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QUANTIZATION EFFECTS FOR A VARIANT OF THE
GINZBURG-LANDAU TYPE SYSTEM

LI MA

ABSTRACT. The author uses Pohoaev’s identity to research the quantization
for a Ginzburg-Landau type functional. Under the logarithmic growth condi-
tion which is different assumption from that of in [2], the author obtain the
analogous quantization results.

1. INTRODUCTION
In [2] and [5], the authors have studied the quantization effects for the system
—Au=u(l—|ul*) inR?

which is associated with the Ginzburg-Landau functional
1 2 1 2\2
F(u) = [ (GIVuP + 51 = fuf)Plds,

where Q C R? is a bounded domain with smooth boundary, and £ > 0 is a small
parameter [I]. Lassoued and Lefter have investigated the asymptotic behavior of
minimizers u. € H,(B1,R?) to the Ginzburg-Landau type energy

1 1
Ba(u,Q) = 5/Q Vul2dz + @/ﬂ luf2(1 — [u]?)2de,

when ¢ — 0, where g : 9Q — S! is a smooth map [3]. In view of [3, (1.4)], the
Euler-Lagrange system of the minimizer u, is

1 1 .
—Au = E—2u|u|2(1 — Jul?) - Q—EQu(l — |u*)? in Q.
Let Q. = éQ Then we have

1
—Au = ufu*(1 = [uf?) = Su(l = |u*)? (1.1)
in Q.. In a natural way, we shall study the system (L.1]) in R?. In view of [3]
Propositions 2.1 and 2.2], we have
lu| <1, in R (1.2
||Vu||Loo(R2) < +o0. (13)
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Regarding the boundary condition u.|sp, = g, we assume that
lu(z)| — 1, as |z|— oo. (1.4)

Then, deg(u,0B,) is well defined for r large [2]. We denote d = | deg(u, 9B,)|. In
virtue of (|1.4), we see that there exists Ry > 0, such that

2
u(z)| > \/; for |z] = R > Ro. (1.5)
Thus, there is a smooth single-valued function ¥ (z), defined for |z| > Ry, such that
u(z) = o(x)e W), (1.6)
where ¢ = |u|. If denote ¢(z) = df + 1), then ¢ is well defined and smooth locally
on the set |z| > Ry.

In this paper, we investigate the quantization of the energy functional E.(u,(2),
by an argument as in [2] for the systems (|1.1)).

Theorem 1.1. Assume that u solves (1.1). If u satisfies (1.4]), and there exists an
absolute constant C' > 0, such that for any r > 1,

/ |Vu|2dx+/ u2(1 — [u?)2dz < C(nr + 1), (1.7)
B,

r

Then
/ lul?(1 — |u|?)?dz = 27d>. (1.8)
R2
If u is a solution of (|1.1), and under the assumption
|Vul2de < +oo, (1.9)
R2
instead of (1.2))-(1.4)) and (1.7]), then there holds the following stronger conclusion.

Theorem 1.2. Assume u solves (1.1) and satisfies (1.9), then either u(x) =0 or
u=C with |C| =1 on R2.

2. PRELIMINARIES
Proposition 2.1 (Pohozaev identity). If u solves (1.1). Then for any r > 0, there

holds

1

[ o= pprae =3 [P juPPlelds+ [ el - 0,
B, 2 Jos, oB
(2.1)

T

Proof. Multiply (1.1) with (z - Vu), and integrate over a bounded domain Q with
smooth boundary. Noting

/(ac - Vu)Audzr = Opu(z - Vu)ds — / V(z - Vu)Vudz
Q Q

o0

:/ (z - v)||0,ul?ds — 1/ x-V(|Vu|2)dac—/ |Vul?dz (2.2)
a0 2 Ja Q
1
= / (z - v)|0,ul*ds — 5/ (z - v)|Vu|?ds,
a0 a0
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and
1
/(x-Vu)u|u|2(1 ~ uf?)de — 5/(9[;-vu)u(1 _ uf?)2dz
Q Q
1 1 .
=5 [P uRds = ¢ [ divlelul(1 - [uf) o
Q Q
1 1
=5 [ PO P Pdody = [ PG - PP v)ds,
2 Ja 4 Joq
we obtain
JRCREETRRE
Q

) (2.3)

- 7/ luf2(1 — |u|2)2(x~u)d3+/ (x-u)|vu\2ds—2/ (2 [0y ul2ds.
2 o0 o0 o0

Thus, (2.1) can be seen by taking Q = B, in the identity above. The proof is
complete. O

3. PrROOF OF THEOREM [I.1]

Proposition 3.1. Assume u solves (L1)). If u satisfies (L.4) and (L.7), then
/ (1 — |u*)?dx < +oo. (3.1)
R2

Proof. Denote f(t) = faBtHVM2 + |u|?(1 — |u|?)?]ds. Applying [4, Proposition 2.2],
from ([1.7)) we are led to

linf{tf(t);te [\/;,T]lnrg/r wdth(u,Br) <Clnr,
2 it

which implies inf{tf(t);t € [\/r,r] < C. Thus, there exists ¢,, — oo such that

tm f(tm) < O(1). (3.2)
Taking r =t; — o0 in , and substituting into it, we obtain
/2 lu|?(1 — |u|?)?dz < +oo. (3.3)
Noting we can see the fonclusion of the proposition. O
Substituting into yields
Do+ olVOP = (1 )~ ol - @V, mE\Ba,  (34)
—div(0®’V¢) =0 in R?\ Bg,. (3.5)

By an analogous argument of Steps 1 and 2 in the proof of |2 Proposition 1], we
also derive from ([3.5) that

/ |Vep|2de < +oo. (3.6)
R2\Bg,,

In addition, we also deduce the following proposition.

Proposition 3.2. Under the assumption of Proposition|3.1, we have

/ |Vo|?dz < 400. (3.7)
R2\ Bg,
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Proof. Let n € C*(R?,[0,1]) satisfy n(z) = 1 for |z| < 1/2, and n(z) = 0 for
2| > 1. Set n(x) = n(%) for ¢ < r. Multiplying (3.4) by (1 — o)n7 and integrating
over B, \ Bp,, we obtain

1
[ WePwpant [ (@G- 2) - gelt— I - oyips
B, \Bg, B:\Brg,
1
= —/ (1 - 0)n;d,eds — 5/ V(1 - 0)*Vnjda (3.8)
OBR,, Br\Bg,

+ [ vePe - ot
Br\Bkg,
Clearly, (|1.3)) leads to

/ |0, 0|ds < C(Ry) = C. (3.9)
OB,
In addition, in view of Proposition it follows that

‘ V(1 - Q)QVntzdx’
Br\Br,

’-/ (1—0)*0ymids| + ’/ (1 - 0)*Anjdz| (3.10)
< O(Ry) + Ot’2|/ (1—0)dz| < 400, Vt> Ry.
R2

Using Holder’s inequality, from (3.1)) and (3.6)), we deduce that

d4 1/2 1/2
/ IVe|*o(1 — o)nidz < (/ ﬁdw> (/ (1- Q)de)
B \Br, B, \Bg, || R2

(3.11)
+/ |Vep|2de < +oo.
R2\Bg,
At last, (|1.5) implies
1
/ [0°(1 = ¢*) = 5e(1 = 0*)’J(1 = o)nidz > 0. (3.12)
T\BRO
Substituting (3.9 into , and letting t — oo, we can deduce . The
proof is complete O
Proof of Theorem[I.]]. First, we have
d
0rul* = 10r0f" + &* (17 + 09
2 (3.13)
d 2 4 (2 d® 2
= P + [0-0l” + (o —1)| E + 207 Tl | - + 010,90,
Obviously, . . and (3.7) imply
d2

22

d
QH\&M + 0%10:¢|* + [Oyul?)dz < C,

L POl el + (1~ o)
B.\Bg,

+ 20
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where C is independent of 7. Similar to the derivation of (3.2)), by using [4, Propo-
sition 2.2], it also follows that
inf{F(r;);r; € [r,r]} < C(lnr)~",

where
2

d
F(r;) == Tj/ [ul?(1 = [ul®)? + |0-0 + (1 — 92)|72
d(Br;\BRry) |

a4

] 001+ @10l + 19, ulNds.

+ 292

Thus, we see that there exists 7; — oo, such that F(r;) < o(1). Combining this

with (3.13)), we can see (|1.8)) since

d2
/ |z 5 ds = 2md?.
o, |l

The proof is complete. O

4. PROOF OF THEOREM [I.2]

First, we shall prove (1.2)). Similar to the derivation of (3.8) in [2], we also have
Ah > Jul(1+ |[u))h(3lul* =1)/2, h = (Jul = 1)7.

Write G = {z € R?; |u(z)| > /1/3}. In the argument of Step 1 in the proof of [2
Theorem 2], we replace R? by G to be the integral domain. Applying we also
deduce that
lulh(3lul* —=1) =0, on G.
This implies . Next, leads to
Alul? = 2|Vul® + [u*(Jul®* — 1)(3|u/* = 1), on B,. (4.1)

Multiplying this equality by 7, and integrating over B,, we have

[ = )@l - Vs
Br (4.2)
= 2/ |Vu|*n.da —/ 10, [u|*ds + 2/ uVuVnde.
B, o8, B

T

From (4.2)) with ¢ < r (which implies 7, = 0 on 9B,.) and (|1.9)), it is not difficult to
deduce that
[ - s < c.

r

Letting t — 0o, we can see that

/ lu[?(1 — |u*)dz < occ. (4.3)
R2
Similar to the calculation in the proof of (2.2)), we have that, for t < r,
/ Au(z - Vu)ndx = 7/ (x - Vu)VuVndz. (4.4)
B, B,

Take /r <t < r and let r — oo, then by [4, Proposition 2.3|, (1.9) leads to

‘/ (z - Vu)VuVndz| < C |Vul? < o(1). (4.5)
B’V‘

t/2<e|<t



6 L. MA EJDE-2008/135
Substituting into (4.4), we obtain that as r — oo,

|/B Au(z - Vu)ndz| < o(1). (4.6)
By , we obtain that for ¢ ; r,

1 1
Au(z - Vu)mpdz = f/ div[ac\u|2(|u|2 - 1)2]ntd;v — 7/ |u\2(1 — |u\2)2ntdx
B, 4 /g, 2 /B,

1 1
= _Z/ lul?(Ju? — 1)z - Vidx — 5/ lul?(Jul? = 1)2n.da.
B,

(4.7)
Using [4, Proposition 2.3], from (4.3]) we have

| [ WP (ul? = 120 O] < o),
B
when r — co. Substituting this and (4.6]) into (4.7)), leads to
/ luf2(1 — [u]?)2dz = 0.
RQ

This implies either |u| = 0 or |u| = 1 on R?.
Assume |u| = 1 on R2. Integrating by parts over B,, we can deduce that, for

te(Vrr),
/ neAlu)?de = —/ VeV |ul*dz.
B, B,
Then there holds

C
|/ neAlul*dz| = |/ Ve Vu|*dz| < —/ |V |u|?|dz.
B, B, t Jij2<|al<t

Letting ¢t — oo, from we see that
|/B Aluf*dz| < o(1). (4.8)
By (4.1)), it follows '
[ e =2 [ (Vul? +juP = ) - 1)

Substituting (£.8) and |u| = 1 into it, we obtain [g, [Vu|?dz = 0. Then, u
with |C| = 1 on R2. The proof is complete.

Il
Q
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