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DEGENERACY IN THE BLASIUS PROBLEM

FAIZ AHMAD

Abstract. The Navier-Stokes equations for the boundary layer are trans-

formed, by a similarity transformation, into the ordinary Blasius differential
equation which, together with appropriate boundary conditions constitutes the

Blasius problem,

f ′′′(η) +
1

2
f(η)f ′′(η) = 0, f(0) = 0, f ′(0) = 0, f ′(∞) = 1.

The well-posedness of the Navier-Stokes equations is an open problem. We

solve this problem, in the case of constant flow in a boundary layer, by showing

that the Blasius problem is ill-posed. If the second condition is replaced by
f ′(0) = −λ, then degeneracy occurs for 0 < λ < λc ' 0.354. We investigate

the problem analytically to explain this phenomenon. We derive a simple

equation g(α, λ) = 0, whose roots, for a fixed λ, determine the solutions of the
problem. It is found that the equation has exactly two roots for 0 < λ < λc

and no root beyond this point. Since an arbitrarily small perturbation of the

boundary condition gives rise to an additional solution, which can be markedly
different from the unperturbed solution, the Blasius problem is ill-posed.

1. Introduction

A boundary value problem is said to be well-posed if a solution to the problem
exists, this solution is unique and depends continuously on the boundary conditions.
Otherwise the problem is called ill-posed. A boundary value problem, describing
a physical situation, must be well-posed because the conditions at a boundary
are only satisfied approximately also various approximations are involved in the
derivation of the equations governing a problem. Well-posedness of a problem
governed by the Poisson equation with Dirichlet boundary conditions in a bounded
domain follows easily by an application of the maximum principle for harmonic
functions. However the above problem may be ill-posed on an unbounded domain.
A famous open problem of applied mathematics is the well-posedness or otherwise
of the Navier-Stokes equations, the fundamental equations of fluid mechanics . In
this paper we shall investigate the well-posedness of the Blasius problem which
deals with the Navier-Stokes equations specialized to the fluid flow in a boundary
layer [6, 9].
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The two dimensional constant viscous flow over a semi-infinite flat plate is mod-
eled by the Blasius problem

f ′′′(η)+β0f(η)f ′′(η) = 0, f(0) = 0, f ′(0) = 0, f ′(∞) = 1, β0 > 0, η ∈ [0,∞)
(1.1)

Here η represents a similarity variable introduced by Blasius [6] to transform a
pair of partial differential Navier-Stokes equations into a single ordinary differ-
ential equation contained in (1.1). For a thorough discussion of this problem see
Schlichting and Gersten [9]. If the third condition in (1.1) is replaced by f ′′(0) = α,
where α > 0, then the initial-value problem

f ′′′(η)+β0f(η)f ′′(η) = 0, f(0) = 0, f ′(0) = 0, f
′′
(0) = α, β0 > 0, η ∈ [0,∞)

(1.2)
will be called the Blasius initial value problem. It is well-known that any solution of
(1.2) corresponding to a fixed α has the property that as η →∞, the first derivative
of f(η) approaches a constant limit. There is a unique value of α, say α0, for which
the solution of the initial-value problem (1.2) is also the solution of the Blasius
problem (1.1). Several authors have devised numerical algorithms to find a good
approximate value of this number, see Asaithambi [4] and references therein. For
β0 = 1

2 it is found that
α0 = 0.33206 (1.3)

Recently Wang [10] developed an analytical method for finding α0. Fang et al. [7]
showed that for arbitrary β0,

α0 = 0.469600
√

β0. (1.4)

In view of the above result, it is sufficient to consider the Blasius problem for a
fixed β0, say β0 = 1

2 . We shall do this in this paper.
Let λ ≥ 0, then the boundary-value problem

f ′′′(η) +
1
2
f(η)f ′′(η) = 0, f(0) = 0, f ′(0) = −λ, f ′(∞) = 1, η ∈ [0,∞) (1.5)

will be called the modified Blasius problem and the related problem

f ′′′(η) +
1
2
f(η)f ′′(η) = 0, f(0) = 0, f ′(0) = −λ, f

′′
(0) = α, η ∈ [0,∞) (1.6)

will be named the modified Blasius initial value problem. Physically problem (1.5)
now models a boundary layer flow over a moving plate with constant velocity λ.

Every solution of the problem (1.2) increases from 0 to ∞ remaining convex
throughout until f ′(η) approaches a constant limit. On the other hand a solution of
the problem (1.6) first decreases, attains a minimum and then increases to infinity.
A striking difference between the two problems is that whereas the Blasius problem
(1.1) possesses a unique solution, the modified Blasius problem (1.5) possesses two
solutions when

0 < λ < λc ' 0.354, (1.7)

these solutions coalesce into a unique solution for λ = λc and there is no solution
beyond this critical value [1, 2]. Thus the modified Blasius problem becomes de-
generate as soon as λ > 0. The evidence in favor of this remarkable phenomenon
is based on numerical results and it is not clear why it should appear at λ = 0 and
then disappear at λ = λc. In this paper we shall provide a theory for this.
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In Section 2 we shall present a qualitative theory of problem (1.6) which will be
used in Section 4 to derive a simple equation of the form

g(λ, α) = 0. (1.8)

For any fixed λ ∈ (0, λc), this equation has exactly two solutions α1 and α2 both
of them lying in a finite interval (0, α0). When λ > λc, Equation (1.8) fails to have
any real solution.

The occurrence of a second solution as soon as λ > 0, makes the Blasius problem
ill-posed.

2. Qualitative theory of the modified Blasius problem

We consider the initial value problem (1.6) where α > 0 and λ > 0. Anticipating
the result f ′′(η) > 0 for 0 ≤ η <∞, we write the differential equation in the form

f ′′′(η)
f ′′(η)

= −1
2
f(η). (2.1)

An integration from 0 to η gives

f ′′(η) = α exp
(
− 1

2

∫ η

0

f(u)du
)
. (2.2)

It is clear that
f ′′(η) > 0, 0 ≤ η <∞, (2.3)

and we have justified the step leading to (2.1). Since f(0) = 0 and f ′(0) < 0, a
solution of (2.1) is negative on some interval. Suppose f(η) ≤ 0 on (0,∞). Then
(2.2) gives

f ′′(η) > α, 0 ≤ η <∞.

Integration of the above result twice on [0, η] gives

f(η) > α
η2

2
− λη.

Since the right hand side of the above inequality is positive for sufficiently large η
we have a contradiction of the assumption that f(η) ≤ 0 on [0,∞). Hence there is
a point η1 such that f changes sign at this point. Thus

f(η) < 0, 0 < η < η1, (2.4)

f(η1) = 0, f ′(η1) > 0. (2.5)

Due to (2.3), f ′(η) increases on (η1,∞) and remains positive, therefore the function
f(η) also remains positive on this interval. On [0, η1], the continuous function f ′(η)
has changed sign hence, due to the well-known intermediate value theorem [5], there
is a point η0, 0 < η0 < η1 where

f ′(η0) = 0 (2.6)

Using (2.3), (2.4) and (2.5) in the differential equation (2.1), we obtain

f ′′′(η) > 0, 0 < η < η1, (2.7)

f ′′′(η1) = 0. (2.8)

Thus we have proved the following result:
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Every solution of problem (1.6) has a unique minimum at a point
η0 and a unique zero η1. On [0, η1] the second derivative of the
solution increases and has a maximum at η1.

For a typical solution, the graphs of f(η) and f ′′(η) are shown in Fig.1. This
Figure depicts a solution of the problem (1.6) for λ = 0.2 and α = 0.016.
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f(η)
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Figure 1. Graphs of f(η) and f ′′(η), the solution of (1.6) with
λ = 0.2

Asymptotic behavior. There exist positive constants K and c such that

f(η) > c > 0, η ≥ K (2.9)

Using this in (2.2), we find

f ′′(η) < α exp
(
− 1

2

[ ∫ K

0

f(η)dη +
∫ η

K

c dη
])

, η ≥ K

or
f ′′(η) < αF exp

(
− 1

2
c(η −K)

)
, η ≥ K, (2.10)

where we have set F = exp[− 1
2

∫ K

0
f(η)dη]. From (2.3) and (2.10), we get

lim
η→∞

f ′′(η) = 0 (2.11)

Integrating (2.10) on [K, η). We get

f ′(η) < f ′(K) +
2αF

c

[
1− e−

1
2 c(η−K)

]
, η ≥ K. (2.12)

Hence f ′(η) is bounded above by f ′(K) + 2αF
c on [K,∞). Let K1 = max(K, η1).

From (2.3), (2.5) and (2.12) the function f ′(η) is positive, increasing and bounded
on [K1,∞), hence

lim
η→∞

f ′(η) = l > 0. (2.13)
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There exists a constant L such that when η ≥ L, f ′(η) > l
2 . An integration from

L to η gives

f(η) > f(L) +
l

2
(η − L), η ≥ L.

It follows that

lim
η→∞

f(η) =∞ (2.14)

Thus solutions of (1.2) and (1.6) asymptotically behave in a similar manner.

3. Wang’s transformation

Wang [10] used the change of variables

x = f ′(η), y = f ′′(η) (3.1)

to transform the Blasius equation f ′′′(η) + 1
2f(η)f ′′(η) = 0 into the second order

Wang’s equation

yy′′ +
1
2
x = 0. (3.2)

If we make another change of variable z = x + λ then (3.2) will become

yy′′ +
1
2
(z − λ) = 0, (3.3)

where differentiation now is with respect to z. The initial conditions are

y(0) = α, y′(0) = 0. (3.4)

The above problem can be solved by the Adomian decomposition method [10]
or by a technique used by Ahmad [3]. The solution up to the term z8 is found to
be

y(z) = α +
λ

4α
z2 − 1

12α
z3 − λ2

96α3
z4 +

λ

120α3
z5 +

7λ3 − 8α2

5760α5
z6

− 59λ2

40320α5
z7 − 127λ4 − 336λα2

645120α7
z8 + . . .

(3.5)

Substitute z = 2λ in (3.5). This corresponds to x = λ. Keeping terms only up to
λ6 we find

y(2λ) = α +
λ3

3α
+

λ6

90α3
(3.6)

Concerning a solution of (1.6), Equation (3.6) indicates that there is some point
η = η2 such that

f ′(η2) = λ, f ′′(η2) = α +
λ3

3α
+

λ6

90α3
(3.7)

We shall utilize (3.7) in the next section to prove the existence of degeneracy in the
Blasius problem.
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4. Degeneracy

Consider a solution of the problem (1.6) which also happens to be a solution of
the modified Blasius problem (1.5). Also let η ≥ η2. Keeping in view (2.13), we
approximate the function f(η) between the points η2 and η by the equation of the
line segment joining them and we take the slope of this segment as the average of
the slope at the point η2, which is λ, and the slope at η which we take as unity.
The larger η2 is, the better this approximation becomes. The area under the curve
representing f(η) from the point η2 to η is approximately 1

4 (1 + λ)(η− η2)2. Using
this and (3.7) in (2.2), we find

f ′′(η) = (α +
λ3

3α
+

λ6

90α3
) exp

(
− 1

8
(1 + λ)(η − η2)2

)
, η ≥ η2 (4.1)

Integrating (4.1) from η2 to ∞, we get

f ′(∞)− f ′(η2) =

√
2π

1 + λ

(
α +

λ3

3α
+

λ6

90α3

)
Putting values of f ′(∞) and f ′(η2) and dividing with the term under the square-
root sign, we obtain

(1− λ)
√

1 + λ√
2π

= α +
λ3

3α
+

λ6

90α3
(4.2)

For a fixed λ, the number of real positive roots determines the number of solutions
possessed by the modified Blasius problem under consideration. The graph of the
function

g(α) = α +
λ3

3α
+

λ6

90α3
(4.3)

for a fixed λ is shown in Figure 2. The minimum value of g(α) is 1.2032λ3/2 and
this occurs when α = 0.6433λ3/2. It is clear that exactly two roots of (4.2) will
exist as long as

(1− λ)
√

1 + λ√
2π

> 0.6433 λ3/2 (4.4)

This happens for
0 < λ < λc = 0.386 (4.5)

For λ = λc the two solutions overlap and if λ > λc, Equation (4.2) has no real root
implying that no solution of the modified Blasius problem exists. Thus the problem
becomes degenerate between λ = 0 and λ = λc.

5. Numerical results

In Table 1 we present two pairs of values, α1, α2 and αe
1, αe

2 of the parameter
α each of one produces a solution of the problem (1.6) which is also a solution
of the modified Blasius problem (1.5). The numbers α1 and α2 have been found
by solving (4.2) while αe

1 and αe
2 refer to their exact values found by a numerical

solution of (1.6) for various α and searching for those values for which f ′(R) ' 1
for sufficiently large R.

The approximate critical value λc was found above as 0.386. Its exact value
is 0.3546. Considering the nature of approximations involved in obtaining (4.2),
agreement between approximate and exact results is remarkable.
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Figure 2. Graph of g(α) defined by (4.3) when λ = 0.1

λ α1 α2 αe
1 αe

2

0.1 0.0034 0.376 0.00137 0.326
0.15 0.0083 0.361 0.0061 0.317
0.20 0.016 0.342 0.0157 0.304
0.25 0.028 0.318 0.0321 0.284
0.30 0.0468 0.287 0.0600 0.252
0.34 0.0706 0.252 0.1034 0.206
0.354 0.083 0.235 0.149 0.150

Table 1. Approximate and exact values of α that produce solu-
tions of the modified Blasius problem

Discussion. A study of the qualitative behavior of the solutions of (1.6) paved the
way for a proper understanding of degeneracy in the Blasius problem. All pairs of
values of αe

1 and αe
2 lie in the interval (0, 0.33206). In [1] an analytical solution of

the problem was obtained by employing the homotopy analysis method [8] and it
was erroneously claimed that the above interval is (0.33206, 0.52).

Existence of multiple solutions of (1.5) for λ ∈ (0, λc) demonstrates that the
Blasius problem (1.1) is ill-posed. A solution of a well-posed problem must depend
continuously on the initial or boundary conditions. However as soon as the condi-
tion f ′(0) = 0 of the Blasius problem is replaced by f ′(0) = −λ, λ being arbitrarily
small, a solution appears which is markedly different from the unique solution of
the Blasius problem. This indicates a need to re-interpret experimental results of
any investigation based on the Blasius problem.
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