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A NOTE ON THE EXISTENCE OF V-BOUNDED SOLUTIONS
FOR A SYSTEM OF DIFFERENTIAL EQUATIONS ON R

AUREL DIAMANDESCU

ABSTRACT. We prove a necessary and sufficient condition for the existence of
W-bounded solutions of a linear nonhomogeneous system of ordinary differen-
tial equations on R.

1. INTRODUCTION

The aim of this paper is to give a necessary and sufficient condition so that the
nonhomogeneous system of ordinary differential equations

= Alt)xr + f(t) (1.1)

has at least one W-bounded solution on R for every continuous and W-bounded
function f on R.

Here, ¥ is a continuous matrix function on R. The introduction of the matrix
function ¥ permits to obtain a mixed asymptotic behavior of the components of
the solutions.

The problem of boundedness of the solutions for the system was studied in
[4] The problem of U-boundedness of the solutions for systems of ordinary differen-
tial equations has been studied in many papers, as e.q. [I, [3, [0, [[I]. The fact that
in [I] the function ¥ is a scalar continuous function and increasing, differentiable
and such that ¥(¢) > 1 on R and lim;_,o, () = b € Ry does not enable a deeper
analysis of the asymptotic properties of the solutions of a differential equation than
the notions of stability or boundedness. In [3], the function ¥ is a scalar continuous
function, nondecreasing and such that ¥(t) > 1 on Ry. In [9, [TT], ¥ is a scalar
continuous function.

In [B @, 7], the author proposes a novel concept, ¥-boundedness of solutions,
U being a continuous matrix function, which is interesting and useful in some
practical cases and presents the existence conditions for such solutions on Ry. In
[2], the author associates this problem with the concept of ¥-dichotomy on R of
the system 2’ = A(¢t)z. Also, in [I0], the authors define U-boundedness of solutions
for difference equations via W-bounded sequences and establish a necessary and
sufficient condition for existence of W-bounded solutions for a nonhomogeneous
linear difference equation.
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Let R? be the Euclidean d-space. For x = (21,29, 3,...,24)7 € R%, let ||z =
max{|z1]|, |z2|, |x3|, ..., |zqa|} be the norm of z. For a d x d real matrix A = (a;;),
we define the norm [A| by [A] = supj, < [|Az[|. It is well-known that [A| =

d
maxi<i<a{d_j_y |aij]}-
Let ¥; : R — (0,00), i =1,2,...,d, be continuous functions and

U = diag[\llh \112, . \I’d]

Definition. A function ¢ : R — R? is said to be W-bounded on R if ¥¢ is bounded
on R.

By a solution of (1.1)), we mean a continuously differentiable function z : R — R
satisfying the system for all ¢ € R.

Let A be a continuous d x d real matrix and the associated linear differential
system

y = A@)y. (1.2)
Let Y be the fundamental matrix of for which Y (0) = I; (identity d x d
matrix).

Let the vector space R? be represented as a direct sum of three subspaces X_,
Xo, X+ such that a solution y(t) of is ¥-bounded on R if and only if y(0) € X,
and ¥-bounded on Ry = [0,00) if and only if y(0) € X_ & X,. Also, let P_, P,
P, denote the corresponding projection of R onto X_, Xy, X, respectively.

MAIN RESULT

We are now in position to prove our main result.

Theorem 1.1. If Ais a continuous dxd real matriz on R, then, the system (1.1)) has
at least one WU-bounded solution on R for every continuous and V-bounded function
f:R — R? if and only if there exists a positive constant K such that

/7|\Il(t)Y(t)P_Y*1(s)\IJ’1(s)\ds
+ /0 (W)Y (£)(Py + PL)Y " (s)U 1 (s)|ds (1.3)
+ /OO (W)Y () PLY (s)U Y (s)|ds < K, fort >0,

0
and

0
/_|xp(t)Y(t)P,Y—1(s)xp—l(s)\ds
+ / WY (£)(Po + P_)Y ()T (s)ds
0

/ |TU()Y (1) PLY 1 (s)T " (s)|ds < K, fort>0.

Proof. First, we prove the “only if” part. Suppose that the system has at
least one W-bounded solution on R for every continuous and ¥-bounded function
f:R—R%onR.

We shall denote by B the Banach space of all ¥-bounded and continuous func-
tions  : R — R? with the norm ||x||g = supeg || ¥ (£)z(t)]|.
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Let D denote the set of all -bounded and continuously differentiable functions
7 : R — R? such that z(0) € X_ ® X, and 2’ — Az € B. Evidently, D is a vector
space. We define a norm in D by setting ||z|p = ||z||5 + ||z’ — Az 5.
Step 1. (D, ||-||p) is a Banach space. Let (2, )nen be a fundamental sequence of el-
ements of D. Then, (z,)nen is a fundamental sequence in B. Therefore, there exists
a continuous and W-bounded function x : R — R? such that lim,, . ¥(t)z,(t) =
U(¢t)x(t), uniformly on R. From the inequality

lzn () — 2@ < [T O E(zn(t) — Tz ()],
it follows that lim, . x,(t) = x(t), uniformly on every compact of R. Thus,
2(0) € X_ @ X,
Similarly, (2!, — Az, )nen is a fundamental sequence in B. Therefore, there exists

a continuous and ¥-bounded function f : R — R? such that

lim W(¢)(z),(t) — A(t)zn(t)) = ¥(t)f(t), uniformly on R.

n—oo
Similarly,

lim (z),(t) — A(t)zn(t)) = f(t), uniformly on every compact subset of R.

For any fixed t € R, we have

()~ 2(0) = Jim (ra(t) ~ 2,(0))
= lim t 2! (s)ds

n—oo Jq
t

= lim [ [(2,(s) = A(s)2n(s)) + A(s)2n(s)]ds

n— o0 0

t
= [ )+ Asga(oyas
Hence, the function z is continuously differentiable on R and
2/ (t) = A(t)x(t) + f(t), teR.
Thus, z € D. On the other hand, from
nh_)néo U(t)x,(t) = U(t)z(t), uniformly on R,
n11—>II()lo U(t)(z,(t) — A(t)z, (t) = U(t)(2'(t) — A(t)z(t)), uniformly on R,

it follows that lim, . |2, — 2||p = 0. This proves that (D,]| - ||p) is a Banach
space.

Step 2. There exists a positive constant Ky such that, for every f € B and for
corresponding solution x € D of , we have

sup [[W(t)x(t)|| < Kosup [[®(t)f ()],
teR teR

or

(D) (1)] < () f; (D). .
Sup max, |W; ()i (t)| < Ko Sup max, | (t) fi(1)] (1.4)

For this, define the mapping T : D — B, Tx = ' — Az. This mapping is obviously
linear and bounded, with ||T|| < 1.

Let Tz = 0. Then, '’ = Az, x € D. This shows that z is a ¥-bounded solution
on R of (L.2). Then, 2(0) € Xo N (X_ & Xy) = {0}. Thus, z = 0, such that the
mapping T is “one-to-one”.
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Finally, the mapping T is “onto”. In fact, for any f € B, let x be the U-bounded
solution on R of the system (1.1]) which exists by assumption. Let z be the solution
of the Cauchy problem

o' = A(t)z + f(t), 2(0) = (P- + Py)z(0).

Then, u = z — z is a solution of with «(0) = z(0) — (P- + P1)z(0) = Pyx(0).
From the Definition of Xy, it follows that u is ¥-bounded on R. Thus, z belongs
to D and Tz = f. Consequently, the mapping 7" is “onto”. From a fundamental
result of S.Banach: “If T is a bounded one-to-one linear operator of one Banach
space onto another, then the inverse operator T~! is also bounded”. We have
1T~ fllp < T 1lf]1 3, for all f € B.

For a given f € B, let z = T~ f be the corresponding solution x € D of .

We have |[z]|p = [lz] 5+ |2’ — Azl p = |zl +|Ifl5 < IT7 [l f]5- It follows that
|zllp < Kol f||s, where Ko = ||T~!|| — 1, which is equivalent with (L.4).
Step 3. The end of the proof. Let 77 < 0 < T5 be fixed points but arbitrarily
and let f : R — R? be a continuous and ¥-bounded function which vanishes on
(_007 Tl] U [T% +OO)

It is easy to see that the function z : R — R? defined by

— f, Y ( <V@w—7ﬂxww4@ﬂwmt<n

uw=1%?> (ﬁ®%+k 0Y 7L (5)f (s)ds
ffY(> Y(s)f(s)ds T, <t<T
S Y ()P (s)f(s ds+f () PY~Y(s)f(s)ds, t>T,

is the solution in D of the system (1.1]). Putting

Y(t)P_-Y~1(s), t>0,s<0
Y()(Po+P_)Y '(s), t>0,5>0,s<t
Git,s) = Y ()P, Y ~Y(s), t>0,s>0,s>t
’ Y(t)P_Y~1(s), t<0,s<t
~Y () (Py+P.)Y !(s), t<0,58>t,5<0
~Y(t)P.Y " Y(s), t<0,s>t,s>0

we have that z(t) = T? G(t,s)f(s)ds, t € R. Indeed,
e for t > T5, we have

Ty 0 T
/ G(t,s)f(s)ds = Y (t)P_Y 1 (s)f(s)ds + /0 Y (t)(Py 4+ P_)Y 1 (s)f(s)ds

T1 Tl

p T
:/ Y(t)P_Yil(S)f(S)dS‘F‘/O Y (t)PyY " (s) f(s)ds = x(t),

T
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e for ¢t € (0,T5], we have

Ts 0

Y()P_Y " (s)f(s)ds + /0 Y (t)(Py+ P_)Y " *(s)f(s)ds

Ts
- Y ()P Y 1(s)f(s)ds

t

:/ Y(t)P,Y*l(s)f(s)der/o Y (t)PyY " (s) f(s)ds

T

Gt.5)(s)ds = [

T T

Ts

e for t € [Ty, 0], we have

Ts t 0
/ G(t,s)f(s)ds:/ Y(t)P_Y*I(s)f(s)ds—/ Y (t)(Py + Py)Y " (s)f(s)ds
T: T t

-/, QY(t)P+Y_1(s)f(s)ds

= . Y (t)P_Y " (s)f(s)ds + ; Y (t)PyY 1 (s)f(s)ds

e for t < T}, we have

; ) G(t,s)f(s)ds
' 0 Ts
= /. Y (t)(Po + Py)Y "' (s)f(s)ds — ; Y(t)PLY ' (s)f(s)ds
(1) T
= 7/ Y (t)PY ~1(s)f(s)ds f/ Y (t)PLY " 1(s)f(s)ds = x(t).
T1 Tl

Now, putting W (¢)G(t, s)¥~1(s) = (Gyj(t, s)), inequality (1.4) becomes

T, d
| [ D Giklt, s)Ui(s) fuls) ds| < Kosup max [U;(t)fs(t)], teR,
T teR 1<i<d

i=1,2,...,d, for every f = (f1, fa,..., fa) : R — R continuous and ¥-bounded,
which vanishes on (—oco, T1] U [T%, +00).
For a fixed i and ¢, we consider the function f such that

Uil (s)sen Gar(t,5), Ti<s < T
fr(s) =
0, elsewhere
The function Uy (s)fx(s) is pointwise limit of a sequence of continuous functions

having the same supremum 1. The above inequality continues to hold for the
functions of this sequence. By the dominated convergence Theorem, we get

T, d
/ > |Gik(t,s)lds < Ko, t €R, i=1,2,...,d.

Ty g=1
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Since [U(t)G(t,s)¥1(s)] < Zl we1 |Gik(t, )|, it follows that

T>
l/ ()Gt )0 (s)|ds < dFo.

T

This holds for any Ty < 0 and T» > 0. Hence, |¥(t)G(t,s)¥~1(s)| is integrable
over R and

/ |U()G(t,s)U ' (s)|ds < dKy, forallt € R.

—00

By the Definition of W(¢)G(t, s)¥~!(s), this is equivalent to (L.3), with K = dKj.

Now, we prove the “if” part. Suppose that the fundamental matrix Y of
satisfies the conditions for some K > 0. For a continuous and W-bounded
function f : R — R?, we consider the function v : R — R?, defined by

um:/ V()P Y~ (s)f(s)ds
oo (15)

—|—/0 Y (t)PyY 1 (s)f(s)ds — /too Y (t)PLY " (s)f(s)ds.

Step 4. The function u is well-defined on R. For v > ¢, we have

/ Y (P (5) £ (5)] ds

= [ I OOy Py @ U )]s
<o) / () L)) W(s) £(5) s
<Ol sup [ V()10 / () () e (5)]ds.
This shows that the integral [ Y (t)P+Y ~!(s)f(s)ds is absolutely convergent.

Similarly, the integral f_oo Y (t)P_Y ~1(s) f(s)ds is absolutely convergent. Thus,
the function u is continuously differentiable on R.
Step 5. The function « is a solution of the equation (|1.1)). For ¢t € R, we have

0= [ AOYOPY () fs)ds+ Y OP-Y 050

“H(s)f(s)ds + Y () PY T () f (1)

ut) + Y (#)(P- + Po+ Py )Y L) f(t)
u(t) + f(1),

which shows that u is a solution of (1.1]) on R.

/A
- [T Ay Py @) + Y (OPY 050
— At)u()
— A()
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Step 6. The solution u is ¥-bounded on R. For t > 0, we have
w(tpu(t) = [ ; TOY ()P_Y () (5)U(s) f(s)ds
+ WY (P (5)0 (5)(s) ()
- [ wovory @ e
-/ OOO V(Y ()P~ ()0 (5)W(5) f(5)ds
+ WY ()P + PY ()8 (9)0(5) F(s)ds

— /too T()Y (#)PLY 1 (s)T 1 (s)T(s)f(s)ds.

Then
[P ()u®)] < K?EE @) f@)]-

For t < 0, we have
T(tu(t) = /_; V()Y () P-Y (s)U ™ (s)W(s) f(s)ds
.|_/Ot\Il(t)Y(t)PoY_l(s)\I/_l(S)‘I’(S)f(S)dS
~ /too T(E)Y (£)PyY 1 (5)0 1 (s)T(s) f(s)ds
- /_; Y)Y () P_Y ()0 () (s)f(s)ds
- /to U (1)(Po + P+ )Y (s)U™(5)U(s) f(s)ds

- [Tearery e @) f(ss
Then
ol < Ksup |91
Hence,
sup [(0)u(0)]| < K sup [9(0)()].

which shows that u is a W-bounded solution on R of (L.1). The proof is now
complete. [

As a particular case, we have the following result.

Theorem 1.2. If the homogeneous equation (L.2) has no nontrivial V-bounded
solution on R, then, the equation (1.1) has a unique ¥-bounded solution on R for
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every continuous and W-bounded function f : R — R® if and only if there exists a
positive constant K such that fort € R,

t oo
/ U ()Y () P_Y 1(s)U~1(s)|ds +/ |T()Y ()P Y L (s)U 1 (s)|ds < K
—00 t
(1.6)
Proof. Indeed, in this case, Py = 0. Now, the Proof goes in the same way as before.
We prove finally a theorem in which we will see that the asymptotic behavior of

the solutions of (|1.1) is determined completely by the asymptotic behavior of f as
t — +o0. O

Theorem 1.3. Suppose that:

(1) The fundamental matriz Y (t) of (L.2)) satisfies:
(a) conditions (L.3)) for some K > 0;
(b) the condition lim;_,4 o |¥(£)Y (t)Po| = 0;
(2) the continuous and ¥-bounded function f : R — R is such that

Jlim (D0 = 0.
Then, every ¥-bounded solution x of (1.1|) satisfies
i [[W(2)z(0)]}= 0
Proof. By Theorem for every continuous and W-bounded function f : R — R,

the equation (1.1) has at least one ¥-bounded solution. Let x be a W-bounded
solution of (|1.1). Let u be defined by (1.5). This function is a ¥-bounded solution

of .

Now, let the function y(t) = z(t) — Y (¢)Pox(0) — u(t), t € R. Obviously, y is a
W-bounded solution on R of (L.2)). Thus, y(0) € Xo. On the other hand,

y(0) = z(0) = Y(0) oz (0) — u(0)

= (I - Py)x P/ & ds+P+/ooY_1(s)f(s)ds
0

/ Y- (s)ds)

+ Py (z / Y (s)f(s)ds) € X_ & X,

Therefore, y(0) € Xo N (X_ & X4) = {0} and then, y = 0. It follows that
z(t) =Y (t)Pox(0) + u(t), teR.

We prove that lim; 4 o [|P(t)u(t)|| = 0. For a given € > 0, there exists t; > 0 such
that [|W(t)f(t)|| < 5%, for all t > ¢;. For t > 0, write

0
\Il(t)u(t):/ V()Y (1) P_Y ~L(s) U (s)U(s)f(s)ds

— 00

Jr/o T()Y (t)(Py + P_)Y H(s)U ™1 (s)W(s) f(s)ds

- /too V()Y () PLY 1 (s)T 1 (s)W(s)f(s)ds.
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From the hypothesis (1)(a), it follows that
/ [T ()Y (t)(Py + P_)Y " (s)U ' (s)|ds < K,t > 0.
From the [8, Lemma 1], it follows that
tii?oo W)Y (t)(Py+ P-)| =0.

From this and from hypothesis (1)(b), it follows that lim; .4 [¥(¢)Y (¢t)P-| = 0.
Thus, there exists to > t1 such that, for all ¢ > ¢,

()Y (H)P_| <

e

3(1+ 7 |IP-Y~1(s)f(s)llds)’

W)Y (t)(Py + P_ - '
[w@)Y (#)(Po + Po)| < 3(1+ 7 Y —2(s)f(s)llds)

Then, for t > t5, we have
19 (t)u(t)]| < ()Y (t) P- |/ IP_Y 1 (5) £(s) |ds

)Y (1)(Py + )| / 1Y~ (s) (5)]|ds
WY (1) (Po + P_)Y ()T (s)[[(5) (5) | ds

ty

+/OOI‘I’( Y ()PLY = ()T ()] W(s) f (s)]|ds

*-i- +7/ (W)Y (t)(Po+ P_)Y 1(s)U ' (s)|ds
+ 3% I‘II( Y (O PLY ()T ()] W(s) f(s) 1 ds
26

? + 37KK = €.

This shows that lim;_ 1 o || (¢)u(t)]] = 0.

Now, from hypothesis (1)(b) it follows that lim; 4 || U ()Y (¢) Pox(0)|| = 0 and
then, limy 4 o0 [P (¢)2(t)]] = 0. Similarly, lim; . _ ||¥(¢)x(¢)|| = 0. The proof is
now complete. [

Corollary 1.4. Suppose that:

(1) The homogeneous equation (L1.2) has no nontrivial ¥-bounded solution on

R;
(2) the fundamental matriz Y of (L.2)) satisfies the condition (1.6 for some
K >0

(3) the continuous and ¥-bounded function f: R — R is such that
lin_ () £(0)]=0

Then, the equation (1.1) has a unique solution x on R such that
im0 (1)) = 0.
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The above result follows from the Theorems [[.2] and [I.3] Furthermore, this
unique solution of (1.1)) is

u(t):/_ Y(t)PY_l(s)f(s)ds—/too Y (t)PLY " 1(s)f(s)ds.

Remark 1.5. If we do not have lim; 1 ||[¥(¢)f(¢)|| = 0, then the solution x
may be such that lim; 1o || (¢)2z(¢)|| # 0. This is shown by the next example:
Consider the linear system (|1.1)) with

an=(5 %), =)

A fundamental matrix for the homogeneous system (|1.2) is

Y(t) = (egt 693t>

U(t) = (ejt ei) .

Then, we have ||¥(¢)f(t)|| = 1 for all t € R. The first condition of Theorem is
satisfied with K = 2 and

10 00 00
p(o0) n=o) o)

The solutions of the system (L.1)) are
cre2t 43t
o) = (ot T

e 3t — o~

Consider

with ¢1,co € R and ¢t € R. There exists a unique W-bounded solution on R,
3t
e
o) = ().
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