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A RICCATI TECHNIQUE FOR PROVING OSCILLATION OF A
HALF-LINEAR EQUATION

PAVEL ŘEHÁK

Abstract. In this paper we study the oscillation of solutions to the half-linear

differential equation

(r(t)|y′|p−1 sgn y)′ + c(t)|y|p−1 sgn y = 0,

under the assumptions
R∞ r1/(1−p)(s) ds < ∞, r(t) > 0, p > 1. Our main tool

is a Riccati type transformation for using the so called “function sequence tech-

nique”. This method leads to new and to known oscillation and comparison
results. We also give an example that illustrates our results.

1. Introduction

The Riccati type transformation plays an important role in qualitative theory of
the half-linear differential equation

(r(t)Φ(y′))′ + c(t)Φ(y) = 0, (1.1)

where r and c are continuous functions on [a,∞) with r(t) > 0, and Φ(u) =
|u|p−1 sgnu with p > 1. Monograph [1] presents a systematic and compact treat-
ment of the qualitative theory of the above equation. Recall that (1.1) can be
viewed at least in three ways: (1) as a natural generalization of a linear differential
equation, (2) as a differential equation with one dimensional p-Laplacian, (3) as a
special case of a generalized Emden-Fowler (quasilinear) differential equation.

If there exists a positive solution y of (1.1) on some interval [t0,∞), then the
function w = rΦ(y′/y) satisfies the generalized Riccati differential equation

w′ + c(t) + (p− 1)r1−q(t)|w|q = 0 (1.2)

on [t0,∞). Here q is the conjugate number to p; i.e., 1/p+ 1/q = 1.
A nontrivial solution of (1.1) is said to be oscillatory if it has zeros of arbitrary

large value, and non-oscillatory otherwise. An equation is said to be oscillatory if
all its solutions are oscillatory, and non-oscillatory otherwise.

Note that one solution of (1.1) is oscillatory if and only if every solution of (1.1)
is oscillatory, which follows from the Sturm type separation result. Further, if the
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generalized Riccati differential inequality w′+c(t)+(p−1)r1−q(t)|w|q ≤ 0 is solvable
on some interval [t0,∞), then (1.1) is non-oscillatory.

Methods based on these relations are referred as the Riccati technique. There are
several refinements of this idea: Using a weighted Riccati type substitution; working
with integral, instead of differential, Riccati type equations and inequalities using
a function sequence technique; finding effective estimates for solutions of Riccati
type equations; etc. See for example [1, Sections 2.2, 5.5].

It is known that many oscillation and asymptotical results for (1.1) substantially
depend on the convergence or the divergence of the integral

∫∞
r1−q(s) ds. In

contrast to the linear case, a suitable transformation satisfactorily transfering one
case into the other is not available for (1.1) and hence it is often necessary to
examine these cases separately – by using different approaches. Note that usually
the case with the convergent integral is more difficult than the convergent case,
which can be modelled according to the case r(t) ≡ 1. We study the convergent
case; i.e., we assume that ∫ ∞

r1−q(s) ds <∞. (1.3)

The principal aim of this paper is to establish the so-called function sequence
technique for (1.1) under condition (1.3), and then to show some applications of
this method. The function sequence techniques for (1.1) with

∫∞
r1−q(s) ds = ∞

were studied in [1, 2, 4]. For this article [3] is a useful reference.
This paper is organized as follows. In the next section we present a modification

of the Riccati technique involving a Riccati type integral inequality. These relations
are then utilized in Section 3 to show the equivalence between nonoscillation of
(1.1) and convergence of certain function sequence. In the last section, we apply
this method to derive Hille-Nehari type oscillation criteria and a Hille-Wintner type
comparison theorem for equation (1.1). We also give an example of an equation
which, in particular, can be proved to be oscillatory using our new results, but
other known criteria are inapplicable.

2. Modified Riccati Type Inequality

We start with showing that in the relation between non-oscillation of (1.1) and
solvability of (1.2), under condition (1.3), the Riccati type differential equation or
inequality can be replaced by certain Riccati type integral equation or inequality.
For the first time, it was observed in [3]. Here we recall this result, we add some
refinements, and also give two new proofs. Denote

R(t) :=
∫ ∞

t

r1−q(s) ds

and

S(u)(t) :=
∫ ∞

t

Rp(s)c(s) ds+ p

∫ ∞

t

r1−q(s)Rp−1(s)u(s) ds

+ (p− 1)
∫ ∞

t

r1−q(s)Rp(s)|u(s)|qds .

Theorem 2.1. (i) Assume c(t) ≥ 0 for large t. If (1.1) is non-oscillatory, then∫∞
Rp(s)c(s) ds <∞ and there is w satisfying Rp−1(t)w(t) ≥ −1 and Rp(t)w(t) =

S(w)(t) for large t. Moreover, lim supt→∞Rp−1(t)w(t) ≤ 0.



EJDE-2008/105 RICCATI TRANSFORMATION 3

(ii) Assume that ∞ >
∫∞

t
Rp(s)c(s) ds ≥ 0 for large t. If there is w satisfy-

ing Rp−1(t)w(t) ≥ −1 and Rp(t)w(t) ≥ S(w)(t) for large t, then (1.1) is non-
oscillatory.

Proof. (i) See [3] or [1, Section 2.2]. (ii) Set v(t) = R−p(t)S(w)(t). For convenience
we skip the argument t sometimes in the computations. Differentiating the equality
Rpv = S(w) we get

0 = Rpv′ +Rpc− pRp−1v1−qv + pRp−1r1−qw + (p− 1)r1−q|Rp−1w|q. (2.1)

We will show that

pRp−1r1−qw + (p− 1)r1−q|Rp−1w|q ≥ pRp−1r1−qv + (p− 1)r1−q|Rp−1v|q. (2.2)

Observe that the function

x→ px+ (p− 1)|x|q is strictly increasing for x ≥ −1. (2.3)

From Rpv = S(w) ≤ Rpw, we have v ≤ w. We know Rp−1w ≥ −1. Next we
show that also Rp−1v ≥ −1. From v = R−pS(w), we have that Rp−1v ≥ −1
if and only if S(w) ≥ −R, i.e.,

∫∞
t
Rp(s)c(s) ds +

∫∞
t
r1−q(s)[pRp−1(s)w(s) +

(p − 1)|Rp−1(s)w(s)|q + 1] ds ≥ 0. But the above inequality is satisfied because∫∞
t
Rp(s)c(s) ds ≥ 0 and pRp−1w + (p − 1)|Rp−1w|q + 1 ≥ −p + (p − 1) + 1 = 0

which follows from (2.3) and Rp−1w ≥ −1. Hence, Rp−1v ≥ −1 which together
with (2.3) and v ≤ w yields (2.2). Using (2.2) in (2.1) we obtain 0 ≥ Rpv′ +Rpc+
(p− 1)r1−qRp|v|q, or 0 ≥ v′+ c+ (p− 1)r1−q|v|q. Thus (1.1) is non-oscillatory. �

Remark 2.2. (i) The part (ii) of the theorem was proved in [3] using a different
technique, based on the Schauder-Tychonov fixed point theorem, under the stronger
assumptions c(t) ≥ 0 and Rp−1(t)w(t) is bounded. A closer examination of that
proof shows that these assumptions actually are not needed. Later, in this paper,
we present another proof of the part (ii) of the theorem, which arises out as a
by-product when deriving the function sequence technique.

(ii) From Theorem 2.1 (i), we immediately get the following simple criterion: If
c(t) ≥ 0 and

∫∞
Rp(s)c(s) ds = ∞, then (1.1) is oscillatory.

(iii) We conjecture that in the part (i) of the theorem, the condition c(t) ≥ 0
can be relaxed, e.g., to

∫∞
t
Rp(s)c(s) ds ≥ 0.

3. Function Sequence Technique

We are in a position to establish the function sequence technique for (1.1) under
condition (1.3). Denote

H(t) = R−p(t)
∫ ∞

t

Rp(s)c(s) ds,

G(u)(t) = R−p(t)
∫ ∞

t

r1−q(s)[pRp−1(s)u(s) + (p− 1)|Rp−1(s)u(s)|q] ds.

Observe that H + G(u) = R−pS(u). Further, −R1−p is a fixed point for G, and for
u with uRp−1 ≥ −1, G(u) is increasing with respect to u, which follows from (2.3).
Define the sequence {ϕk(t)} as follows

ϕ0 = −R1−p, ϕk+1 = H + G(ϕk), k = 0, 1, 2, . . . .

It is easy to see that ϕk+1 ≥ ϕk, k = 0, 1, 2, . . . , provided H ≥ 0.
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Theorem 3.1. Let c(t) ≥ 0 for large t. Equation (1.1) is non-oscillatory if and
only if there exists t0 ∈ [a,∞) such that limk→∞ ϕk(t) = ϕ(t) for t ≥ t0, i.e.,
{ϕk(t)} is well defined and pointwise convergent.

Proof. Only if part: If (1.1) is non-oscillatory then there is a function w satisfying
Rp−1(t)w(t) ≥ −1 and Rp(t)w(t) = S(w)(t) for large t, say t ≥ t0, by Theorem 2.1.
In fact, instead of the equality Rp(t)w(t) = S(w)(t) we may take the inequality
Rp(t)w(t) ≥ S(w)(t), and the proof works as well. See also Remark 3.2 (i), why this
is useful. For convenience we skip the argument t sometimes in the computations.
Since w ≥ −R1−p, we have w ≥ ϕ0. Further ϕ1 = H + G(ϕ0) = H + ϕ0 ≥ ϕ0

and ϕ1 = H + G(ϕ0) ≤ H + G(w) = w. Hence, ϕ0 ≤ ϕ1 ≤ w and Rp−1ϕ1 ≥
−1. Similarly, w = H + G(w) ≥ H + G(ϕ1) = ϕ2 ≥ H + G(ϕ0) = ϕ1, hence,
ϕ0 ≤ ϕ1 ≤ ϕ2 ≤ w. By induction, ϕk ≤ ϕk+1 ≤ w for k = 0, 1, 2, . . . . Hence,
limk→∞ ϕk(t) = ϕ(t).

If part: If limk→∞ ϕk(t) = ϕ(t), then from the monotonicity of {ϕk} it follows
ϕk ≤ ϕ and Rp−1ϕk ≥ −1 for k = 0, 1, 2, . . . , on [t0,∞). Applying the Lebesgue
monotone convergence theorem in ϕk+1 = H + G(ϕk), we get ϕ = H + G(ϕ), or
Rpϕ = S(ϕ). Now it is easy to see that ϕ solves the generalized Riccati equation
(1.2), and thus (1.1) is non-oscillatory. �

Remark 3.2. (i) A closer examination of the proof shows that, as a by-product, we
have obtained another proof of Theorem 2.1 (ii). Indeed, if w satisfies Rp−1w ≥ −1
and Rpw ≥ S(w), then limk→∞ ϕk(t) = ϕ(t), which implies non-oscillation of (1.1).

(ii) In the if part, c(t) ≥ 0 can be relaxed to
∫∞

t
Rp(s)c(s) ds ≥ 0. We conjecture

that this is possible also in the only if part.
(iii) The approximating sequence {ϕk} is not the only one that is available.

Another possibility is, for instance, the sequence {ψk}, defined by ψ0 = G(H−R1−p)
and ψk+1 = G(H + ψk).

Corollary 3.3. Let c(t) ≥ 0 for large t. Equation (1.1) is oscillatory if and only
if either

(i) there is m ∈ N such that ϕk is defined for k = 1, 2, . . . ,m− 1, but ϕm does
not exists, i.e.,∫ ∞

t

r1−q(s)[pRp−1(s)ϕm−1(s) + (p− 1)|Rp−1(s)ϕm−1(s)|q] ds = ∞,

or
(ii) ϕk is defined for k = 1, 2, . . . , but for arbitrarily large t0 ≥ a, there is

t∗ ≥ t0 such that limk→∞ ϕk(t∗) = ∞.

4. Applications

In this section we show how the function sequence technique can be applied.
By means of this method, we establish oscillation and comparison results for (1.1);
some of them are known, some of them are new or improving known ones. We start
with modified Hille-Nehari type criteria.

Theorem 4.1. Let c(t) ≥ 0 for large t. If

lim sup
t→∞

R−1(t)S(ϕk)(t) > 0 (4.1)

for some k ∈ N ∪ {0}, then (1.1) is oscillatory.
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Proof. If equation (1.1) is non-oscillatory, then as in the proof of Theorem 3.1,
we have ϕk(t) ≤ w(t), k = 0, 1, 2, . . . for large t. Moreover, R−1(t)S(w)(t) ≤
Rp−1(t)w(t) for large t and lim supt→∞Rp−1(t)w(t) ≤ 0 by Theorem 2.1. Hence,

lim sup
t→∞

R−1(t)S(ϕk)(t) ≤ lim sup
t→∞

R−1(t)S(w)(t)

≤ lim sup
t→∞

Rp−1(t)w(t) ≤ 0,

which contradicts (4.1). �

Taking k = 0 in the previous theorem, we have the following statement, which
was established also in [3].

Corollary 4.2. Let c(t) ≥ 0 for large t. If

lim sup
t→∞

R−1(t)
∫ ∞

t

Rp(s)c(s) ds > 1,

then (1.1) is oscillatory.

Theorem 4.3. Let c(t) ≥ 0 for large t. If

lim inf
t→∞

R−1(t)
∫ ∞

t

Rp(s)c(s) ds > q−p, (4.2)

then (1.1) is oscillatory.

Proof. Condition (4.2) can be rewritten as∫ ∞

t

Rp(s)c(s) ds ≥ γR(t) (4.3)

for large t, say t ≥ t0, where γ > q−p. Then

ϕ1(t) = H(t) + G(ϕ0)(t) ≥ R−p(t)γR(t)−R1−p(t) = γ1R
1−p(t), (4.4)

t ≥ t0, where γ1 = γ − 1.
Note that γ1 > −1 and Rp−1(t)ϕ1(t) > −1. Hence, in view of (2.3), (4.3),

and (4.4), ϕ2(t) = H(t) + G(ϕ1)(t) ≥ γR1−p(t) + R−p(t)
∫∞

t
r1−q(s)[pγ1 + (p −

1)|γ1|q] ds = γ2R
1−p(t), where γ2 = γ + pγ1 + (p− 1)|γ1|q. Since γ1 > −1, we have

γ2 > γ−p+p−1 = γ−1 = γ1 by (2.3), and so γ2 > γ1 > −1 and Rp−1(t)ϕ2(t) > −1.
Arguing as above, by induction,

ϕk(t) ≥ γkR
1−p(t), k = 1, 2, . . . , (4.5)

where {γk} is defined by

γk+1 = γ + pγk + (p− 1)|γk|q, k = 1, 2, . . . . (4.6)

Moreover, γk+1 > γk > −1, k = 1, 2, . . . . Hence the limit limk→∞ γk = L ∈
(−1,∞) ∪ {∞} exists. We claim that L = ∞. If not, then (4.6) yields

|L|q + L+ γ/(p− 1) = 0. (4.7)

We show that this equation has no solution in (−1,∞). We distinguish two cases.
If L ∈ [0,∞), then |L|q + L + γ/(p − 1) ≥ γ/(p − 1) > 0, a contradiction. To
show that also L ∈ (−1, 0) is impossible, it is sufficient to examine the problem
x = g(x;λ), x ∈ (−1, 0), where g(x;λ) = λ+ px+ (p− 1)|x|q and λ is a parameter.
It is easy to see that −q1−p is a fixed point of g(·; q−p), and the parabola-like curve
x → g(x; q−p) touches the line x → x at x = −q1−p. Since γ > q−p, the problem
x = g(x; γ) has no solution in (−1, 0). But this problem is equivalent to (4.7), and
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so limk→∞ γk = ∞. Hence, from (4.5), we have limk→∞ ϕk(t) = ∞ for t ≥ t0.
Equation (1.1) is oscillatory by Corollary 3.3. �

Theorem 4.4. Let c(t) ≥ 0 for large t. If

R−1(t)
∫ ∞

t

Rp(s)c(s) ds ≤ q−p for large t, (4.8)

then (1.1) is non-oscillatory.

Proof. Condition (4.8) can be rewritten as
∫∞

t
Rp(s)c(s) ds ≤ δR(t) for large t, say

t ≥ t0, where 0 < δ ≤ q−p. Similarly as in the previous part, with a wide utilization
of (2.3), we get

ϕk(t) ≤ δkR
1−p(t), k = 1, 2, . . . , (4.9)

where {δk} is defined by

δk+1 = δ + pδk + (p− 1)|δk|q, k = 1, 2, . . . (4.10)

and δ1 = δ − 1. Moreover, δk+1 > δk > −1, k = 1, 2, . . . . We claim that {δk}
converges. Consider the fixed point problem x = g(x;λ), where g is defined as
above. In addition to the already mentioned properties of g, we remark that g(·;λ)
has the minimum at x = −1, g(−1;λ) = λ − 1, and g : [−1,−q1−p] → [q−p −
1,−q1−p]. Hence, if we choose x1 = q−p − 1, then the approximating sequence
xk+1 = g(xk; q−p) is strictly increasing and converges to −q1−p. Consequently, {δk}
defined by (4.10) with δ1 = δ − 1 converges as well, and permits δk ≤ xk < −q1−p.
Thus {ϕk} converges by (4.9), and so (1.1) is non-oscillatory by Theorem 3.1. �

Remark 4.5. Theorems 4.3 and 4.4 were proved also in [3], using a different
technique. See also [1, Section 2.3.1].

Now we give an example of an equation involving parameters which, in particular,
can be proved to be oscillatory using our new results, but other known criteria are
inapplicable.

Example 4.6. Let r(t) = t(1−q)t(1 + log t)q−1 and c(t) = tpt[λt−t(1 + log t) +
γt−t(1+ log t) sin t+γt−t cos t] in equation (1.1), where λ > γ > 0. It is easy to see
that c(t) > 0 for large t and R(t) = t−t. Further,

R−1(t)
∫ ∞

t

Rp(s)c(s) ds

= tt
∫ ∞

t

[
λs−s(1 + log s) + γs−s(1 + log s) sin s+ γs−s cos s

]
ds

= tt(λt−t + γt−t sin t)
= λ+ γ sin t.

If λ+γ ≤ q−p, then (1.1) is non-oscillatory by Theorem 4.4. If λ−γ > q−p, then
(1.1) is oscillatory by Theorem 4.3. Thus next we assume λ−γ ≤ q−p and λ+γ > 1.
Then Theorem 4.3 cannot be applied, but (1.1) is oscillatory by Corollary 4.2. Now
assume that λ+ γ ≤ 1 and λ+ γ+ f(λ+ γ− 1) > 0, where f(x) = px+(p− 1)|x|q.
Then Corollary 4.2 cannot be applied, but (1.1) is oscillatory by Theorem 4.1 with
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k = 1. Indeed, this follows from the equality

R−1(t)S(ϕ1)(t) = λ+ γ sin t+ tt
∫ ∞

t

s−s(1 + log s)
[
p(λ+ γ sin s− 1)

+ (p− 1)|λ+ γ sin s− 1|q
]
ds.

It is easy to see that the sets of λ’s and γ’s, which satisfy these requirements, are
nonempty. Using Theorem 4.1 with k ≥ 2 we can similarly handle the cases where
λ+ γ + f(λ+ γ − 1) is nonpositive, but is not “too negative”.

Next we prove a Hille-Wintner type comparison theorem. Along with (1.1)
consider the equation

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0, (4.11)

where c̃ is continuous on [a,∞).

Theorem 4.7. Let c(t) ≥ 0 and∫ ∞

t

Rp(s)c(s) ds ≥
∫ ∞

t

Rp(s)c̃(s) ds ≥ 0 (4.12)

for large t. If (1.1) is non-oscillatory, then (4.11) is non-oscillatory.

Proof. If (1.1) is non-oscillatory, then {ϕk} is well defined and limk→∞ ϕk(t) = ϕ(t)
by Theorem 3.1. The following computations hold for large t. From condition
(4.12), we have H(t) ≥ R−p(t)

∫∞
t
Rp(s)c̃(s) ds =: H̃(t). Then ϕ1(t) = H(t) +

G(ϕ0)(t) ≥ H̃(t)+G(ϕ0)(t) =: ϕ̃1(t). Clearly, ϕ̃1(t) ≥ ϕ0(t) =: ϕ̃0(t). By induction,
ϕk+1(t) ≥ H̃(t) + G(ϕ̃k)(t) =: ϕ̃k+1(t), k = 0, 1, 2, . . . . Moreover, ϕ̃k(t) ≤ ϕ(t)
and ϕ̃k(t) ≤ ϕ̃k+1(t), k = 0, 1, 2, . . . . Consequently, (4.11) is non-oscillatory by
Theorem 3.1 and Remark 3.2 (ii). �

Remark 4.8. (i) This theorem was established also in [3] by direct using of the
Riccati technique. See also [1, Section 2.3.1]. Notice however that here we do not
require c̃ to be nonnegative.

(ii) Under the conditions of the theorem, oscillation of (4.11) implies oscillation
of (1.1).

(iii) From Hille-Nehari type criteria (Theorem 4.3 and Theorem 4.4) we get that
the generalized Euler differential equation

(r(t)Φ(y′))′ + λr1−q(t)R−p(t)Φ(y) = 0 (4.13)

is oscillatory if and only if λ > q−p. Note that y = R(p−1)/p is a nonoscillatory
solution of (4.13) with λ = q−p. Observe that, conversely, knowing this result,
Theorems 4.3 and 4.4 can be alternatively obtained by the Hille-Wintner type re-
sult comparing equation (1.1) with equation (4.13). Similar but a little bit more
complicated approach to establish these theorems was used in [3]: The proofs there
are based on a knowledge of oscillation behavior of certain generalized Euler dif-
ferential equation (which a special case of (4.13)), Hille-Wintner type comparison
theorem, and a transformation of independent variable. At any rate, we believe
that the approach via the function sequence technique has an advantage over this
comparison method in cases where a transformation is not available or guessing
a solution is difficult. This may concern, e.g., a discrete counterpart of (1.1), a
half-linear difference equation.
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