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A GLOBAL APPROACH TO GROUND STATE SOLUTIONS

PHILIP KORMAN

Abstract. We study radial solutions of semilinear Laplace equations. We try
to understand all solutions of the problem, regardless of the boundary behavior.

It turns out that one can study uniqueness or multiplicity properties of ground

state solutions by considering curves of solutions of the corresponding Dirichlet
and Neumann problems. We show that uniqueness of ground state solutions

can sometimes be approached by a numerical computation.

1. Introduction

The question of uniqueness of ground state solutions of semilinear elliptic prob-
lems has been of great interest in recent years, given its importance for applications
to physics and other sciences, see e.g. Serrin and Tang [18] and Peletier and Serrin
[15], which contain references to many other papers. Namely, one is looking for the
positive solutions of

∆u(x) + f(u(x)) = 0, x ∈ Rn, u(x) → 0, as |x| → ∞. (1.1)

It follows from Gidas, Ni and Nirenberg [6] that (under a mild smoothness as-
sumption, and for functions f(u) consistent with the ones we consider below) such
solutions are symmetric with respect to some point, which we take to be the origin
(see also [5] and [19] for more recent results on symmetry). Then u = u(r) (r = |x|)
satisfies the ODE

u′′(r) +
n− 1

r
u′(r) + f(u) = 0, 0 < r < ∞

u′(0) = u(∞) = 0

u(r) > 0, u′(r) < 0, 0 < r < ∞.

(1.2)

As was pointed out by Peletier and Serrin [16], it is reasonable to study radial
ground states; i.e., solutions of (1.2), even for f(u) for which no symmetry result
is available for (1.1). We will approach the ground state solutions by trying to
understand all solutions of the equation in (1.2).

Namely, consider shooting for

u′′(r) +
n− 1

r
u′(r) + f(u) = 0 u(0) = α, u′(0) = 0. (1.3)
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We shall assume that f(u) satisfies

f(u) ∈ C1[0,∞), f(0) = 0, and for some b > 0 we have:

f(u) < 0 on (0, b), and f(u) > 0 for b < u < c, with c ≤ ∞ f ′(b) > 0;

f(c) = 0, in case c < ∞.

(1.4)

For most of our results we shall also assume that

there is θ > b, such that
∫ θ

0

f(u) du = 0. (1.5)

If u(0) = α > b, then u′′(0) = − 1
nf(α) < 0, and the solution is decreasing for

small r. If also f(u) is bounded or subcritical, then, for α large enough, u(r) will
become zero at some point, see e.g. Ouyang and Shi [14] for a collection of existence
results for the Dirichlet problem. After rescaling, we can identify the corresponding
solution with a solution of the Dirichlet problem

u′′(r) +
n− 1

r
u′(r) + λf(u) = 0, 0 < r < 1, u′(0) = 0, u(1) = 0, (1.6)

for some value of λ > 0. We then say that the initial value α belongs to the Dirichlet
range. The key is to prove uniqueness of the Dirichlet curve (i.e. the solution curve
of (1.6)), and that this curve extends to infinity. It follows that the Dirichlet range
is (d,∞) for some d > θ (

∫ θ

0
f(u) du = 0), which means that the range of α’s giving

rise to ground states is compact.
Below the Dirichlet range there is Neumann range; i.e., when solution of (1.3)

develops a zero slope. After stretching, we identify the corresponding solution with
a solution of the Neumann problem

u′′(r) +
n− 1

r
u′(r) + λf(u) = 0, 0 < r < 1

u′(0) = u′(1) = 0

u(r) > 0, u′(r) < 0, 0 < r < 1,

(1.7)

where λ is a positive parameter. There is a curve of solutions bifurcating from b at
λ1 > 0, the principal Neumann eigenvalue. Assume that all solutions of (1.7) lie
on a unique solution curve (i.e. continuation in λ produces all solutions of (1.7)).
Then the Neumann range is (b, n) for some n < d. It follows that (n, d) is the
ground state range. So, the number of ground states is either one or infinite. (The
number of the ground states can be also zero, in case f(u) behaves like us, with
0 < s < 1 for small u. Then the Neumann range and Dirichlet range come together
to produce a dead core, i.e. solutions that are positive on [0, r1) and identically zero
on [r1, 1), for some r1 ∈ (0, 1). Our condition (1.4) prevents that from happening,
in view of the Hopf’s boundary lemma.) By studying the variational equation, one
finally shows that it is impossible to have a continuum of ground states.

We were able to prove uniqueness of the Neumann curve under the condition

f(u)
u− b

> f ′(u) for all u > 0. (1.8)

This condition (going back to Opial [13] in the ODE case, see also Schaaf [17], and
Korman [11]) is rather restrictive (it holds if e.g. f ′′(u)(u− b) < 0 for u > 0). We
found Neumann curves (i.e. solutions of (1.7)) to be hard to handle. If the Neumann
curve bifurcating from u ≡ b is not unique, we show that any other Neumann curve



EJDE-2008/122 A GLOBAL APPROACH TO GROUND STATE SOLUTIONS 3

has at least one turn. Computing numerically solutions of variational equation, we
are able to rule out the possibility of turns on Neumann curves, implying that the
Neumann curve bifurcating from u ≡ b is unique. We believe that the problem
(1.7) deserves further study, even for its own sake.

By contrast, for the Dirichlet problem (1.6)) we were able to give a general condi-
tion for the uniqueness of the solution curve. This is a crucial result, since it allows
us to “compactify” the set of α = u(0) for which ground states may occur, since
this Dirichlet curve typically extends to infinity. On a compact set it is feasible
to do a computer assisted proof, by studying the corresponding variational equa-
tion. (Essentially the same numerical computation rules out both the possibility of
Neumann curves with a turn, and intervals of ground states.) We show that unique-
ness of the Dirichlet curve (i.e. there is only one solution curve of (1.6)) follows
from positivity of any non-trivial solution of the corresponding linearized problem,
exactly the same condition that was prominent in the study of exact multiplicity
of solutions of (1.6), see Korman, Li and Ouyang [10], Ouyang and Shi [14], and
Korman and Ouyang [11]. The same condition occurs in the study of symmetry
breaking on a ball, see Korman [11]. A number of conditions for positivity was
given in the above papers, and we add yet another one here.

We now summarize our results. We show that a positivity property of the lin-
earized equation implies that ground states are possible only if u(0) belongs to a
finite interval. Then we show that the assumption of non-uniqueness of ground
states implies that either there is an interval of u(0) giving ground states, or there
is a Neumann branch with a turn (or both). Finally, we give conditions ruling out
these two possibilities, opening a way to do a computer assisted proof. We conclude
with a description of a numerical experiment.

We wish to mention a recent paper of Arioli et al [1], which also contains a
computer assisted study of a related problem.

Throughout the paper we consider mostly the classical solutions. We shall use
the following bifurcation theorem of Crandall and Rabinowitz [3].

Theorem 1.1 ([3]). Let X and Y be Banach spaces. Let (λ, x) ∈ R × X and
let F be a continuously differentiable mapping of an open neighborhood of (λ, x)
into Y . Let the null-space N(Fx(λ, x)) = span{x0} be one-dimensional and let
codimR(Fx(λ, x)) = 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z is a complement of
span{x0} in X, then the solutions of F (λ, x) = F (λ, x) near (λ, x) form a curve
(λ(s), x(s)) = (λ + τ(s), x + sx0 + z(s)), where s → (τ(s), z(s)) ∈ R × Z is a
continuously differentiable function near s = 0 and τ(0) = τ ′(0) = 0, z(0) =
z′(0) = 0.

2. Uniqueness for a class of Neumann problems

We shall study solution curves for the Neumann problem (1.7), with f(u) sat-
isfying (1.4). Since solutions of (1.7) are decreasing, and u′′(0) = −λ

nf(u(0)), it
follows that u(0) > b. Similarly, u′′(1) = −λf(u(1)), which implies that u(1) < b
(the possibilities of u(0) = b or u(1) = b are ruled out by the uniqueness theorem,
which would imply u ≡ b).
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The linearized problem corresponding to (1.7) is

w′′(r) +
n− 1

r
w′(r) + λf ′(u)w = 0, 0 < r < 1

w′(0) = w′(1) = 0.
(2.1)

For any non-trivial solution of (2.1) we may assume that w(0) > 0. We have the
following rather general lemma.

Lemma 2.1. Let u(r) be a solution of (1.7), and assume that f(u) satisfies (1.4).
Then any non-trivial solution of (2.1) must be sign changing.

Proof. Assume on the contrary that w(r) > 0. Differentiating (1.7), we have

u′′′ +
n− 1

r
u′′(r) + λf ′(u)u′ − n− 1

r2
u′ = 0.

Combining this with (2.1)

[rn−1(w′u′ − wu′′)]′ + (n− 1)rn−3u′w = 0.

It follows that the function q(r) ≡ rn−1(w′u′ − wu′′) is increasing on (0, 1). But
q(0) = 0, while

q(1) = −w(1)u′′(1) = λw(1)f(u(1)) < 0,

which is a contradiction. �

Lemma 2.2. Assume f(u) satisfies the condition (1.4) and (1.8). Then the prob-
lem (2.1) has no non-trivial solutions.

Proof. Let ξ ∈ (0, 1) be the point where u(ξ) = b. According to the previous lemma,
w(r) has to change sign on (0, 1). However, we shall show that w(r) cannot vanish
on (0, ξ], and on [ξ, 1).

We rewrite the equation in (1.7) in the form

(u− b)′′(r) +
n− 1

r
(u− b)′(r) + λ

f(u)
u− b

(u− b) = 0. (2.2)

Multiplying (2.2) by w, equation (2.1) by u− b, and subtracting

[rn−1
(
wu′ − w′(u− b)

)
]′ + λrn−1

[ f(u)
u− b

− f ′(u)
]
(u− b)w = 0. (2.3)

If we now assume that w(r) vanishes on (0, ξ], we can find η ∈ (0, ξ] (the first zero),
so that w(r) > 0 on (0, η), and w(η) = 0. Integrating (2.3) over (0, η), we obtain

−ηn−1w′(η)(u(η)− b) + λ

∫ η

0

rn−1[
f(u)
u− b

− f ′(u)](u− b)w dr = 0.

Since both quantities on the left are positive, we have a contradiction. In case w(r)
vanishes on [ξ, 1), we can find η ∈ [ξ, 1) (the last zero), so that w(r) > 0 on (η, 1],
and w(η) = 0. Integrating (2.3) over (η, 1), we have

ηn−1w′(η)(u(η)− b) + λ

∫ 1

η

rn−1
[ f(u)
u− b

− f ′(u)
]
(u− b)w dr = 0.

Since u(r) < b over (η, 1], both terms on the left are negative, which is a contradic-
tion. �

The following lemma will be used for continuation of Neumann branches.
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Lemma 2.3. Assume that u(r) is a singular solution of the Neumann problem
(1.7); i.e., the linearized problem (2.1) has a non-trivial solution w(r). Then∫ 1

0

f(u)wrn−1 dr = − 1
2λ

w(1)u′′(1). (2.4)

Proof. The function z(r) = rur satisfies the equation

z′′(r) +
n− 1

r
z′(r) + λf ′(u)z = −2λf(u). (2.5)

Combining this with (2.1)

[rn−1(z′w − zw′)]′ = −2λf(u)wrn−1.

Integrating over (0, 1), we obtain (2.4). �

We have the following existence and uniqueness result for the Neumann problem
(1.7), whose proof we postpone for the next section. We denote by λ1 > 0 the first
positive eigenvalue of the Neumann problem for −∆, acting on radial functions on
a unit ball.

Theorem 2.1. The problem (1.7), with f(u) satisfying (1.4), (1.5), and (1.8) has
a unique solution for every λ > λ1/f ′(b). Moreover, all solutions of (1.7) lie on a
unique curve of solutions. This curve bifurcates from the trivial solution u = b, and
continues without any turns for all λ > λ1/f ′(b). Moreover, the maximum value of
solution, u(0, λ), is monotone increasing in λ, with a finite limit limλ→∞ u(0, λ) >
θ.

3. General properties of Dirichlet and Neumann branches

We shall discuss some properties of positive solutions of the Dirichlet problem

u′′(r) +
n− 1

r
u′(r) + λf(u) = 0, 0 < r < 1, u′(0) = 0, u(1) = 0, (3.1)

depending on a positive parameter λ.
The following result from Korman [7] gives a detailed description of the shape of

solutions for large λ. It holds for general f(u), in particular we do not assume the
condition (1.4) here. Recall a customary convention that root α of f(u) is called
stable if f(α) = 0 and f ′(α) < 0. It turns out that for large λ solutions of (3.1)
concentrate at stable roots of f(u), as the following result shows.

Theorem 3.1. Let u(r, λ) be a branch of positive solutions of (3.1), that exists
for all λ > λ̄, with some λ̄ > 0. Assume that u(r, λ) does not tend to infinity
over any subinterval of (0, 1) (which may happen if e.g. limu→∞

f(u)
u = ∞, or if

there is u0 > 0, so that f(u) ≤ 0 for u ≥ u0). Then the interval (0, 1) can be
decomposed into a union of open intervals, whose total length = 1, so that on each
such subinterval u(r, λ) tends to a stable root of f(u), as λ →∞.

If for some reason solutions cannot be of that shape, it follows that there are no
positive solutions of (1.6) for large λ, as happens in the following example.
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Example. Assume that f(u) < 0 for 0 ≤ u < b, with some b > 0, f(u) > 0 for
u > b, and limu→∞

f(u)
u = ∞, e.g. f(u) = up − 1, with p > 1. Then the problem

(3.1) has no positive solution for λ large enough. Indeed, since f(u) has no stable
roots, solutions cannot exhibit the behavior described in the above theorem, and
hence solutions cannot continue to exist for all large λ.

In this example f(0) < 0. If, instead, we have f(0) = 0 (as is the case when
f(u) satisfies our condition (1.4)), then it is possible for solution to exist for large
λ, concentrating at zero. If condition (1.4) holds, but u(r, λ) does not concentrate
at zero, then it must tend to infinity over a subinterval of [0, 1), in view of Theorem
3.1, in particular its maximum value u(0, λ) goes to infinity.

The following lemma is essentially known.

Lemma 3.1. The value of u(0) = α uniquely identifies the solution pair (λ, u(r))
for both the Dirichlet problem (3.1) and the Neumann problem (1.7) (i.e. there is
at most one λ, with at most one solution u(r), so that u(0) = α).

Proof. This result is well known for the Dirichlet case, see e.g. [14] or [8], so let us
prove it for the Neumann problem (1.7). Assume on the contrary that we have two
solution pairs (λ, u(r)) and (µ, v(r)), with u(0) = v(0) = α. Clearly, λ 6= µ, since
otherwise we have a contradiction with uniqueness of initial value problems, which
was established for this class of problems by Peletier and Serrin [15]. Then u( 1√

λ
r)

and v( 1√
µr) are both solutions of the same initial value problem

u′′(r) +
n− 1

r
u′(r) + f(u) = 0 u(0) = α, u′(0) = 0,

and hence u( 1√
λ
r) = v( 1√

µr), but that is impossible, since the derivative of the first

function has its first root at r =
√

λ, while the derivative of the second one has its
first root at r =

√
µ. �

The linearized problem corresponding to (3.1) is

w′′(r) +
n− 1

r
w′(r) + λf ′(u)w = 0, 0 < r < 1, w′(0) = w(1) = 0. (3.2)

Theorem 3.2. Assume that f(u) satisfies the conditions (1.4) and (1.5), and
assume that any non-trivial solution of (3.2) is of one sign. Then all positive
solutions of the Dirichlet problem (3.1) lie on a unique solution curve.

Proof. It is known that all solutions of the Dirichlet problem (3.1) lie on smooth
solution curves, see [10], [14]. What this means is that at any regular solution
(λ, u(r)), i.e. when the problem (3.2) has only the trivial solution, one can apply
the implicit function theorem, and continue the solution in λ, while at any singular
solution (λ0, u0(r)), i.e. when the problem (3.2) admits a non-trivial solution, the
Crandall and Rabinowitz Theorem 1.1 applies. This theorem implies that only
simple turns are possible at singular solutions. Moreover, this theorem shows that
the solution curve near a turning point has the form

u(r, s) = u0(r)± sw(r) + o(s) for s close to 0, (3.3)

where s is some parameter (e.g. s = u(0) − u0(0)). It follows that near a turning
point uλ(r, λ) is proportional to w(r), and hence uλ(r, λ) is positive (negative) on
the upper branch, and negative (positive) on the lower branch if a turn to the right
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(left) occurs (see [10] for more details). It was proved in [10] that positivity of
uλ(r, λ) persists on a branch (until a possible next turning point).

Let us now start with an arbitrary solution of the Dirichlet problem (3.1) and
continue it for decreasing λ. Let us assume first that c = ∞ in (1.4). We will
show that the maximum value u(0, λ) has to tend to infinity along this curve. This
will imply uniqueness of the solution curve, because by Lemma 3.1 solutions are
identified by the values of u(0), and our solution curve has “taken up” all possible
large values of u(0). It might happen that u(0, λ) goes to infinity as λ ↓ λ1 for some
λ1 ≥ 0, then we are done. Otherwise, the curve will have to make a turn to the
right at some (λ0, u0). (It cannot go to zero by maximum principle, and it cannot
cross the line λ = 0.)

At the turning point (λ0, u0), we have an upper branch which is increasing in λ
for all r. This upper branch, let us refer to it as u0(r, λ), might continue without
any more turns for all λ > λ0. But then u(0, λ) on this branch tends to infinity in
view of Theorem 3.1 (see remarks after it), since solutions on this branch cannot
tend to zero, the only stable root of f(u). Another possibility is for u0(r, λ) to reach
another turning point (λ1, u1), at some λ1 > λ0. At the second turning point we
have another upper branch, denoted u1(r, λ), which we continue for decreasing λ.
By the Crandall-Rabinowitz theorem 1.1, u1(r, λ) > u0(r, λ) for λ close to λ1 (here
we use the positivity of w(r) again). The inequality u1(r, λ) > u0(r, λ) persists
for all λ, since otherwise we would get a contradiction at a point where these
solution “touch” (by maximum principle). Hence either u1(r, λ) goes to infinity for
decreasing λ, or it will make a turn to the right at some (λ2, u2), with the upper
branch (denote it by u2(r, λ)) increasing in λ, resuming its march to infinity. (We
have u2(r, λ) > u1(r, λ) > u0(r, λ), for all λ where all three branches are defined.)
In either case, u(0, λ) on this branch tends to infinity. (This branch may go to
infinity as λ tends to either infinity or to some finite number. The second case is
quite possible, since we do not restrict the behavior of f(u) at infinity.)

In case c < ∞ in (1.4), similar arguments show that one end of every solution
curve tends to c, implying uniqueness of the solution curve, in view of Lemma
3.1. �

Remark. If solution curve turns at some (λ0, u0), then (λ0, u0) is a singular so-
lution, i.e. the linearized problem (3.2) has a nontrivial solution w(r). Clearly,
not every singular solution is a turning point. Examining the proof, we see that it
suffices to have w(r) > 0 at turning points only.

A number of conditions are known for positivity of w(r), see [14], [10], [11]. We
will formulate another such condition, which is based on Peletier and Serrin [15],
[16].

Theorem 3.3. Assume that f(u) satisfies the conditions (1.4) and (1.5), and
moreover

f(u)
u− θ

is non-increasing for u > θ. (3.4)

Then at any turning point of (3.1) any non-trivial solution of (3.2) is of one sign.

Proof. It was shown in [10] that Crandall and Rabinowitz bifurcation Theorem 1.1
applies at any turning point of (3.1). Namely, near a turning point (λ0, u0) the
solution set of (3.1) consists of a curve described in (3.3). It follows from (3.3) that
two branches near a turning point (λ0, u0) do not intersect if and only if w(r) is of
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one sign. Hence, it suffices to show that under the condition (3.4) any two positive
solutions of (3.1) cannot intersect. This result is essentially due to Peletier and
Serrin [15], and we review its proof next.

One begins by showing that any two solutions cannot intersect in the region,
where u(r) < θ. This was essentially done by Peletier and Serrin [15], who proved
the same result for ground state solutions. Later Kwong and Zhang [12] observed
that the same proof works also for the Dirichlet problem, and the details can be
found in [9]. Then one shows that two solutions cannot intersect in the region,
where u(r) ≥ θ too. This fact was also proved by Peletier and Serrin [15]. We
present next a considerably simpler proof.

So assume for contradiction that two solutions u(r) and v(r) intersect at a point
R, with u(R) = v(R) ≥ θ. We may assume ξ to be the first point of intersection,
and u(r) > v(r) ≥ θ on [0, R). Set U = u− θ, and V = v − θ. Then U > V > 0 on
[0, R). We rewrite the equation (3.1) as

U ′′ +
n− 1

r
U ′ + λ

f(u)
u− θ

U = 0.

Doing the same for v, and combining both equations, we have

[rn−1(U ′V − UV ′)]′ + λrn−1
[ f(u)
u− θ

− f(v)
v − θ

]
UV = 0.

By our condition (3.4) it follows that the function p(r) ≡ rn−1(U ′V − UV ′) is
non-decreasing on [0, R). But p(0) = 0, while

p(R) = Rn−1U(R)(u′(R)− v′(R)) < 0,

a contradiction. �

Lemma 3.2. Let u(r) be a positive solution of either ground state problem (1.2)
or the Dirichlet problem (3.1). Then u(0) > θ.

Proof. Let us consider the problem (1.2), since in the Dirichlet case the proof
is similar, and the result is better known, see e.g. [10]. The “energy” E(r) =
1
2u′

2(r) + F (u(r)) is decreasing, since E′(r) = −n−1
r u′

2(r). If we assume that
u(0) ≤ θ, then E(0) ≤ 0, and it follows that E(r) is bounded above by a negative
constant for large r. This is inconsistent with F (u(r)) → 0, as r →∞. �

The following theorem describes the Neumann curve bifurcating from u ≡ b at
λ = λ1/f ′(b), where λ1 > 0 is the first positive eigenvalue of the Neumann problem
for −∆ on a unit ball.

Theorem 3.4. Consider the Neumann problem (1.7), with f(u) satisfying (1.4)
and (1.5). Assume that all solutions of the corresponding Dirichlet problem lie on a
unique solution curve, and u(0, λ) on this curve extends to c. Then there is a curve
of solutions of (1.7), bifurcating from the trivial solution u = b at λ = λ1/f ′(b).
This curve continues globally, with the maximum value u(0) strictly increasing, and
with λ eventually tending to infinity. Moreover, limλ→∞ u(0, λ) > θ. Any other
solution curve has at least one turn to the right, with both branches extending to
infinity along the λ axis (i.e. λ tends to infinity on both branches).

If, in addition, the linearized problem (2.1) admits only the trivial solution (this
happens if e.g. the condition (1.8) holds), then the solution curve bifurcating from
u = b does not turn, and there are no other solution curves of (1.7) (this, in
particular, justifies the Theorem 2.1 above).
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Proof. According to the Crandall - Rabinowitz theorem on bifurcation from simple
eigenvalue [4], there is a curve of solutions of (1.7), bifurcating from the trivial
solution u = b at λ = λ1/f ′(b) (on a ball all eigenvalues are simple, since the
value of w(1) parameterizes the eigenfunctions). Solutions on the bifurcating curve
are positive (since they are close to b), and decreasing (since u − b is asymptot-
ically proportional to the first eigenfunction, as λ → λ1). For the same reason,
the maximum value u(0, λ) is increasing along the solution curve. We claim that
all three of these properties are preserved along the solution curve. Indeed, the
maximum value remains increasing, in view of Lemma 3.1. Writing the equation as
(rn−1u′)′ = −λrn−1f(u), we see that rn−1u′ < 0 on (0, 1) (since f(u(r)) changes
sign exactly once), and so u(r) is decreasing. Finally, if u(r, λ) were to become zero,
this would have to happen at r = 1, where we also have u′(1) = 0. Hence u ≡ 0,
contradicting u(0, λ) > b.

We now continue this curve. If the linearized problem (2.1) admits only the
trivial solution, we may use the implicit function theorem to continue this solution
curve in λ. We show next that at singular solutions of (1.7), i.e. when the linearized
problem (2.1) admits non-trivial solutions, the Crandall - Rabinowitz Theorem 1.1
applies. If w(r) is a non-trivial solution of (2.1), then w(1) 6= 0 (since otherwise
w(r) ≡ 0). As we mentioned above, for decreasing solutions of (1.7) u(0) > b, while
u(1) < b. This implies that u′′(1) = −λf(u(1)) > 0, and hence by (2.4)∫ 1

0

f(u(r))w(r)rn−1 dr 6= 0. (3.5)

We now recast the problem (1.7) in the operator form F (λ, u) : R× {H2(0, 1)|
u′(0 = u′(1) = 0} → L2(0, 1)

F (λ, u) = u′′(r) +
n− 1

r
u′(r) + λf(u).

The operator Fu(λ, u) is then given by the left hand side of the equation (2.1),
and hence its null space is one diminsional, spanned by w(r). Since F (λ, u) is
a Fredholm operator, its range has codimension one. And the crucial condition
Fλ 6∈ R(Fu) holds in view of (3.5). Hence, the Crandall - Rabinowitz Theorem 1.1
applies, and we have a curve of H2 solutions through a critical point, which we
then boot-strap to classical solutions.

It follows that any Neumann curve extends globally. Next we observe that there
is a “free” a priori estimate for Neumann curves: the maximum value of solution lies
below that of any solution of the corresponding Dirichlet problem. Hence solution
curves cannot go to infinity at a finite λ. It follows that the curve bifurcating from
u ≡ b has one end where λ → ∞, while for any other curve both ends extend
to infinity in λ, which implies existence of at least one turn to the right on such
curves. �

Remarks.

(1) We believe that the curve of solutions bifurcating from u = b exhausts the
set of solutions of the Neumann problem (1.7), but we have no proof.

(2) Assume that c = ∞, and the condition (1.5) fails, i.e.
∫∞
0

f(u) du ≤ 0.
Then the Neumann curve, bifurcating from b, extends to infinity. In this
case there are no solutions of both the Dirichlet and ground state problems.
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(3) We had assumed existence of solutions for the corresponding Dirichlet prob-
lem. For a collection of relevant existence results see T. Ouyang and J. Shi
[14].

Theorem 3.5. With f(u) satisfying (1.4) and (1.5), assume that the solution sets
for both the Dirichlet problem (1.6) and the Neumann problem (1.7) consist of a
single curve each. Then the set of α = u(0) giving ground state solutions (i.e.
solutions of (1.2)) is either one point or an interval.

Proof. Since the Dirichlet curve continues globally for both decreasing and increas-
ing values of u(0), it follows that the set of α = u(0) for which solutions of (1.2)
become eventually zero, is an interval (d, c), with some d < c ≤ ∞. Similarly, the
set of α = u(0) giving rise to the Neumann range is (b, n), with some n ≤ d. If
n = d, we conclude that u(0) = n gives rise to a unique ground state, otherwise
[d, n] produces an interval of ground states. �

4. Numerical computations

If there is an interval of α’s leading to ground states u(r, α) (i.e. solutions of
(1.2)), then w ≡ uα(r, α) satisfies

w′′(r) +
n− 1

r
w′(r) + f ′(u)w(r) = 0, 0 < r < ∞

w′(0) = 0, w(0) = 1, w(∞) = 0.
(4.1)

Similarly, if there is a turn on a curve of solutions of Neumann problem (1.7),
then the corresponding linearized problem (2.1) has a non-trivial solution, i.e. after
rescaling

w′′(r) +
n− 1

r
w′(r) + f ′(u)w(r) = 0, 0 < r < λ2

w′(0) = 0, w(0) = 1, w′(λ2) = 0,
(4.2)

for some λ > 0. Both possibilities can be usually ruled out by the same set of com-
putations, justifying uniqueness of ground state solutions, provided that uniqueness
of solution curve for the Dirichlet problem is known. (Ruling out turns on Neu-
mann curves implies that the Neumann curve bifurcating from u = b is unique by
the Theorem 3.4, and hence by Theorem 3.5 the set of α’s giving rise to ground
states is either a point or an interval. And it is a point, once we rule out the case
of an interval.)

Example. f(u) = −u + u3, n = 3. I.e. we consider “shooting” for the problem

u′′ +
2
r
u′ − u + u3 = 0, u(0) = α, u′(0) = 0. (4.3)

For this f(u) it is known that any non-trivial solution of the linearized problem
(3.2) is of one sign, see [14], and hence by Theorem 3.2 the Dirichlet problem
(3.1) has a unique solution curve. It follows that the set of α’s giving rise to the
Dirichlet solutions (i.e. decreasing solutions of (4.3) which vanish eventually) is an
interval (d,∞). Our numerical computations show that d < 4.34. We cannot prove
uniqueness of the Neumann curve for this f(u), however our Theorem 3.4 shows that
the Neumann curve bifurcating from u ≡ 1 extends above u(0) = θ =

√
2. Hence

the interval (1,
√

2) is definitely in the Neumann range (i.e. decreasing positive
solutions of (4.3) develop zero slope). Hence intervals of ground states, or Neumann
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branches with a turn, are only possible for α ∈ (
√

2, 4.34). This is a finite interval,
for which one can give computations (of the type we give below) to show that the
Neumann range is actually (1, d), and then α = d gives rise to the unique ground
state solution. Things turn out to be even easier. Our computations leave no doubt
that the maximum value on the Neumann curve goes much higher than θ =

√
2. For

example, in Figure 1 we take α = 4, and see that this α is clearly in the Neumann
range.

2 4 6 8
r

0.5

1.5

2

2.5

3

3.5

4

u

Figure 1. Solution of (4.3) with α = 4

Similar computations show that the Neumann range extends above α = 4.3. This
leaves us with the interval (4.3, 4.34), where intervals of ground states, or Neumann
branches with a turn, might happen. (Computations show that the Neumann range
goes above 4.3 and the Dirichlet range goes below 4.34, but we leave some “safety”,
so that the numbers 4.3 and 4.34 could be validated.)

We took α = 4.32 in the middle of the range, and computed the solution u(r) of
(4.3), and then solved the corresponding variational equation

w′′(r) +
2
r
w′(r) + (−1 + 3u2(r))w(r) = 0, w(0) = 1, w′(0) = 1 (4.4)

on the interval r ∈ [0, 1.4]. The result is plotted in Figure 2.
We see that w(r) is strictly decreasing on this interval, with w(1.4) ' −0.29,

and w′(1.4) ' −0.017. We claim that w(r) continues to decrease for all r > 1.4,
which means that w(r) cannot be solution of either the problem (4.1) or (4.2). One
computes u(1.4) ' 0.48. Since u(r) is decreasing, it follows that −1 + 3u2(r) < 0
for all r > 1.4. Now, w(r) is negative and decreasing at r = 1.4, and it cannot turn
around to go to zero as r →∞, since at the turning point, where w′(r) = 0 the left
hand side of the equation in (4.4) would be positive.

Our computations showed similar results for other α’s in the critical range
(4.3, 4.34), and that was to be expected, since small changes in α produce small
changes in both u(r) and w(r). We believe that these computations can be val-
idated, to produce a computer assisted proof of uniqueness of the ground state,
although we did not carry this out. For this equation the uniqueness result of
Serrin and Tang [18] also applies.

Finally, we mention that we used Mathematica’s NDSolve command to solve
the problems (4.3), and (4.4). To avoid a singularity at r = 0, we took a small
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0.2 0.4 0.6 0.8 1 1.2 1.4
r

-0.2

0.2

0.4

0.6

0.8

1

w

Figure 2. Solution of variational equation when α = 4.32

h = 0.0001, and approximated u(h) ' α + 1
2u′′(0)h2 = α − f(α)

2n h2, and u′(h) '
u′′(0)h = − f(α)

n h, and then used Mathematica to compute for r > h (and we solved
(4.4) similarly).
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