\documentclass[reqno]{amsart} \usepackage{graphicx, amssymb} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 101, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/101\hfil Infinitely many solutions] {Infinitely many solutions for the $p$-Laplace equations with nonsymmetric perturbations} \author[D. Liu, D. Geng \hfil EJDE-2008/101\hfilneg] {Disheng Liu, Di Geng} \address{School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China} \email[Disheng Liu]{dison\_lau@yahoo.cn} \email[Di Geng (Corresponding author)]{gengdi@scnu.edu.cn} \thanks{Submitted February 28, 2008. Published July 30, 2008.} \thanks{Supported by grant 7005795 from Guangdong Provincial Natural Science Foundation of China} \subjclass[2000]{35J70, 35D50} \keywords{$p$-Laplacian; large Morse index; nonsymmetric perturbation; \hfill\break\indent infinitely many solutions} \begin{abstract} In this article, we study Dirichlet problems involving the $p$-Lapla\-cian with a nonsymmetric term. By using the large Morse index of the corresponding Laplace equation, we establish an estimate on the growth of the min-max values for a functional associated with the problem. The estimate is better than the given result in some range. We show that the problem possesses infinitely many weak solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \section{Introduction and statement of main results} In this paper, we investigate the existence of infinitely many weak solutions for the Dirichlet problem, involving $p$-Laplacian, \begin{equation} \label{e1} \begin{gathered} -\Delta_pu = |u|^{q-2}u+f(x),\quad \text{in }\Omega\\ u=0,\quad \text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ with smooth boundary and $N>p>1$; $\Delta_pu=\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)$ is so-called $p$-Laplace operator and $p2$) with that involving Laplacian, establish some estimate on growth of critical values of $p$-Laplace equation with the large Morse index of Laplace equation and show existence of infinitely many solutions of $p$-Laplace problem with nonsymmetric perturbation \eqref{e1}. On the some range, the result we obtain improves the known conclusion of Garcia Azorero and Peral Alonso \cite{AA}. The main result in this paper is the following theorem. \begin{theorem} \label{thm1} Suppose $f(x)\in C(\bar\Omega)$ and $$ 22$, ${Np-2N+4\over Np-2N+2p}{Np\over N-2}0$, it holds for $u\in\overline{\mathop{\rm span}}\{w_k,w_{k+1},\dots\}$ \begin{equation} \label{e4} C_1k^{{1\over N}+{1\over q}-{1\over p}}\|u\|_{L_q(\Omega)}\leq\|u\|_{W^{1,p}(\Omega)}. \end{equation} \end{lemma} Denote the Schauder basis in $W_0^{1,p}(\Omega)$ satisfied the above lemma by $\{w_k\}$. The basis $\{w_k\}$ is also Schauder basis in $H_0^1(\Omega)$. Denote by $$ E_k={\rm span}\{w_1,w_2,\dots,w_k\},\quad E_k^\bot=\overline{\rm span}\{w_k,w_{k+1},\dots\}. $$ Define family of maps and series of min-max values of $J_0(u)$ as follows: \begin{gather*} \Gamma_k(p)=\{\gamma\in C(E_k\cap\bar B_{R_k}(0),W_0^{1,p}(\Omega)); \gamma\text{ is odd, and }\gamma|_{E_k\cap\partial B_{R_k}(0)} =\mathop{\rm id}\}; \\ c_k=\inf_{\gamma\in\Gamma_k(p)}\max_{u\in E_k\cap B_{R_k}(0)}J_0(\gamma(u)), \end{gather*} where $R_k$ is a series of positive constants tend to positive infinite, such that $J_0(u)<0$ for all $u\in E_k$ and $\|u\|\geq R_k$. \begin{lemma} \label{lem2} For every $k$ large enough, there exists $\rho_k>0$ such that $$ J_\theta(u)\geq C_2k^{pN-q(N-p)\over N(q-p)},\quad\text{when } u\in E_k^\bot\cap\partial B_{\rho_k}(0), $$ where $C_2$ is independent of $k$. \end{lemma} \begin{proof} For $u\in E_k^\bot$, applying Lemma \ref{triebel}, we estimate the functional $J_\theta(u)$: \begin{align*} J_\theta(u) &= {1\over p}\|\nabla u\|_p^p-{1\over q}\|u\|_q^q-\theta\int_\Omega f(x)udx\\ &\geq {1\over p}\|\nabla u\|_p^p-Ck^{{q\over p^*}-1}\|\nabla u\|_p^q-C', \end{align*} where $C'$ is a constant depending only on $f$. By letting $\rho_k=(k^{1-{q\over p}+{q\over N}}/(2qC))^{1/(q-p)}$, one have, for all $k$ large enough and $u\in E_k^\bot\cap\partial B_{\rho_k}(0)$, $$ J_\theta(u)\geq\big[{1\over2p}(2qC)^{-{p\over q-p}}-C(2qC)^{{-q\over q-p}}\big] k^{({q\over p^*}-1){p\over q-p}}-C'\geq C_2k^{{qp\over N(q-p)}-1}, $$ where $C_2$ is a positive constant independent of $k$. \end{proof} From the above lemma, using the Borsuk theorem, we obtain \begin{equation} \label{e5} %\label{b_k-} c_k\geq Ck^{pN-q(N-p)\over N(q-p)}. \end{equation} This estimate on $c_k$ in the case $p=2$ was obtained by Rabinowitz with the growth of eigenvalue of Laplacian due to Hilbert-Courant; Garcia Azorero and Peral Alonso \cite{AA} got the similar result in the special case $\Omega=[0,1]^N$ for $p\not=2$. \section{Proof of the main theorem} As a matter of convenience, we write the functional $J_0(u)$ as $I_{p,q}(u)$; that is, $$ I_{p,q}(u)={1\over p}\int_\Omega|\nabla u|^pdx-{C\over q}\int_\Omega|u|^qdx, $$ where $C$ is a positive constant depends only on $p$, $q$ and $|\Omega|$. \begin{lemma} \label{lem3} Suppose $qr>1$, $0<\alpha<1$, $p>q(1-\alpha)$ and \begin{equation} \label{e9} % \label{zb} q{1-\alpha\over p^*}+q{\alpha\over r}=1. \end{equation} When $u\in W_0^{1,p}(\Omega)$ and $J_0(u)=I_{p,q}(u)\gg0$, we also have \begin{equation} \label{e10} \begin{aligned} I_{p,q}(u)&\geq {1\over p}\int_\Omega|\nabla u|^pdx-{1\over q} \Big[{q\over2p}\int_\Omega|\nabla u|^pdx +C\Big(\int_\Omega|u|^rdx\Big)^{q{\alpha\over r}{p\over p-(1-\alpha)q}} \Big]\\ &\geq {1\over2p}\int_\Omega|\nabla u|^pdx-{C\over q} \Big(\int_\Omega|u|^rdx\Big)^{q{\alpha\over r}{p\over p-(1-\alpha)q}}\\ &\geq \Big[\Big({1\over2p}\int_\Omega|\nabla u|^pdx\Big)^{2/p} -\Big({C\over q}\int_\Omega|u|^rdx\Big) ^{{q{\alpha\over r}{p\over p-(1-\alpha)q}}{2\over p}}\Big]^{p/2}\\ &\geq \Big[C(|\Omega|)\int_\Omega|\nabla u|^2dx- \Big({C\over q}\int_\Omega|u|^rdx\Big)^{{q{\alpha\over r}{2\over p-(1-\alpha)q}}} \Big]^{p/2}. \end{aligned} \end{equation} In addition to \eqref{e9}, we require that $r$ and $\alpha$ satisfy \begin{equation} \label{e11} % \label{ze} q{\alpha\over r}{2\over p-(1-\alpha)q}=1. \end{equation} Solving the simultaneous equations \eqref{e9} and \eqref{e11}, we obtain $$ \alpha=1-{1\over q}{{p\over2}-1\over{1\over2}-{1\over p^*}},\quad r={q({1\over2}-{1\over p^*})-({p\over2}-1)\over{p\over2}\Big({1\over p}-{1\over p^*}\Big)}={q(Np-2N+2p)-pN(p-2)\over p^2}. $$ Therefore, the inequality \eqref{e10} becomes \begin{equation} \label{e12} \begin{aligned} I_{p,q}(u) &\geq \Big[C(|\Omega|)\int_\Omega|\nabla u|^2dx-C\int_\Omega|u|^rdx\Big]^{p/2}\\ &\geq C_3\Big[{1\over2}\int_\Omega|\nabla u|^2dx-{C\over r}\int_\Omega|u|^rdx\Big]^{p/2}=C_3I_{2,r}(u)^{p/2}, \end{aligned} \end{equation} where $$ I_{2,r}(u)={1\over2}\int_\Omega|\nabla u|^2dx-{C\over r}\int_\Omega|u|^rdx, $$ and $C_3$ and $C$ are positive constants, without loss of generality, we suppose that $C\geq1$ and $C_3\leq1$. As regards \eqref{e7}, which is a simple fact, we skip over the detail. \end{proof} Next, we present an estimate on $c_k$ under the condition $p\geq2$ which is superior to \eqref{e5} in a certain extent. \begin{lemma} \label{lem4} Suppose that $2\bar q(2), $$ so there exits some $p_0\in(2,+\infty]$, such that $\bar{ \bar q}(p)>\bar q(p)$ for all $p\in[2,p_0)$. Setting $\bar q(p)=\bar{\bar q}(p)$, we can find out $p_0$. Since $\bar q(p)$ and $\bar{\bar q}(p)$ satisfy the equations in \eqref{e2}, we have $$ {p\over N}{q(Np-2N+2p)-pN(p-2)\over(q-p)(Np-2N+2p)}={pN-q(N-p)\over N(q-p)}, $$ that is, $q=(Np-2N+p^2)p/(Np-2N+2p)$. From the equation $\bar q(p)$ or $\bar{ \bar q}(p)$ satisfies, it follows that $p_0$ meets a quartic equation as follows: \begin{equation} \label{e20} p^4-(2+N+N^2)p^2+(2N+4N^2)p-4N^2=0. \end{equation} Analysis on this quartic equation with Mathematica yields some interesting facts: when $N=3,4,5,6$, the equation has no real root greater than 2, that is, in those cases, our result under the hypothesis in Theorem \ref{thm1} is better than that in \cite{AA}; when $N\geq7$, the equation \eqref{e20} has two real roots greater than 2, the first one is $p_0$, which is in the interval $(2,3)$. Therefore, we can conclude that, under the conditions of Theorem \ref{thm1}, if $p\in(2,p_0)$ and $q\in(p,\bar{\bar q}(p))$, the problem \eqref{e1} possesses infinitely many solutions. The conclusion is better than that in \cite{AA}, since $(p,\bar q(p))\varsubsetneqq (p,\bar{ \bar q}(p))$. \begin{figure}[ht] \begin{center} \includegraphics{fig1} \quad\includegraphics{fig2} % N=6.eps N=8.eps \end{center} \caption{Graphs of $\bar q$, $\bar{ \bar q}$, $p^*$ for $N=6$ and $N=8$} \end{figure} Figure 1 illustrates the relationship among $\bar q$, $\bar{ \bar q}$, $p^*$ and $\bar r(p)={Np-2N+4\over Np-2N+2p}{Np\over N-2}$ in the cases $N=6$ and $N=8$. In each figure, two dashed curves are $q=p^*(p)$ and $q=\bar r(p)$; the two solid curves represent $q=\bar q(p)$ and $q=\bar{ \bar q}(p)$. Notice that the curve $q=\bar{\bar q}(p)$ is always over $q=\bar q(p)$ for all $p\geq2$ when $N=6$, and the curve $q=\bar{ \bar q}(p)$ is over $q=\bar q(p)$ near $p=2$ when $N=8$. The two figures were produced with Mathematica. \begin{thebibliography}{00} \bibitem{AA} Garcia Azorero, J. P. \& Peral Alonso, I.; Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term [J]. {\it Trans. Amer. Math. Soc.} {\bf 323:2} (1991), 877-895. \bibitem{BB} Bahri, A., Berestycki, H.; A perturbation method in critical point theory and applications [J]. {\it Trans. Amer. Math. Soc.} {\bf 267}(1981), 1-32. \bibitem{BL} Bahri, A. \& Lions, P. L.; Morse index of some min-max critical points. I Applications in multiplicity results [J]. {\it Commu. Pure Appl. Math.} {\bf 41} (1988), 1027-1037. \bibitem{B}Bolle, P. On the Bolza problem [J]; {\it J. Diff. Equations} {\bf 152(2)}(1999), 274-288. \bibitem{BGT} Bolle, P. Ghoussoub, N. \& Tehrani, H.; The multiplicity of solutions in non-homogenous boundary value problems [J]. {\it Manu. Math. }{\bf 101} (2000), 325-350. \bibitem{R} Rabinowitz, P. H.; Multiple critical points of perturbed symmetric functions. {\it Trans. Amer. Math. Soc. }{\bf 272} (1982) 753-770. \bibitem{Struwe} Struwe, M.; {\it Variational Methods} [M], Spriger-Verlag, 1996, Beijing. \bibitem{T} Tanaka, K.; Morse indices at critical points related to the symmetric mountain pass theorem and applications. {\it Commun. in Partial Differential Equations}, {\bf 14(1)} (1989), 99-128. \bibitem{Triebel} Triebel, H.; Interpolation Theory, Function Spaces, Differential Operators [M]. North-Holland Pub. Co., 1978, Amsterdam. \end{thebibliography} \end{document}