2.18} \begin{aligned} &2\int_0^t u_{m}'(1,s)\Big(\int_0^{s}k(s-\tau )u_{m}(1,\tau )d\tau\Big) ds\\ &\leq \frac{\beta }{2\lambda _0}S_{m}(t)+\frac{1}{\beta \mu _0} T\|k\|_{L^2(0,T)}^2\int_0^t S_{m}(s)ds, \end{aligned}\\ \label{e2.19} 2\int_0^t \langle f\,(s),u_{m}'(s)\rangle ds\leq \|f\|_{L^2(Q_{T})}^2+\int_0^t S_{m}(s)ds. \end{gather} In addition, from the assumptions (H1), (H2), (H5) and the embedding $H^{1}(0,1)\hookrightarrow L^{p}(0,1)$, $ p>1$, there exists a positive constant $C_1$ such that for all $m$, \begin{equation} \label{e2.20} S_{m}(0)=\|u_{1m}\|^2+\|\sqrt{\mu ( 0)}u_{0mx}\|^2+K_1(0)u_{0m}^2(1)+\frac{2K }{p}\|u_{0m}\|_{L^{p}}^{p}\leq C_1 \end{equation} Combining \eqref{e2.10}, \eqref{e2.11}, \eqref{e2.15}--\eqref{e2.20} and choosing $\beta=\frac{ \lambda _0}{2}$, we obtain \begin{equation} \label{e2.21} S_{m}(t)\leq M_{T}^{(1)}+\int_0^t N_{T}^{(1)}(s)S_{m}(s)ds, \end{equation} where \begin{equation} \label{e2.22} \begin{gathered} M_{T}^{(1)}=2C_1+\frac{4}{\lambda _0}\|g\| _{L^2(0,T)}^2+2\|f\|_{L^2(Q_{T})}^2, \\ N_{T}^{(1)}(s)=2[1+\frac{2}{\lambda _0\mu _0}T\| k\|_{L^2(0,T)}^2+\frac{1}{\mu _0}\| \mu'\|_{C^{0}(\overline{Q_{T}})}+\frac{1}{\mu _0} |K_1'(s)|] , \\ N_{T}^{(1)}\in L^{1}(0,T). \end{gathered} \end{equation} By Gronwall's lemma, we deduce from \eqref{e2.21}, \eqref{e2.22}, that \begin{equation} \label{e2.23} S_{m}(t)\leq M_{T}^{(1)}\exp (\int_0^t N_{T}^{(1)}(s)ds) \leq C_{T},\quad \text{for all }t\in [ 0,T]. \end{equation} \noindent\emph{A priori estimates }II. Now differentiating \eqref{e2.7} with respect to $t$ , we have \begin{equation} \label{e2.24} \begin{aligned} &\langle u_{m}'''(t),w_{j}\rangle +\langle \mu (t)u_{mx}'(t)+\mu '(t)u_{mx}(t),w_{jx}\rangle +Q_{m}'(t)w_{j}(1) \\ &+K(p-1)\langle | u_{m}| ^{p-2}u_{m}',w_{j}\rangle +\lambda (q-1)\langle |u_{m}'| ^{q-2}u_{m}'',w_{j}\rangle \\ &=\langle f\,'(t),w_{j} \rangle , \end{aligned} \end{equation} for all $1\leq j\leq m$. Multiplying the $j^{th}$ equation of (2.24) by $c_{mj}''(t)$, summing up with respect to $j$ and then integrating with respect to the time variable from $0$ to $t$, we have after some rearrangements \begin{equation} \label{e2.25} \begin{aligned} X_{m}(t) &=X_{m}(0)+2\langle \mu '(0)u_{0mx},u_{1mx}\rangle -2\langle \mu '(t)u_{mx}(t),u_{mx}'(t)\rangle \\ &\quad +2\int_0^t \langle \mu ''(s)u_{mx}(s),u_{mx}'(s)\rangle ds+3\int_0^t ds\int_0^{1}\mu '(x,s)|u_{mx}'(x,s)|^2dx \\ &\quad -2\int_0^t \big(K_1'(s)-k(0)\big) u_{m}(1,s)u_{m}''(1,s)ds \\ &\quad -2\int_0^t \big(K_1(s)+\lambda _1'(s)\big) u_{m}'(1,s)u_{m}''(1,s)ds \\ &\quad +2\int_0^t u_{m}''(1,s)\big(g'(s)+\int_0^{s}k'(s-\tau )u_{m}(1,\tau )d\tau\big) ds \\ &\quad -2(p-1)K\int_0^t \langle |u_{m}(s)| ^{p-2}u_{m}'(s),u_{m}''(s)\rangle ds+2\int_0^t \langle f^{ /}(s),u_{m}''(s)\rangle ds, \end{aligned} \end{equation} where \begin{equation} \label{e2.26} \begin{aligned} X_{m}(t)&=\|u_{m}''(t)\|^2+\| \sqrt{\mu (t)}u_{mx}'(t)\| ^2+2\int_0^t \lambda_1(s)|u_{m}''(1,s)|^2ds \\ &\quad +\frac{8}{q^2}(q-1)\lambda \int_0^t \|\frac{ \partial }{\partial s}\big(|u_{m}'(s)|^{\frac{q-2}{ 2}}u_{m}'(s)\big)\|^2ds. \end{aligned} \end{equation} From the assumptions (H1), (H2) , (H5), (H6) and the imbedding $H^{1}(0,1)\hookrightarrow L^{p}(0,1)$, $p>1$, there exists positive constant $\widetilde{D}_1$ depending on $\mu $, $u_0$, $u_1$, $K$, $\lambda $, $ p$, $q$, $f$ such that \begin{equation} \label{e2.27} \begin{aligned} &X_{m}(0)+2\langle \mu '(0)u_{0mx},u_{1mx}\rangle\\ &=\|u_{m}''(0)\|^2+\|\sqrt{\mu (0)} u_{1mx}\|^2+2\langle \mu '(0)u_{0mx},u_{1mx}\rangle \\ &\leq \|\mu (0)u_{0mxx}+\mu_{x}(0)u_{0mx}-K|u_{0m}|^{p-2}u_{0m}-\lambda |u_{1m}|^{q-2}u_{1m}+f(0)\|^2 \\ &\quad +\|\sqrt{\mu (0)}u_{1mx}\|^2 +2\|\mu '(0)\|_{L^{\infty }(\Omega)}\|u_{0mx}\|\|u_{1mx}\| \leq \widetilde{D}_1, \end{aligned} \end{equation} for all $m$. Using the inequality \eqref{e2.12} where $\beta $ is replaced by $ \beta _1$ and the following inequalities \begin{gather} \label{e2.28} X_{m}(t)\geq \|u_{m}''(t)\|^2+\mu_0\| u_{mx}'(t)\|^2+2\lambda _0\overset{t}{\underset{0}{\int }} |u_{m}''(1,s)|^2ds, \\ \label{e2.29} |u_{m}(1,t)|\leq \|u_{m}(t)\|_{C^{0}( \overline{\Omega })}\leq \|u_{mx}(t)\|\leq \sqrt{\frac{ S_{m}(t)}{\mu _0}}\leq \sqrt{\frac{C_{T}}{\mu _0}}, \\ \label{e2.30} |u_{m}'(1,t)|\leq \|u_{m}'(t)\| _{C^{0}(\overline{\Omega })}\leq \|u_{mx}'(t)\| \leq \sqrt{\frac{X_{m}(t)}{\mu _0}}, \end{gather} we estimate, without difficulty the following terms in the right-hand side of \eqref{e2.25} as follows \begin{equation} \label{e2.31} -2\langle \mu '(t)u_{mx}(t),u_{mx}'(t)\rangle \leq \beta _1X_{m}(t)+\frac{1}{\beta _1\mu _0}C_{T}\|\mu'\| _{C^{0}(\overline{Q_{T}})}^2, \end{equation} \begin{equation} \label{e2.32} \begin{aligned} &2\int_0^t \langle \mu''(s)u_{mx}(s),u_{mx}'(s)\rangle ds\\ &\leq 2\int_0^t \|\mu ''(s)\|_{L^{\infty }}\|u_{mx}(s)\|\|u_{mx}'(s)\|ds \\ &\leq \beta _1\frac{1}{\mu _0}\int_0^t \|\mu ''(s)\|_{L^{\infty }}\|u_{mx}(s)\| ^2ds+\beta _1\mu _0\int_0^t \|\mu ''(s)\| _{L^{\infty }}\|u_{mx}'(s)\|^2ds \\ &\leq \beta _1\int_0^t \|\mu ''(s)\| _{L^{\infty }}X_{m}(s)ds+\frac{C_{T}}{\beta _1\mu _0}\|\mu ''\|_{L^{1}(0,T;L^{\infty })}, \end{aligned} \end{equation} \begin{equation} \label{e2.33} 3\int_0^t ds\int_0^{1}\mu '(x,s)| u_{mx}'(x,s)|^2dx\leq \frac{3}{\mu _0}\|\mu '\|_{C^{0}(\overline{Q_{T}})}\int_0^t X_{m}(s)ds, \end{equation} \begin{equation} \label{e2.34} -2\int_0^t (K_1'(s)-k(0)) u_{m}(1,s)u_{m}''(1,s)ds\leq \frac{\beta _1}{2\lambda _0}X_{m}(t)+ \frac{C_{T}}{\beta _1\mu _0}\| K_1'-k(0)\|_{L^2(0,T)}^2, \end{equation} \begin{equation} \label{e2.35} \begin{aligned} &-2\int_0^t (K_1(s)+\lambda _1'(s)) u_{m}'(1,s)u_{m}''(1,s)ds \\ &\leq \frac{2}{\beta _1\mu _0}\int_0^t (| K_1(s)| ^2+| \lambda _1'(s)|^2)X_{m}(s)ds+\frac{\beta _1}{ 2\lambda _0}X_{m}(t), \end{aligned} \end{equation} \begin{equation} \label{e2.36} \begin{aligned} &2\int_0^t u_{m}''(1,s)(g'(s)+\int_0^{s}k'(s-\tau )u_{m}(1,\tau )d\tau) ds \\ &\leq \frac{\beta _1}{ 2\lambda _0}X_{m}(t)+\frac{2}{\beta _1}[\|g'\|_{L^2(0,T)}^2 +\frac{C_{T}}{\mu _0} T\|k'\|_{L^{1}(0,T)}^2] , \end{aligned} \end{equation} \begin{equation} \label{e2.37} -2(p-1)K\int_0^t \langle | u_{m}(s)| ^{p-2}u_{m}'(s),u_{m}''(s)\rangle ds \leq 2\frac{p-1}{\sqrt{\mu _0}}K(\frac{C_{T}}{\mu _0})^{\frac{p-2}{2} }\int_0^t X_{m}(s)ds, \end{equation} \begin{equation} \label{e2.38} 2\int_0^t \langle f^{ /}(s),u_{m}''(s)\rangle ds\leq \beta _1\int_0^t X_{m}(s)ds+\frac{1}{\beta _1}\| f\,'\| _{L^2(Q_{T})}^2. \end{equation} In terms of \eqref{e2.25}, \eqref{e2.27}, \eqref{e2.31}--\eqref{e2.38} and by the choice of $\beta _1>0$ such that $$ \beta _1(1+\frac{3}{2\lambda_0})\leq \frac{1}{2}, $$ we obtain \begin{equation} \label{e2.39} X_{m}(t)\leq \widetilde{M}_{T}^{(2)}+\int_0^t N_{T}^{(2)}(s)X_{m}(s)ds, \end{equation} where \begin{equation} \label{e2.40} \begin{gathered} \begin{aligned} \widetilde{M}_{T}^{(2)}&=2\widetilde{D}_1+\frac{2C_{T}}{\beta _1\mu _0} [\|\mu '\| _{C^{0}(\overline{Q_{T}})}^2+\|\mu ''\| _{L^{1}(0,T;L^{\infty })}+\|K_1'-k(0)\| _{L^2(0,T)}^2] \\ &\quad +\frac{2}{\beta _1}[2\|g'\|_{L^2( 0,T)}^2 +\frac{2C_{T}}{\mu_0}T\|k'\|_{L^{1}(0,T)}^2+\| f\,'\|_{L^2(Q_{T})}^2], \end{aligned} \\ \begin{aligned} N_{T}^{(2)}(s) &=2\beta _1+4\frac{p-1}{\sqrt{\mu_0}}K(\frac{C_{T}}{ \mu _0}) ^{\frac{p-2}{2}}+\frac{6}{\mu _0}\|\mu '\| _{C^{0}(\overline{Q_{T}})}+2\beta _1\|\mu ''(s)\|_{L^{\infty }} \\ &\quad +\frac{4}{\beta _1\mu _0}(| K_1(s)|^2+|\lambda _1'(s)|^2), \end{aligned} \\ N_{T}^{(2)}\in L^{1}(0,T). \end{gathered} \end{equation} From \eqref{e2.39}--\eqref{e2.40} and applying Gronwall's inequality, we obtain that \begin{equation} \label{e2.41} \begin{array}{c} X_{m}(t)\leq M_{T}^{(2)}\exp \big(\int_0^t N_{T}^{(2)}(s)ds\big) \leq C_{T}\quad \text{for all }t\in [0,T] . \end{array} \end{equation} On the other hand, we deduce from \eqref{e2.8}, \eqref{e2.11}, \eqref{e2.23}, \eqref{e2.26} and \eqref{e2.41}, that \begin{equation} \label{e2.42} \begin{aligned} \|Q_{m}'\|_{L^2(0,T)}^2 &\leq \frac{5D_{T} }{2\lambda _0}\|\lambda _1\| _{\infty }^2+\frac{ 5T^2C_{T}}{\mu _0}\,\| k'\|_{L^2(0,T)}^2+5\|g'\| _{L^2(0,T)}^2 \\ &\quad +\frac{5D_{T}}{\mu _0}(\|K_1+\lambda _1'\|_{L^2(0,T)}^2+\|K_1'-\,k(0)\|_{L^2(0,T)}^2), \end{aligned} \end{equation} where $\|\lambda _1\|_{\infty }=\|\lambda _1\|_{L^{\infty }(0,T)}$. From the assumptions (H3) and (H4), we deduce from \eqref{e2.42}, that \begin{equation} \label{e2.43} \|Q_{m}\|_{H^{1}(0,T)}\leq C_{T}\quad \text{for all }m, \end{equation} where $C_{T}$ is a positive constant depending only on $T$. \noindent{\bf Step 3.} Limiting process. From \eqref{e2.11}, \eqref{e2.23}, \eqref{e2.26}, \eqref{e2.41} and \eqref{e2.43}, we deduce the existence of a subsequence of $\{(u_{m}$, $ Q_{m})\} $ still also so denoted, such that \begin{equation} \label{e2.44} \begin{gathered} u_{m}\rightarrow u \quad \text{in } L^{\infty }(0,T;V)\quad \text{weak*,}\\ u_{m}'\rightarrow u' \quad \text{in } L^{\infty }(0,T;V) \quad \text{weak*,}\\ u_{m}''\rightarrow u'' \quad \text{in } L^{\infty }(0,T;L^2) \quad \text{ weak*,} \\ u_{m}(1,\cdot )\rightarrow u(1,\cdot ) \quad \text{in } H^2(0,T) \quad \text{ weakly,} \\ Q_{m}\rightarrow \widetilde{Q} \quad \text{in } H^{1}(0,T) \quad \text{weakly.} \end{gathered} \end{equation} By the compactness lemma in Lions [4: p.57] and the imbedding $H^2(0,T)\hookrightarrow C^{1}([0,T])$, we can deduce from \eqref{e2.44}$_{1,2,3,4,5}$ the existence of a subsequence still denoted by $ \{(u_{m},Q_{m})\}$ such that \begin{equation} \label{e2.45} \begin{gathered} u_{m}\rightarrow u \quad \text{strongly in } L^2(Q_{T}), \\ u_{m}'\rightarrow u' \quad \text{strongly in } L^2(Q_{T}), \\ u_{m}(1,\cdot )\rightarrow u(1,\cdot ) \quad \text{strongly in } C^{1}([0,T]), \\ Q_{m}\rightarrow \widetilde{Q}\quad \text{strongly in } C^{0}([0,T]). \end{gathered} \end{equation} From \eqref{e2.8}\ and \eqref{e2.45}$_3$ we have that \begin{equation} \label{e2.46} Q_{m}(t)\rightarrow K_1(t)u(1,t)+\lambda _1(t)u'(1,t)-g(t)-\int_0^t k(t-s)\,u(1,s)ds\equiv Q(t) \end{equation} strongly in $C^{0}([0,T])$. Combining \eqref{e2.45}$_4$ and \eqref{e2.46}, we conclude that \begin{equation} \label{e2.47} \begin{array}{c} Q(t)=\widetilde{Q}(t). \end{array} \end{equation} By means of the inequality \begin{equation} \label{e2.48} \big||x|^{\delta -2}x-|y|^{\delta -2}y\big| \leq (\delta -1)R^{\delta -2}| x-y|quad \forall x,y\in [-R;R], \end{equation} for all $R>0$, $\delta \geq 2$, it follows from \eqref{e2.39}, that \begin{equation} \label{e2.49} ||u_{m}|^{p-2}u_{m}-|u|^{p-2}u |\leq (p-1)R^{p-2}| u_{m}-u|\quad \text{with }R=\sqrt{\frac{C_{T}}{\mu _0}}. \end{equation} Hence, it follows from \eqref{e2.45}$_1$ and \eqref{e2.49}, that \begin{equation} \label{e2.50} |u_{m}|^{p-2}u_{m}\rightarrow |u| ^{p-2}u\quad \text{strongly in }L^2(Q_{T}). \end{equation} By the same way, we deduce from \eqref{e2.48}, with $R=\sqrt{\frac{C_{T}}{\mu _0}}$ and \eqref{e2.44}$_3$, \eqref{e2.45}$_2$, that \begin{equation} \label{e2.51} |u_{m}'|^{q-2}u_{m}'\rightarrow | u'|^{q-2}u'\quad \text{strongly in }L^2(Q_{T}). \end{equation} Passing to the limit in \eqref{e2.7}--\eqref{e2.9} by \eqref{e2.44}$_{1,5}$, \eqref{e2.46}, \eqref{e2.47}, \eqref{e2.50} and \eqref{e2.51} we have $(u, Q)$ satisfying \begin{gather} \label{e2.52} \begin{aligned} &\langle u''(t),v\rangle +\langle \mu (t)u_{x}(t),v_{x}\rangle +Q(t)v(1) +\langle K|u|^{p-2}u+\lambda |u'|^{q-2}u',v\rangle \\ &=\langle f(t),v\rangle ,\quad \forall v\in V, \end{aligned} \\ \label{e2.53} u(0)=u_0, \quad u'(0)=u_1, \\ \label{e2.54} Q(t)=K_1(t)u(1,t)+\lambda_1(t)u_t(1,t)-g(t) -\int_0^t k(t-s)u(1,s)ds, \end{gather} On the other hand, from \eqref{e2.44}$_{5}$, \eqref{e2.52} and assumptions (H5)-(H6) we have \begin{equation} \label{e2.55} u_{xx}=\frac{1}{\mu (x,t)}(u''-\mu _{x}u_{x}+ K| u| ^{p-2}u+\lambda |u'| ^{q-2}u'-f )\in L^{\infty }(0,T;L^2). \end{equation} Thus $u\in L^{\infty }(0,T;V\cap H^2)$ and the existence of the theorem is proved completely. \noindent{\bf Step 4. } Uniqueness of the solution. Let $(u_1, Q_1)$, $(u_2, Q_2)$ be two weak solutions of problem \eqref{e1.1}--\eqref{e1.5}, such that \begin{equation} \label{e2.56} \begin{gathered} u_{i}\in L^{\infty }(0,T;V\cap H^2),\quad u_{i}'\in L^{\infty }(0,T;H^{1}),\quad u_{i}''\in L^{\infty }(0,T;L^2), \\ u_{i}(1,\cdot )\in H^2(0,T),\quad Q_{i}\in H^{1}(0,T),\quad i=1, 2. \end{gathered} \end{equation} Then $(u,Q)$ with $u=u_1-u_2$ and $Q=Q_1-Q_2$ satisfy the variational problem \begin{equation} \label{e2.57} \begin{gathered} \langle u''(t),v\rangle +\langle \mu (t) u_{x}(t),v_{x}\rangle +Q(t)v(1)+K\langle | u_1|^{p-2}u_1-|u_2|^{p-2}u_2\,\,,v \rangle \\ + \lambda \langle |u_1'|^{q-2}u_1'-| u_2'| ^{q-2}u_2', v\rangle =0 \quad \forall v\in V, \\ u(0)=\quad u'(0)=0, \end{gathered} \end{equation} and \begin{equation} \label{e2.58} \,Q(t)=K_1(t)u(1,t)+\lambda _1(t)u'(1,t)-\int_0^t k(t-s)\,u(1,s)ds. \end{equation} We take $v=u'$ in \eqref{e2.57}$_1$, and integrating with respect to $t$, we obtain \begin{equation} \label{e2.59} \begin{aligned} \sigma (t)&\leq \int_0^t \|\sqrt{|\mu'(s)|}u_{x}(s)\| ^2ds+\int_0^t K_1'(s)u^2(1,s)ds \\ &\quad +2\int_0^t u'(1,s)ds\int_0^{s}k(s-\tau )\,u(1,\tau )d\tau \\ &\quad -2K\int_0^t \langle |u_1|^{p-2}u_1-|u_2| ^{p-2}u_2, u'\rangle ds, \end{aligned} \end{equation} where \begin{equation} \label{e2.60} \sigma (t)=\|u'(t)\|^2+\|\sqrt{\mu (t)} u_{x}(t)\| ^2+K_1(t)u^2(1,t)+2\int_0^t \lambda _1(s)|u'(1,s)|^2ds. \end{equation} Noting that \begin{gather} \label{e2.61} \sigma (t)\geq \|u'(t)\|^2+\mu _0\| u_{x}(t)\|^2+2\lambda _0\int_0^t | u'(1,s)|^2ds, \\ \label{e2.62} |u(1,t)|\leq \|u(t)\|_{C^{0}( \overline{\Omega })}\leq \|u_{x}(t)\|\leq \sqrt{\frac{ \sigma (t)}{\mu _0}}. \end{gather} We again use inequalities \eqref{e2.12} and \eqref{e2.48} with $\delta =p$, $R=\max_{i=1,2} \|u_{i}\|_{L^{\infty }(0,T;V)}$, then, it follows from \eqref{e2.59}--\eqref{e2.62}, that \begin{equation} \label{e2.63} \begin{aligned} \sigma (t)&\leq \frac{1}{\mu _0}\int_0^t (\|\mu '\|_{C^{0}(\overline{Q_{T}})}+|K_1'(s)|) \sigma (s)ds +\frac{\beta }{2\lambda _0} \sigma (t) \\ &\quad +\frac{T}{\beta \mu _0}\|k\| _{L^2(0,T)}^2\int_0^t \sigma (\tau )d\tau +\frac{1}{\sqrt{\mu _0}} (p-1)KR^{p-2}\int_0^t \sigma (s)ds. \end{aligned} \end{equation} Choosing $\beta >0$, such that $\beta \frac{1}{2\lambda _0}\leq 1/2$, we obtain from \eqref{e2.63}, that \begin{equation} \label{e2.64} \sigma (t)\leq \int_0^t q_1(s)\sigma (s)ds, \end{equation} where \begin{equation} \label{e2.65} \begin{gathered} q_1(s)=\frac{2}{\mu _0}(\|\mu '\| _{C^{0}(\overline{Q_{T}})}+| K_1'(s)| ) +\frac{2T}{\beta \mu _0}\|k\|_{L^2(0,T)}^2+ \frac{2}{\sqrt{\mu _0}}(p-1)KR^{p-2}, \\ q_1\in L^2(0,T). \end{gathered} \end{equation} By Gronwall's lemma, we deduce that $\sigma \equiv 0$ and Theorem 2.2 is completely proved. \end{proof} \begin{remark} \label{rmk2.2} \rm In the case $p$, $q>2$, $K<0$, and $\lambda <0$, the question of existence for the solutions of problem \eqref{e1.1}--\eqref{e1.5} is still open. However we have also obtained the answer of problem \eqref{e1.1}--\eqref{e1.5} when $ p=q=2$ and $K$, $\lambda \in \mathbb{R}$ published in [9]. \end{remark} \section{Asymptotic expansion of the solution} In this part, we consider two given functions $u_0$, $u_1$ as $ \widetilde{u}_0$, $\widetilde{u}_1$, respectively. Then we assume that $ K_1(t)=K_1$ is a nonnegative constant and $(\widetilde{u}_0$, $ \widetilde{u}_1$, $f$, $\mu$, $g$, $k$, $\lambda _1)$ satisfy the assumptions (H2)-(H6). Let $(K, \lambda , K_1) \in \mathbb{R}_{+}^{3}$. By Theorem 2.2, the problem \eqref{e1.1}--\eqref{e1.5} has a unique weak solution $(u, Q)$ depending on $(K, \lambda, K_1)$: $$ u=u(K,\lambda ,K_1),\quad Q=Q(K,\lambda ,K_1). $$ We consider the following perturbed problem, where $K$, $\lambda $, $K_1$ are small parameters such that, $0\leq K\leq K_{\ast }$, $0\leq \lambda \leq \lambda _{\ast }$, $0\leq K_1\leq K_{1\ast }$: \begin{equation} \label{PKLK1} %(P_{K, \lambda, K_1}) \begin{gathered} Au\equiv u_{tt}-\frac{\partial }{\partial x}(\mu (x,t)u_{x}) =-KF(u)-\lambda G(u_t)+f(x,t),\quad 0N\geq 2$, $q>N\geq 2$. We shall study the asymptotic expansion of the solution of problem $(P_{K,\lambda ,K_1})$ with respect to $($ $K$, $\lambda $, $K_1)$. We use the following notation. For a multi-index $\gamma =(\gamma _1,\gamma _2,\gamma _3)\in \mathbb{Z}_{+}^{3}$ and $\overrightarrow{K}=(K, \lambda, K_1)\in \mathbb{R}_{+}^{3}$, we put \begin{gather*} |\gamma |=\gamma _1+\gamma _2+\gamma _3,\quad \gamma !=\gamma _1!\gamma _2!\gamma _3!,\\ \|\overrightarrow{K}\|=\sqrt{K^2+\lambda ^2+K_1^2} ,\quad \overrightarrow{K}^{\gamma }=K^{\gamma_1}\lambda ^{\gamma _2}K_1^{\gamma _3}, \\ \alpha ,\beta \in \mathbb{Z} _{+}^{3},\quad \beta \leq \alpha \Longleftrightarrow \beta _{i}\leq \alpha _{i}\quad \forall i=1,2,3. \end{gather*} First, we shall need the following Lemma. \begin{lemma} \label{thm3.1} Let $m$, $N \in \mathbb{N}$ and $v_{\alpha }\in \mathbb{R}$, $\alpha \in \mathbb{Z}_{+}^{3}$, $1\leq |\alpha |\leq N$. Then \begin{equation} \label{e3.1} (\sum_{1\leq |\alpha |\leq N}v_{\alpha } \overrightarrow{K}^{ \alpha })^{m}=\sum_{m\leq |\alpha |\leq mN}T^{(m)}[v]_{\alpha }\overrightarrow{K}^{ \alpha }, \end{equation} where the coefficients $T^{(m)}[v]_{\alpha }$, $m\leq |\alpha |\leq mN$ depending on $v=(v_{\alpha })$, $\alpha \in \mathbb{Z}_{+}^{3}$, $1\leq |\alpha |\leq N$ are defined by the recurrence formulas \begin{equation} \label{e3.2} \begin{gathered} T^{(1)}[v]_{\alpha }=v_{\alpha },\quad 1\leq |\alpha |\leq N,\\ T^{(m)}[v]_{\alpha }=\sum_{\beta \in A_{\alpha }^{(m)}} v_{\alpha -\beta }T^{(m-1)}[v]_{\beta },\quad m\leq |\alpha |\leq mN, m\geq 2, \\ A_{\alpha }^{(m)}=\{\beta \in \mathbb{Z} _{+}^{3}:\beta \leq \alpha , 1\leq |\alpha -\beta |\leq N, m-1\leq |\beta |\leq (m-1)N\}. \end{gathered} \end{equation} \end{lemma} The proof of the above lemma can be found in [11]. Let $(u_0$, $Q_0)\equiv (u_{0,0,0}$, $Q_{0,0,0})$ be a unique weak solution of the following problem (as in Theorem 2.2) corresponding to $ (K, \lambda , K_1) =(0, 0, 0)$; i.e., \begin{gather*} %(P_{0,0,0} ) Au_0=P_{0,0,0}\equiv f(x,t),\quad 0