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FORCED OSCILLATIONS FOR DELAY MOTION EQUATIONS
ON MANIFOLDS

PIERLUIGI BENEVIERI, ALESSANDRO CALAMAI,
MASSIMO FURI, MARIA PATRIZIA PERA

Abstract. We prove an existence result for T -periodic solutions of a T -

periodic second order delay differential equation on a boundaryless compact
manifold with nonzero Euler-Poincaré characteristic. The approach is based

on an existence result recently obtained by the authors for first order delay

differential equations on compact manifolds with boundary.

1. Introduction

Let M ⊆ Rk be a smooth boundaryless manifold and let

f : R×M ×M → Rk

be a continuous map which is T -periodic in the first variable and tangent to M in
the second one; that is,

f(t + T, q, q̃) = f(t, q, q̃) ∈ TqM, ∀ (t, q, q̃) ∈ R×M ×M,

where TqM ⊆ Rk denotes the tangent space of M at q. Consider the following
second order delay differential equation on M :

x′′π(t) = f(t, x(t), x(t− τ))− εx′(t), (1.1)

where, regarding (1.1) as a motion equation,
(1) x′′π(t) stands for the tangential part of the acceleration x′′(t) ∈ Rk at the

point x(t);
(2) the frictional coefficient ε is a positive real constant;
(3) τ > 0 is the delay.

In this paper we prove that equation (1.1) admits at least one forced oscillation,
provided that the constraint M is compact with nonzero Euler–Poincaré character-
istic and that T ≥ τ . This generalizes a theorem of the last two authors regarding
the undelayed case (see [3]). Our result will be deduced from an existence theorem
for first order delay equations on compact manifolds with boundary recently ob-
tained by the authors (see [1, Theorem 4.6]). The possibility of reducing (1.1) to
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the first order equation treated in [1] is due to the fact that any second order dif-
ferential equation on M is equivalent to a first order system on the tangent bundle
TM of M . The difficulty arising from the noncompactness of TM will be removed
by restricting the search for T -periodic solutions to a convenient compact manifold
with boundary contained in TM . The choice of such a manifold is suggested by a
priori estimates on the set of all the possible T -periodic solutions of equation (1.1).
These estimates are made possible by the compactness of M and the presence of
the positive frictional coefficient ε.

We ask whether or not the existence of forced oscillations holds true even in the
frictionless case, provided that the constraint M is compact with nonzero Euler-
Poincaré characteristic. We believe the answer to this question is affirmative; but,
as far as we know, this problem is still unsolved even in the undelayed case.

An affirmative answer regarding the special case M = S2 (the spherical pendu-
lum) can be found in [4] (see also [5] for the extension to the case M = S2n).

We point out that the assumption T ≥ τ is crucial in this paper, since our
result is deduced from Theorem 2.1 below, whose proof, given in [1], is based on
the fixed point index theory for locally compact maps applied to a Poincaré-type
T -translation operator which is a locally compact map if and only if T ≥ τ . In a
forthcoming paper we will tackle the case 0 < T < τ , in which this operator is not
even locally condensing.

2. Second order delay differential equations on manifolds

Let, as before, M be a compact smooth boundaryless manifold in Rk. Given
q ∈ M , let TqM and (TqM)⊥ denote, respectively, the tangent and the normal
space of M at q. Since Rk = TqM ⊕ (TqM)⊥, any vector u ∈ Rk can be uniquely
decomposed into the sum of the parallel (or tangential) component uπ ∈ TqM of u
at q and the normal component uν ∈ (TqM)⊥ of u at q. By

TM = {(q, v) ∈ Rk × Rk : q ∈ M, v ∈ TqM}
we denote the tangent bundle of M , which is a smooth manifold containing a natural
copy of M via the embedding q 7→ (q, 0). The natural projection of TM onto M is
just the restriction (to TM as domain and to M as codomain) of the projection of
Rk × Rk onto the first factor.

Given, as in the Introduction, a continuous map f : R×M ×M → Rk which is
T -periodic in the first variable and tangent to M in the second one, consider the
following delay motion equation on M :

x′′π(t) = f(t, x(t), x(t− τ))− εx′(t), (2.1)

where
i) x′′π(t) stands for the parallel component of the acceleration x′′(t) ∈ Rk at

the point x(t);
ii) the frictional coefficient ε and the delay τ are positive real constants.

By a solution of (2.1) we mean a continuous function x : J → M , defined on a
(possibly unbounded) real interval, with length greater than τ , which is of class C2

on the subinterval (inf J + τ, supJ) of J and verifies

x′′π(t) = f(t, x(t), x(t− τ))− εx′(t)

for all t ∈ J with t > inf J + τ . A forced oscillation of (2.1) is a solution which is
T -periodic and globally defined on J = R.
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It is known that, associated with M ⊆ Rk, there exists a unique smooth map
r : TM → Rk, called the reactive force (or inertial reaction), with the following
properties:

(a) r(q, v) ∈ (TqM)⊥ for any (q, v) ∈ TM ;
(b) r is quadratic in the second variable;
(c) any C2 curve γ : (a, b) → M verifies the condition

γ′′ν (t) = r(γ(t), γ′(t)), ∀t ∈ (a, b),

i.e., for each t ∈ (a, b), the normal component γ′′ν (t) of γ′′(t) at γ(t) equals
r(γ(t), γ′(t)).

The map r is strictly related to the second fundamental form on M and may be
interpreted as the reactive force due to the constraint M .

By condition (c) above, equation (2.1) can be equivalently written as

x′′(t) = r(x(t), x′(t)) + f(t, x(t), x(t− τ))− εx′(t). (2.2)

Notice that, if the above equation reduces to the so-called inertial equation

x′′(t) = r(x(t), x′(t)),

one obtains the geodesics of M as solutions.
Equation (2.2) can be written as a first order differential system on TM as

follows:

x′(t) = y(t)

y′(t) = r(x(t), y(t)) + f(t, x(t), x(t− τ))− εy(t).

This makes sense since the map

g : R× TM ×M → Rk × Rk, g(t, (q, v), q̃) = (v, r(q, v) + f(t, q, q̃)− εv) (2.3)

verifies the condition g(t, (q, v), q̃) ∈ T(q,v)TM for all (t, (q, v), q̃) ∈ R × TM × M
(see, for example, [2] for more details).

Theorem 2.1 below, which is a straightforward consequence of Theorem 4.6 in [1],
will play a crucial role in the proof of our result (Theorem 2.2). Its statement needs
some preliminary definitions.

Let X ⊆ Rs be a smooth manifold with (possibly empty) boundary ∂X. Fol-
lowing [1], we say that a continuous map F : R×X ×X → Rs is tangent to X in
the second variable or, for short, that F is a vector field (on X) if F (t, p, p̃) ∈ TpX
for all (t, p, p̃) ∈ R × X × X. A vector field F will be said inward (to X) if for
any (t, p, p̃) ∈ R × ∂X × X the vector F (t, p, p̃) points inward at p. Recall that,
given p ∈ ∂X, the set of the tangent vectors to X pointing inward at p is a closed
half-subspace of TpX, called inward half-subspace of TpX (see e.g. [6]) and here
denoted T−

p X.

Theorem 2.1. Let X ⊆ Rs be a compact manifold with (possibly empty) boundary,
whose Euler–Poincaré characteristic χ(X) is different from zero. Let τ > 0 and let
F : R×X×X → Rs be an inward vector field on X which is T -periodic in the first
variable, with T ≥ τ . Then, the delay differential equation

x′(t) = F (t, x(t), x(t− τ)) (2.4)

has a T -periodic solution.

The main result of this paper is the following.
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Theorem 2.2. Assume that the period T of f is not less than the delay τ and
that the Euler-Poincaré characteristic of M is different from zero. Then, the equa-
tion (2.1) has a forced oscillation.

Proof. As we already pointed out, the equation (2.1) is equivalent to the following
first order system on TM :

x′(t) = y(t)

y′(t) = r(x(t), y(t)) + f(t, x(t), x(t− τ))− εy(t).
(2.5)

Define F : R× TM × TM → Rk × Rk by

F (t, (q, v), (q̃, ṽ)) = (v, r(q, v) + f(t, q, q̃)− εv).

Notice that the map F is a vector field on TM which is T -periodic in the first
variable.

Given c > 0, set

Xc = (TM)c =
{
(q, v) ∈ M × Rk : v ∈ TqM, ‖v‖ ≤ c

}
.

It is not difficult to show that Xc is a compact manifold in Rk ×Rk with boundary

∂Xc =
{
(q, v) ∈ M × Rk : v ∈ TqM, ‖v‖ = c

}
.

Observe that
T(q,v)(Xc) = T(q,v)(TM)

for all (q, v) ∈ Xc. Moreover, χ(Xc) = χ(M) since Xc and M are homotopically
equivalent (M being a deformation retract of TM).

We claim that, if c > 0 is large enough, then F is an inward vector field on Xc.
To see this, let (q, v) ∈ ∂Xc be fixed, and observe that the inward half-subspace of
T(q,v)(Xc) is

T−
(q,v)(Xc) =

{
(q̇, v̇) ∈ T(q,v)(TM) : 〈v, v̇〉 ≤ 0

}
,

where 〈·, ·〉 denotes the inner product in Rk. We have to show that if c is large
enough then F (t, (q, v), (q̃, ṽ)) belongs to T−

(q,v)(Xc) for any t ∈ R and (q̃, ṽ) ∈ TM ;
that is,

〈v, r(q, v) + f(t, q, q̃)− εv〉 = 〈v, r(q, v)〉+ 〈v, f(t, q, q̃)〉 − ε〈v, v〉 ≤ 0

for any t ∈ R and (q̃, ṽ) ∈ TM . Now, 〈v, r(q, v)〉 = 0 since r(q, v) belongs to
(TqM)⊥. Moreover, 〈v, v〉 = c2 since (q, v) ∈ ∂Xc, and

〈v, f(t, q, q̃)〉 ≤ ‖v‖‖f(t, q, q̃)‖ ≤ K‖v‖,
where

K = max
{
‖f(t, q, q̃)‖ : (t, q, q̃) ∈ R×M ×M}.

Thus,
〈v, r(q, v) + f(t, q, q̃)− εv〉 ≤ Kc− εc2.

This shows that, if we choose c > K/ε, then F is an inward vector field on Xc, as
claimed. Therefore, given c > K/ε, Theorem 2.1 implies that system (2.5) admits
a T -periodic solution in Xc, and this completes the proof. �

It is evident from this proof that the result holds true even if we replace

f(t, q, q̃)− εv

by a T -periodic force g(t, (q, v), (q̃, ṽ)) ∈ TqM satisfying the following assumption:
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There exists c > 0 such that 〈g(t, (q, v), (q̃, ṽ)), v〉 ≤ 0 for any

(t, (q, v), (q̃, ṽ)) ∈ R× TM × TM

such that ‖v‖ = c.
We point out that, in the above theorem, the condition χ(M) 6= 0 cannot be

dropped. Consider for example the equation

θ′′(t) = a− εθ′(t), t ∈ R, (2.6)

where a is a nonzero constant and ε > 0. Equation (2.6) can be regarded as a second
order ordinary differential equation on the unit circle S1 ⊆ C, where θ represents
an angular coordinate. In this case, a solution θ(·) of (2.6) is periodic of period
T > 0 if and only if for some k ∈ Z it satisfies the boundary conditions

θ(T )− θ(0) = 2kπ,

θ′(T )− θ′(0) = 0.

Notice that the applied force a represents a nonvanishing autonomous vector field
on S1. Thus, it is periodic of arbitrary period. However, simple calculations show
that there are no T -periodic solutions of (2.6) if T 6= 2πε/a.
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