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CONSTRUCTION OF ENTIRE SOLUTIONS FOR SEMILINEAR
PARABOLIC EQUATIONS

MICHAEL ROBINSON

Abstract. Entire solutions of parabolic equations (those which are defined

for all time) are typically rather rare. For example, the heat equation has
exactly one entire solution – the trivial solution. While solutions to the heat

equation exist for all forward time, they cannot be extended backwards in

time. Nonlinearities exasperate the situation somewhat, in that solutions may
form singularities in both backward and forward time. However, semilinear

parabolic equations can also support nontrivial entire solutions. This article

shows how nontrivial entire solutions can be constructed for a semilinear equa-
tion that has at least two distinct equilibrium solutions. The resulting entire

solution is a heteroclinic orbit which connects the two given equilibria.

1. Introduction

Consider the equation

∂u(t, x)
∂t

= ∆u(t, x) +
N∑

i=0

ai(x)ui(t, x), (1.1)

where t ∈ R and x ∈ Rn, and the ai are bounded and smooth. In this article, we
consider entire solutions, those classical solutions u which satisfy (1.1) for all time
t ∈ R.

This kind of equation provides a simple model for a number of physical phenom-
ena. First, choosing the right side to be ∆u−u2 +a1u results in an equation which
can represent a model of the population of a single species with diffusion and a
spatially-varying carrying capacity, a1(x). As a second application, this equation is
a very simple model of combustion. If a1 is a positive constant, then the equation
supports travelling waves. Such travelling waves can model the propagation of a
flame through a fuel source.

Equations of the form (1.1) have been of interest to researchers for quite some
time. Existence and uniqueness of solutions on short time intervals (on strips
(−t0, t0)×Rn) can been shown using semigroup methods and are entirely standard
[17]. However, there are obstructions to the existence of entire solutions. Aside from
the typical loss of regularity due to solving the backwards heat equation, there is
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also a blow-up phenomenon which can spoil existence in the forward-time solution
to (1.1). Blow-up phenonmena in the forward time Cauchy problem (where one does
not consider t < 0) have been studied by a number of authors [6, 5, 15, 11, 2, 19, 20].
More recently, Zhang et al. ([18, 14, 16]) studied the existence of global for the
forward Cauchy problem for

∂u

∂t
= ∆u + up − V (x)u

for positive u, V . Du and Ma studied a related problem in [4] under more restricted
conditions on the coefficients but they obtained stronger existence results. In fact,
they found that all of the solutions which were defined for all t > 0 tended to
equilibrium solutions.

Entire solutions to (1.1) are rather rare. Most works which describe blow-up
make the assumption that the solution is positive. Unfortunately, blow-up is much
more difficult to characterize in the general situation, and understanding exactly
what kind of initial conditions are responsible for blow-up in the Cauchy problem
for (1.1) is an important part of the question.

As an aside, the boundary value problem that results from taking x ∈ Ω ⊂ Rn

for some bounded Ω (instead of x ∈ Rn) has also been discussed extensively in the
literature [9, 10, 3]. For the boundary value problem, all bounded forward Cauchy
problem solutions tend to limits as |t| → ∞, and these limits are equilibrium
solutions.

The existence of entire solutions is a difficult problem, because the backward-
time Cauchy problem is well known to be ill-posed. Obviously, equilibrium solutions
are trivial examples of such entire solutions, and in [12] it was shown that they can
exist. It is not at all clear that there are other entire solutions, and indeed there
may not be. In this article we assume the existence of a pair of nonintersecting
equilibrium solutions and construct a heteroclinic orbit which connects them. (A
heteroclinic orbit is a special kind of entire solution, whose limits as t → ±∞ are
equilibria.)

For simplicity and concreteness, we will work with the more limited equation

∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
− u2(t, x) + φ(x), (1.2)

where φ is a smooth function which decays to zero. We follow the general technique
for constructing sub-super solutions largely as appears in [7] and [8]. It should be
emphasized that the technique examined in this article can handle the problem
for (1.1) in full generality (under mild decay assumptions for the coefficients ai),
though this complicates the exposition needlessly. Previous work by other authors
typically require other technical or restrictive conditions on the class of solutions
that are extended. They often require some kind of monotonicity of time-slices,
for instance. The improvement in our method comes from the fact that uniform
bounds on spatial derivatives are obtained.

This simpler model still provides insight into applications, as it is still a model
of the population of a single species, with a spatially-varying carrying capacity,
φ. Indeed, one easily finds that under certain conditions the behavior of solutions
to (1.2) is reminiscent of the growth and (admittedly tenuous) control of invasive
species [1]. It is the control of invasive species that is of most interest, and it is also
what the structure of the space of heteroclines describes. In one of the examples
given in [12], there is one “more stable” equilibrium, and several other “less stable”
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ones. The more stable equilibrium can be thought of as the situation where an
invasive species dominates. The task, then, is to try to perturb the system so that
it no longer is attracted to that equilibrium. An optimal control approach is to
perturb the system so that it barely crosses the boundary of the stable manifold
of the the undesired equilibrium, and thereby the invasive species is eventually
brought under control with minimal disturbance to the rest of the environment.
Such an optimal control approach, though, is beyond the scope of this article.

2. Equilibrium solutions

We choose φ(x) = (x2 − 0.4)e−x2/2. It has been shown in [12], that in this
situation, there exists a pair of equilibrium solutions f+, f− with the following
properties:

(1) f+ and f− are smooth and bounded,
(2) f+ and f− have bounded first and second derivatives,
(3) f+ and f− are asymptotic to 6/x2 for large x, and so both belong to L1(R),
(4) f+(x) > f−(x) for all x,
(5) there is no equilibrium solution f2 with f+(x) > f2(x) > f−(x) for all x .

Additionally, there exists a one-parameter family gc of solutions to

0 = g′′c (x)− g2
c (x) + φc(x) (2.1)

with
(1) c ∈ [0, 1),
(2) g0 = f− and φ0 = φ,
(3) φa(x) < φb(x) and ga(x) > gb(x) for all x if a > b.

The latter set of properties can occur as a consequence of the specific structure
of f−. For instance, consider the following result.

Proposition 2.1. Suppose f− ∈ C2,α(R) satisfies the above conditions and addi-
tionally, there is a compact K ⊂ R with nonempty interior such that f− is negative
on the interior of K and is nonnegative on the complement of K. Then such a
family gc above exists.

Proof. (Sketch) Work in Tf−C2,α(R), the tangent space at f−. Then (2.1) becomes
its linearization (for hc, say), namely

0 = h′′c (x)− 2f−(x)hc(x) + (φc − φ). (2.2)

Consider the slightly different problem,

0 = y′′(x)− 2f−(x)y(x) + v(x)y(x), (2.3)

where v is a smooth function to be determined. If we can find a v ≤ 0 such that
y > 0 and y → 0 as |x| → ∞, then we are done, because we simply let vy = φc − φ
in (2.2). In that case, hc = y has the required properties. We sketch why such a v
exists:

• If v ≡ 0, then y ≡ 0 is a solution, giving gc = f− as a base case.
• If v(x) = −2‖u‖∞β(x) for β is a smooth bump function with compact

support and β|K = 1, then the Sturm-Liouville comparison theorem implies
that y has no sign changes. We can take y strictly positive. However, in this
case, the Sturm-Liouville theorem imples that there are no critical points
of y either, so y may not tend to zero as |x| → ∞.
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• Hence there should exist an s with 0 < s < 2‖u‖∞ such that if v(x) =
−sβ(x), then y has no sign changes, one critical point, and tends to zero as
|x| → ∞. This choice of v is what is required. (The precise details of this
argument fall under standard Sturm-Liouville theory, which are omitted
here.)

�

In what follows, we shall not be concerned with the exact form of φ, but rather
we shall assume that the above properties of the equilibria hold. Many other choices
of φ will allow a similar construction.

Lemma 2.2. The set

W = {v ∈ C2(R) : f−(x) < v(x) < f+(x) for all x} (2.4)

is a forward invariant set for (1.2). That is, if u is a solution to (1.2) and u(t0) ∈
W , then u(t) ∈ W for all t > t0.

Proof. We show that the flow of (1.2) is inward whenever a timeslice is tangent to
either f− or f+. To this end, define the set

B =
{
v ∈ C2(R) : f−(x) ≤ v(x) ≤ f+(x) for all x, and there exists an x0

such that v(x0) = f+(x) or v(x0) = f−(x)
}
.

Without loss of generality, consider a v ∈ B with a single point of tangency, v(x0) =
f−(x0). At such a point x0, the smoothness of v and f− implies that ∆v(x0) ≥
∆f−(x0) using the maximum principle. Then, if u is a solution to (1.2) with
u(0, x) = v(x), we have that

∂u(0, x0)
∂t

= ∆v(x0)− v2(x0) + φ(x0)

≥ ∆f−(x0)− f2
−(x0) + φ(x0) = 0,

hence the flow is inward. One can repeat the above argument for each point of
tangency, and for tangency with f+ as well. �

Lemma 2.3. Solutions to the Cauchy problem

∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
− u2(t, x) + φ(x),

u(0, x) = U(x) ∈ Wc

(2.5)

where
Wc = {v ∈ C2(R) : gc(x) < v(x) < f+(x) for all x}

for c ∈ [0, 1) have the property that they lie in L1 ∩ L∞(R) for all t > 0. We shall
assume that U has bounded first and second derivatives.

Additionally, when c ∈ (0, 1), solutions to (2.5) cannot have f− as a limit as
t →∞.

Proof. The fact that solutions lie in L1 ∩ L∞(R) is immediate from Lemma 2.2
and the asymptotic behavior of f+, f− (Section 4 of [12]). Observe that for each
c ∈ [0, 1), Wc is forward invariant, and that Wa ⊂ Wb if a > b. Since f− is not in
Wc for c strictly larger than 0, the proof is completed. �
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The following is an outline for the rest of the article. We show that all solutions
to (2.5) have bounded first and second spatial derivatives. This implies that all
of their first partial derivatives are bounded (the time derivative is controlled by
(1.2)). Using the fact that (1.2) is autonomous in time, time translations of solutions
are also solutions. We therefore construct a sequence of solutions {uk} to Cauchy
problems started at t = 0, T1, T2, ... which tend to f+ as t → +∞, but their initial
conditions tend to f− as k → ∞. By Ascoli’s theorem, this sequence converges
uniformly on compact subsets to a continuous entire solution.

3. Integral equation formulation

In order to estimate the derivatives of a solution to (2.5), it is more convenient to
work with an integral equation formulation of (2.5). This is obtained in the usual
way.

∂u

∂t
= ∆u− u2 + φ( ∂

∂t
−∆

)
u = −u2 + φ

u =
( ∂

∂t
−∆

)−1(φ− u2),

u(t, x) =
∫ ∞

−∞
H(t, x− y)U(y)dy

+
∫ t

0

∫ ∞

−∞
H(t− s, x− y)

(
φ(y)− u2(s, y)

)
dy ds,

(3.1)

where H(t, x) = 1√
4πt

e−
x2
4t is the usual heat kernel.

Calculation 3.1. We begin by estimating the first derivative of u for a short time.
Let T > 0 be given, and consider 0 ≤ t ≤ T . The key fact is that

∫
H(t, x)dx = 1

for all t. Using (3.1)

‖∂u

∂x
‖∞ ≤ ‖∂U

∂x
‖∞ +

∣∣ ∫ t

0

∫ ∞

−∞

∂

∂x
H(t− s, x− y)

(
φ(y)− u2(s, y)

)
dy ds

∣∣
≤ ‖∂U

∂x
‖∞ +

∫ t

0

∫ ∞

−∞

∣∣ ∂

∂y
(H(t− s, x− y))

(
φ(y)− u2(s, y)

)∣∣dy ds

≤ ‖∂U

∂x
‖∞ +

∫ t

0

∫ ∞

−∞

∣∣H(t− s, x− y)
(∂φ

∂y
− 2u

∂u

∂y

)∣∣dy ds

≤ ‖∂U

∂x
‖∞ + T‖∂φ

∂x
‖∞ + 2‖u‖∞

∫ t

0

‖∂u

∂x
‖∞ds.

This integral equation fence is easily solved to give

‖∂u

∂x
‖∞ ≤

(
‖∂U

∂x
‖∞ + T‖ φ

∂x
‖∞

)
e2t max{‖f+‖∞,‖f−‖∞}

≤ K1e
K2T .
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Calculation 3.2. With the same choice of T as above, we find a bound for the
second derivative in the same way:

‖∂2u

∂x2
‖∞ ≤ ‖∂2U

∂x2
‖∞ + T‖∂2φ

∂x2
‖∞ +

∫ t

0

‖ ∂

∂y

(
2u

∂u

∂y

)
‖∞ds

≤ ‖∂2U

∂x2
‖∞ + T‖∂2φ

∂x2
‖∞ +

∫ t

0

2‖∂u

∂x
‖2∞ + 2‖u‖∞‖

∂2u

∂x2
‖∞ds

≤ K3e
K2T

for some K3 which depends on U , φ, and T .

Calculation 3.3. Now, we extend Calculation 3.2 to handle t > T ,

‖∂2u

∂x2
‖∞ ≤ ‖∂2U

∂x2
‖∞ +

∣∣ ∂2

∂x2

∫ T

0

∫ ∞

−∞
H(t− s, x− y)(φ(y)− u2(s, y))dy ds

∣∣
+

∣∣ ∂2

∂x2

∫ t

T

∫ ∞

−∞
H(t− s, x− y)(φ(y)− u2(s, y))dy ds

∣∣
≤ K3e

K2T +
∫ t

T

‖ ∂2

∂x2
H(t− s, x)‖∞(‖φ‖1 + ‖u2‖1)ds

≤ K3e
K2T + K4

∫ t

T

1
s
√

s
ds + K ′

4

∫ t

T

1
s2
√

s
ds

≤ K3e
K2T + K5

( 1√
T
− 1√

t

)
+ K ′

5

( 1
T
√

T
− 1

t
√

t

)
≤ K3e

K2T + K6,

hence there is a uniform upper bound on ‖∂2u
∂x2 ‖∞ which depends only on the initial

conditions, φ, and T .

Lemma 3.4. Let f ∈ C2(R) be a bounded function with a bounded second deriva-
tive. Then the first derivative of f is also bounded, and the bound depends only on
‖f‖∞ and ‖f ′′‖∞.

Proof. The proof is elementary. The key fact is that at its maxima and minima, f
has a horizontal tangent. From a horizontal tangent, the quickest f ′ can grow is at
a rate of ‖f ′′‖∞. However, since f is bounded, there is a maximum amount that
this growth of f ′ can accrue. Indeed, a sharp estimate is

‖f ′‖∞ ≤
√

2‖f‖∞‖f ′′‖∞.

�

Using the fact that u is bounded, Lemma 3.4 implies that the first spatial deriv-
ative of u is bounded. By (1.2), it is clear that the first time derivative of u is also
bounded.

Lemma 3.5. As an immediate consequence of Lemmas 2.3 and 3.4, the action
integral

A(u(t)) =
∫ ∞

−∞

1
2

∣∣∂u

∂x

∣∣2 +
1
3
u3(t, x)− u(t, x)φ(x)dx

is bounded. Therefore, the solutions to the Cauchy problem (2.5) all tend to limits
as t → ∞ [13, Corollary 7]. By Lemma 2.3, we conclude that they all tend to the
common limit of f+ when c > 0.
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Proof. The latter two terms are bounded due to the fact that u lies in L1 ∩L∞(R)
for all t. The bound on the first term comes from combining the fact that u and
its first two spatial derivatives are bounded with the asymptotic decay of f±, and
is otherwise straightforward (use L’Hôpital’s rule). �

4. Construction of an entire solution

Let
Uk(x) = (1− 2−k−1)g1/k(x) + 2−k−1f+(x), for k ≥ 0

noting that Uk → f− as k → ∞. Since Uk is a convex combination of f+ and
g1/k, it follows that Uk ∈ W1/k for all k. Also, since f+ and f− have bounded first
and second derivatives, the {Uk} have a common bound for their first and second
derivatives.

Now consider solutions to the set of Cauchy problems

∂uk(t, x)
∂t

=
∂2uk(t, x)

∂x2
− u2

k(t, x) + φ(x),

uk(Tk, x) = Uk(x).
(4.1)

We choose Tk so that for all k > 0, uk(0, 0) = u0(0, 0). We can do this using the
continuity of the solution and Lemma 3.5. As k →∞, solutions are started nearer
and nearer to the equilibrium f−, so we are forced to choose Tk → −∞ as k →∞.

It is clear that each solution uk is defined for only t > Tk. However, for each
compact set S ⊂ R2, there are infinitely many elements of {uk} which are defined on
it. The results of the previous section imply that {uk} is a bounded, equicontinous
family. As a result, Ascoli’s theorem implies that {uk} converges uniformly on
compact subsets to a continuous u, which is an entire solution to (1.2).

Our constructed entire solution will have the value u(0, 0) = u0(0, 0), which is
strictly between f+ and f−. As a result, the entire solution we have constructed
is not an equilibrium solution. By Lemma 3.5, it is a finite energy solution, so it
must be a heteroclinic orbit connecting f− to f+.
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19(5):683–703, 2002.

[15] F. B. Weissler. Existence and nonexistence of global solutions for a semilinear heat equation.

Israel J. Math, 38:29–40, 1981.
[16] James Wrkich and Qi Zhang. Solvability conditions for some semi-linear parabolic equations

(preprint). 2007.
[17] Eberhard Zeidler. Nonlinear functional analysis and its applications II/A: Linear monotone

operators. Springer-Verlag, New York, 1990.

[18] Qi Zhang. Semilinear parabolic equations on manifolds and applications to the non-compact
Yamabe problem. Electron. J. Differential Equations, 46:1–30, 2000.

[19] Songmu Zheng. Remarks on global existence for nonlinear parabolic equations. Nonlinear

Analysis, 1:107–114, 1986.
[20] Songmu Zheng. Nonlinear parabolic equations and hyperbolic-parabolic coupled systems.

Longman Group, New York, 1995.

Department of Mathematics, University of Pennsylvania, 209 South 33rd Street,

Philadelphia, PA 19104, USA
E-mail address: robim@math.upenn.edu


	1. Introduction
	2. Equilibrium solutions
	3. Integral equation formulation
	4. Construction of an entire solution
	References

