\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 141, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/141\hfil Existence of global solutions] {Existence of global solutions for a system of reaction-diffusion equations having a triangular matrix} \author[E. H. Daddiouaissa\hfil EJDE-2008/141\hfilneg] {El Hachemi Daddiouaissa} \address{El Hachemi Daddiouaissa \newline Department of Mathematics University Kasdi Merbah, UKM Ouargla 30000, Algeria} \email{dmhbsdj@gmail.com} \thanks{Submitted August 19, 2007. Published October 16, 2008.} \subjclass[2000]{35K57, 35K45} \keywords{Reaction-diffusion systems; Lyapunov functional; global solution} \begin{abstract} We consider the system of reaction-diffusion equations \begin{gather*} u_{t}-a\Delta u=\beta-f(u,v)-\alpha u,\\ v_{t}-c\Delta u-d\Delta v=g(u,v)-\sigma v. \end{gather*} Our aim is to establish the existence of global classical solutions using the method used by Melkemi, Mokrane, and Youkana \cite{melk}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{proposition}[theorem]{Proposition} \newtheorem{lemma}[theorem]{Lemma} \section{Introduction} In this manuscript, we consider a reaction-diffusion system that arises in the study of physical, chemistry, and various biological processes including population dynamics \cite{cast,cuss,fitz,hama,kira,webb,zeid}. The system of equations is \begin{gather} \label{e1.1} \frac{\partial u}{\partial t}-a\Delta u=\beta-f(u,v)-\alpha u \quad (x,t)\in\Omega \times R_{+}\\ \frac{\partial v}{\partial t}-c\Delta u-d\Delta v=g(u,v)-\sigma v\quad (x,t)\in\Omega \times R_{+}, \label{e1.2} \end{gather} with the boundary conditions \begin{equation} \label{e1.3} \frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=0\quad\text{on } \partial \Omega \times R_{+}. \end{equation} and the initial data \begin{equation} \label{e1.4} 0\leq u(0,x)=u_{0}(x) ;\quad 0\leq v(0,x)=v_{0}(x)\quad\text{in } \Omega. \end{equation} where $\Omega$ is a smooth open bounded domain in $R^{n}$, with boundary $\partial \Omega$ of class $C^{1}$ and $\eta$ is the outer normal to $\partial \Omega$. The constants of diffusion $a,c,d$ are such that $a>0$, $d>0$, $c>0$ and $a>d$, $c^{2}<4ad$ which is the parabolic condition, and $\alpha,\sigma $ are positive constants, $\beta\geq 0$, and $f,g$ are nonnegative functions of class $C(R_{+}\times R_{+})$, such that \begin{itemize} \item[(H1)] For all $\tau\geq 0$, $f(0,\tau)=0$; \item[(H2)] For all $\xi\geq 0$ and all $\tau\geq 0$, $0\leq f(\xi,\tau)\leq \varphi(\xi)(\mu+\tau)^{r}$; \item[(H3)] For all $\xi\geq 0$ and all $\tau \geq 0$, $g(\xi,\tau)\leq \psi(\tau)f(\xi,\tau)+\phi(\tau)$, \end{itemize} where $r,\mu$ are positive constants such that $r\geq 1$, $\mu\geq 1$, $\varphi,\psi$ and $\phi$ are nonnegative functions of class $C(R^{+})$, such that \begin{gather} \label{e1.5} \lim_{\tau\to +\infty}\frac{\psi(\tau)}{\tau} =\lim_{\tau\to +\infty}\frac{\phi(\tau)}{\tau}=0.\\ \phi(0)> \beta \frac{c}{a-d}. \label{e1.6} \end{gather} In addition we suppose that \begin{equation} \label{e1.7} g(\xi,\frac{c}{a-d}\xi)+\frac{c}{a-d}f(\xi,\frac{c}{a-d}\xi) \geq\frac{c}{a-d}[(\sigma-\alpha)\xi+\beta],\quad \forall \xi\geq0. \end{equation} Melkemi et al \cite{melk} established the existence of global solutions, (eventually uniformly bounded in time) using a novel approach that involved the use of a Lyapunov function for system \eqref{e1.1}--\eqref{e1.4} when $c=0$. Here, we apply the same method to the study of system \eqref{e1.1}--\eqref{e1.4} when $c>0$; that is, for a model that involves a triangular matrix. \section{Existence of local and positive solutions} First we convert system \eqref{e1.1}--\eqref{e1.4} into an abstract first order system in $X=C(\overline{\Omega})\times C(\overline{\Omega})$ of the form \begin{gather} \label{e2.1} U'(t)=AU(t)+F(U(t)), \quad t>0,\\ U(0)=U_{0}\in X, \label{e2.2} \end{gather} where \begin{gather*} AU(t)=( a\Delta u, c\Delta u+d\Delta v), \\ F(U(t))=(\beta-f(u,v)-\alpha u,g(u,v)-\sigma v ). \end{gather*} Since $F$ is locally Lipschitz in $U$ and $X$, for every initial data $U_{0}\in X$, system \eqref{e2.1}--\eqref{e2.2} admits a unique strong local solution on $]0,T^{*}[$, where $T^{*}$ is the eventual blowing-up time, (see Kirane \cite{kira}, Friedman \cite{frie}, Henry \cite{henr}, Pazy \cite{pazy}). Multiplying \eqref{e1.1} by $\frac{c}{a-d}$, and subtracting the resulting equation from \eqref{e1.2} leads to the system \begin{gather} \label{e2.3} \frac{\partial u}{\partial t}-a\Delta u=\Lambda(u,z), \quad (x,t)\in\Omega \times R_{+}\\ \frac{\partial z}{\partial t}-d\Delta z=\Upsilon(u,z),\quad (x,t)\in\Omega \times R_{+}. \label{e2.4} \end{gather} where \begin{gather*} \Lambda(u,z)=\beta-f(u,v)-\alpha u\\ \Upsilon(u,z)=g(u,v)+\frac{c}{a-d}f(u,v) +\frac{c}{a-d}(\alpha u-\beta)-\sigma v, \\ z=v-\frac{c}{a-d}u, \end{gather*} with the boundary conditions \begin{equation} \label{e2.5} \frac{\partial u}{\partial \eta}=\frac{\partial z}{\partial \eta}=0,\quad \text{on } \partial \Omega \times R_{+} \end{equation} and initial data \begin{gather} \label{e2.6} u(0,x)=u_{0}(x)\quad \text{in } \Omega,\\ z(0,x)=z_{0}(x)=v_{0}(x)-\frac{c}{a-d} u_{0}(x)\quad \text{in }\Omega. \label{e2.7} \end{gather} If we assume \eqref{e1.7} and (H1) then a simple application of a comparison theorem to system \eqref{e2.3}-\eqref{e2.4} implies (see \cite{kira}) that for positive initial data $u_{0}\geq0$ and $z_{0}\geq o$ we have that \[ u(t,x)\geq0, \quad v(t,x)\geq\frac{c}{a-d}u(t,x)\quad \forall (x,t)\in \Omega \times ]0,T^{*}[. \] \section{Existence of global solutions} Before we establish the existence of a global solution, we introduce some notation. Here, we let \begin{equation*} \| u\|_{p}^{p}=\frac{1}{|\Omega|}\int_{\Omega} |u(x)|^{p} dx \text{ and } \| u\|_{\infty}= \max_{x\in\Omega}|u(x)|. \end{equation*} denote the usual norms in spaces $L^{p}(\Omega)$, $L^{\infty}(\Omega)$ and $C(\overline{\Omega})$. Applying the comparison principle we get that \begin{equation} \label{e3.1} u(t,x)\leq \max(\| u_{0}\|_{\infty},\frac{\beta}{\alpha})=K. \end{equation} To establish the uniform boundedness of $v$, it is sufficient to show the uniform boundedness of $z$. This task is carried out using a result found in Henry \cite[pp. 35-62]{henr}, from which it sufficient to derive a uniform estimate for $\| \Upsilon(u,z) \|_{p}$; that is, finding a constant $C$ such that \begin{equation} \label{e3.2} \| \Upsilon(u,z) \|_{p}\leq C. \end{equation} Here C is a nonnegative constant independent of t, for some $p>n/2$. The key is to establish the uniform boundedness of $\| v\|_{p}$ on $]0,T^{*}[$, taking into account assumptions (H2) and (H3). When $p\geq 2$, we put \begin{equation} \label{e3.3} \begin{gathered} \Gamma(p)=\frac{p\Gamma+1}{p-1}\,,\quad \Gamma=(a-d)^{2}[1+\frac{1}{4ad}]\,,\\ l=\frac{2\beta \rho}{\Gamma(p)\sigma}\,,\quad \omega= [\frac{S^{2}}{4adR^{2}}+\frac{p}{R^{2}}+\mu](p-1) \end{gathered} \end{equation} where $\rho >0$, $$ S=\frac{\rho}{\Gamma(p)l}, \quad R=\frac{(a-d)\rho}{\Gamma(p)(l+\rho K)}. $$ Using these definitions and notation we can state the following key proposition \begin{proposition} \label{prop3.1} Assume that $p\geq 2$ and let \begin{equation} \label{e3.4} G_{N}(t)= N \int_{\Omega}u dx+\int_{\Omega}(v+\omega)^{p} \exp(-\frac{1}{\Gamma(p)}\ln(\Gamma(p)[l+\rho(K-u)]))dx, \end{equation} where $(u,v)$ is the solution of \eqref{e1.1}--\eqref{e1.4} on $]0,T^{*}[$. Then under the assumptions (H3) and \eqref{e1.5} there exist two positive constants $N$ and $s$ such that \begin{equation} \label{e3.5} \frac{dG_{N}}{dt} \leq -(p-1)\sigma G_{N}+s. \end{equation} \end{proposition} The proof of the above proposition requires some lemmas. \begin{lemma} \label{lem3.1} If $(u,v)$ be a solution of $\eqref{e1.1}-\eqref{e1.4}$ then \begin{equation} \label{e3.6} \int_{\Omega}f(u,v)dx\leq\beta|\Omega|-\frac{d}{dt}\int_{\Omega}u(t,x)dx. \end{equation} \end{lemma} \begin{proof} We integrate both sides of \eqref{e1.1}, $$ f(u,v)=\beta -\alpha u -\frac{d}{dt}u(t,x) $$ satisfied by $u$, which is positive and then we find \eqref{e3.6}. \end{proof} \begin{lemma} \label{lem3.2} Assume that $p\geq2$, then under the assumptions {\rm (H1)--(H3)}, and \eqref{e1.5} there exists $N_1$, such that \begin{equation} \label{e3.7} [p (g(\xi,\tau)-\phi(\tau))(\tau+\omega)^{p-1} - \theta f(\xi,\tau) (\tau+\omega)^{p}]\leq N_1f(\xi,\tau) \end{equation} for all $0\leq \xi \leq K$ and $\tau \geq 0$, $\theta > 0$. \end{lemma} \begin{proof} from the assumption (H3) and \eqref{e1.5}, we conclude that there exists $\tau_{0}>0$, such that for all $0\leq\xi\leq K,\tau\geq\tau_{0}$, one finds $$ [p\frac{\psi(\tau)}{\tau+\omega}-\theta ](\tau+\omega)^{p}f(\xi,\tau)\leq0 $$ now if $\tau$ is in the compact interval $[0,\tau_{0}]$, then the continuous function $$ \chi(\xi,\tau)=p\psi(\tau)(\tau+\omega)^{p-1}-\theta (\tau+\omega)^{p} $$ is bounded. \end{proof} \begin{lemma} \label{lem3.3} For all $\tau\geq 0$ and $\omega \geq 1$, we have \begin{equation} \label{e3.8} \frac{\beta \rho}{\Gamma(p)l} (\tau+\omega)^{p} - \sigma p (\tau+\omega)^{p-1}\tau+p\phi(\tau)(\tau+\omega)^{p-1}\leq -(p-1)\sigma (\tau+\omega)^{p}+ M_1 \end{equation} where $M_1$ is positive constant. \end{lemma} \begin{proof} Let us put \begin{align*} \Pi=&\frac{\beta \rho}{\Gamma(p)l} (\tau+\omega)^{p} - \sigma p (\tau+\omega)^{p-1}\tau \\ \leq &[2\frac{\beta \rho}{\Gamma(p)l}- \sigma p] \tau(\tau+\omega)^{p-1}+[2\frac{\beta \rho}{\Gamma(p)l} \frac{\omega}{\tau+\omega}-\frac{\beta \rho}{\Gamma(p)l}] (\tau+\omega)^{p} \end{align*} since $l=\frac{2\beta \rho}{\Gamma(p)\sigma}$, then \begin{equation*} \Pi+p\phi(\tau)(\tau+\omega)^{p-1}\leq -(p-1)\sigma (\tau+\omega)^{p} +[\frac{p (\sigma \omega+\phi(\tau))}{\sigma(\tau+\omega)} -\frac{1}{2}] \sigma (\tau+\omega)^{p} \end{equation*} using \eqref{e1.5} and Lemma \ref{lem3.2}, we can establish Proposition \ref{prop3.1}. \end{proof} \begin{proof}[Proof of Proposition \ref{prop3.1}] Let $$ h(u)=-\frac{1}{\Gamma(p)}\ln(\Gamma(p)[l+\rho(K-u)]) $$ so that $$ G_{N}(t)= N \int_{\Omega}u dx+ L(t) $$ where $$ L(t)=\int_{\Omega}e^{h(u)} (v+\omega)^{p}dx. $$ Differentiating $L$ with respect to $t$ and using Greens formula, we obtain that $$ L'(t)=I+J $$ where \begin{align*} I=&- \int_{\Omega}[a(h''(u)+h'^{2}(u)) (v+\omega)^{p}+pc h'(u) (v+\omega)^{p-1}] e^{h(u)}\nabla u^{2} dx\\ &-\int_{\Omega} [p(a+d)h'(u) (v+\omega)^{p-1}+p(p-1) c (v+\omega)^{p-2}] e^{h(u)} \nabla u\nabla v dx\\ &-\int_{\Omega} p(p-1)d (v+\omega)^{p-2} e^{h(u)} \nabla v^{2} dx \end{align*} and \begin{align*} J=&\int_{\Omega}\beta h'(u)(v+\omega)^{p} e^{h(u)} dx\\ &+\int_{\Omega} [p g(u,v) (v+\omega)^{p-1}-h'(u) f(u,v) (v+\omega)^{p}] e^{h(u)}dx\\ &-\int_{\Omega} \alpha h'(u) u (v+\omega)^{p} e^{h(u)}dx - \int_{\Omega} \sigma p (v+\omega)^{p-1}v e^{h(u)}dx. \end{align*} We see that $I$ involves a quadratic form with respect to $\nabla u,\nabla v$. \begin{align*} D=&[a(h''(u)+h'^{2}(u)) (v+\omega)^{p}+pch'(u)(v+\omega)^{p-1}] \nabla u^{2} \\ &+[p(a+d)h'(u)(v+\omega)^{p-1}+p(p-1)c(v+\omega)^{p-2}] \nabla u\nabla v \\ &+p(p-1)d(v+\omega)^{p-2} \nabla v^{2}\\ \end{align*} which is nonnegative if \begin{align*} \delta=&[p(a+d)h'(u)(v+\omega)^{p-1}+p(p-1)(v+\omega)^{p-2}]^{2}\\ &-4p(p-1)d(v+\omega)^{p-2}[a(h''(u)+h'^{2}(u))(v+\omega)^{p}\\ &+pch'(u)(v+\omega)^{p-1}]\leq 0. \end{align*} Indeed, \begin{align*} \delta=&p^{2}(a+d)^{2}h'^{2}(u)(v+\omega)^{2p-2}+2(a+d)cp^{2}(p-1)h'(u)) (v+\omega)^{2p-3}\\ &+c^{2}p^{2}(p-1)^{2}(v+\omega)^{2p-4}-4p(p-1)ad(h''(u)+h'^{2}(u)) (v+\omega)^{2p-2}\\ &-4cdp^{2}(p-1)h'(u)(v+\omega)^{2p-3} \end{align*} and from \eqref{e3.3} we have that $v+\omega \geq 1$. It follows that \begin{align*} \delta \leq &[p^{2}(a+d)^{2}h'^{2}(u)-4p(p-1)ad (h''(u)+h'^{2}(u))] (v+\omega)^{2p-2}\\ &+[2(a+d)c p^{2}(p-1)h'(u) +c^{2} p^{2}(p-1)^{2}\\ &-4cd p^{2}(p-1) h'(u)] (v+\omega)^{2p-3}. \end{align*} Let us try $$ T=p^{2}(a+d)^{2}h'^{2}(u)-4p(p-1)ad (h''(u)+h'^{2}(u)) $$ the choice of $h(u)$ implies \begin{equation} \label{e3.9} \frac{\rho}{\Gamma(p)[l+\rho K]}\leq h'(u)\leq\frac{\rho}{\Gamma(p)l}, \end{equation} and, consequently, $$ T=-\frac{\rho^{2}4ad(a-d)^{2}p^{2}}{[\Gamma(p)(l+\rho (K-u))]^{2}} \leq -4adp^{2} R^{2}\leq 0. $$ In addition \begin{align*} \delta\leq &[2(a+d)c p^{2}(p-1)h'(u)+c^{2} p^{2}(p-1)^{2} -4cd p^{2}(p-1) h'(u)] (v+\omega)^{2p-3}\\ &+T (v+\omega)(v+\omega)^{2p-3}\\ \leq &[(p-1)c^{2}+2(a-d)c\frac{\rho}{\Gamma(p)l} -\frac{4ad R^{2}\omega}{(p-1)}] p^{2}(p-1)(v+\omega)^{2p-3} +T v(v+\omega)^{2p-3}. \end{align*} If we replace $w$ by its value \eqref{e3.3} and use the parabolic condition $c^{2}-4ad < 0$, we deduce that \begin{align*} \delta \leq&[p(c^{2}-4ad)-(c-S)^{2}-4ad R^{2}\mu] p^{2}(p-1)(v+\omega)^{2p-3}\\ &+T v(v+\omega)^{2p-3}\leq 0, \end{align*} that is, $I \leq 0$. We can control the second term by observing that \begin{align*} J\leq&\int_{\Omega}[\beta h'(u) (v+\omega)^{p} - \sigma p (v+\omega)^{p-1}v+p\phi(v)(v+\omega)^{p-1}]e^{h(u)} dx\\ &+\int_{\Omega} [p (g(u,v)-\phi(v)) (v+\omega)^{p-1}-h'(u) f(u,v) (v+\omega)^{p}] e^{h(u)}dx. \end{align*} Using \eqref{e3.9}, \begin{align*} J\leq&\int_{\Omega}[\frac{\beta \rho}{\Gamma(p)l} (v+\omega)^{p} - \sigma p (v+\omega)^{p-1}v+p\phi(v)(v+\omega)^{p-1}]e^{h(u)} dx\\ &+\int_{\Omega} [p (g(u,v)-\phi(v)) (v+\omega)^{p-1} - \frac{\rho}{\Gamma(p)[l+\rho k]} f(u,v) (v+\omega)^{p}] e^{h(u)}dx. \end{align*} Applying Lemmas \ref{lem3.2} and \ref{lem3.3}, one finds that \[ J\leq-(p-1)\sigma\int_{\Omega}(v+\omega)^{p}e^{h(u)} dx +M_1\int_{\Omega}e^{h(u)} dx+N_1\int_{\Omega}f(u,v)e^{h(u)} dx. \] In addition we see that $$ h(u)\leq -\frac{1}{\Gamma(p)}\ln\frac{2\beta\rho}{\sigma}, $$ and, consequently, \[ J\leq -(p-1)\sigma L +M_1|\Omega|e^{-\frac{1}{\Gamma(p)} \ln\frac{2\beta\rho}{\sigma}}+N_1e^{-\frac{1}{\Gamma(p)} \ln\frac{2\beta\rho}{\sigma}}\int_{\Omega}f(u,v)dx. \] Letting $$ M=M_1|\Omega|e^{-\frac{1}{\Gamma(p)}\ln\frac{2\beta\rho}{\sigma}}, \quad N=N_1e^{-\frac{1}{\Gamma(p)}\ln\frac{2\beta\rho}{\sigma}} $$ and using Lemma \ref{lem3.1} we conclude that \begin{align*} J\leq&-(p-1)\sigma L +M+N[\beta |\Omega|-\frac{d}{dt} \int_{\Omega} u(t,x) dx]\\ \leq &-(p-1)\sigma G_{N}+(p-1)\sigma N\int_{\Omega} u dx+ M +N \beta |\Omega|- N\frac{d}{dt}\int_{\Omega} u(t,x) dx\\ \leq &-(p-1)\sigma G_{N}+|\Omega|N[(p-1)K\sigma + \beta] + M - N\frac{d}{dt}\int_{\Omega} u(t,x) dx. \end{align*} It follows that $$ \frac{dG_{N}}{dt} \leq -(p-1)\sigma G_{N}+s $$ where $s=|\Omega|N[(p-1)K\sigma + \beta] + M$. \end{proof} We can now establish the main result of this manuscript. \begin{theorem} \label{thm3.1} Under the assumptions {\rm (H1)-(H3)} and \eqref{e1.5}, the solutions of \eqref{e1.1}--\eqref{e1.4} are global and uniformly bounded in $[0,+\infty[$. \end{theorem} \begin{proof} Multiplying \eqref{e3.5} by $e^{(p-1)\sigma t}$ and integrating, implies the existence of a positive constant $C>0$ independent of $t$ such that $$ G_{N}(t)\leq C. $$ Since $$ e^{h(u)}\geq e^{-\frac{1}{\Gamma(p)}\ln(\Gamma(p)[l+\rho k)])}, $$ for all $p\geq 2$, we have \[ \int_{\Omega}(v+\omega)^{p} dx\quad \leq e^{\frac{1}{\Gamma(p)}\ln(\Gamma(p)[l+\rho k))}G_{N}(t) \leq C e^{\frac{1}{\Gamma(p)}\ln \Gamma(p)[l+\rho k]}= C(p). \] Consequently, $$ \int_{\Omega}(v+\mu)^{p} dx \leq C(p),\quad \int_{\Omega}v^{p} dx \leq C(p). $$ Now we chose $p> n/2$ and we search for a bound for $\| \Upsilon(u,v)\|_{p}$. We put $$ A_1= \max_{0\leq \tau\leq \tau_{0}} \psi(\tau),\quad A_2=\max_{0\leq \xi\leq K}\varphi(\xi),\quad A_3 = \max_{0\leq \tau\leq \tau_{0}} \phi(\tau) $$ where $\tau_{0}=max(\tau_1,\tau_2)$ such that $$ \tau\geq \tau_1 \quad \Rightarrow \quad \psi(\tau)\leq \tau, \quad \tau\geq \tau_2 \quad \Rightarrow \quad \phi(\tau)\leq \tau. $$ Using {\rm (H1)--(H3)} implies $$ g(u,v)\leq\psi(v) f(u,v)+\phi(v) \leq \psi(v) \varphi(u) (\mu+v)^{r}+\phi(v) \leq A_2 \psi(v) (\mu+v)^{r}+\phi(v). $$ Since $0\leq u\leq K$, we have \begin{equation*} \int_{\Omega} g(u,v)^{p} dx\leq \int_{\Omega} [A_2 \psi(v) (\mu+v)^{r} +\phi(v)]^{p}dx. \end{equation*} Now we use the inequality $$ (x+y)^{q}\leq 2^{q-1}(x^{q}+y^{q}) $$ all $x,y\geq0$ and $q\geq1$, to obtain the following sequence of estimates \begin{align*} &\int_{\Omega} g(u,v)^{p} dx\\ &\leq \int_{\Omega}2^{p-1}[A_2^{p} \psi(v)^{p} (\mu+v)^{rp}+\phi(v)^{p}]dx\\ &\leq 2^{p-1} \Big[A_2^{p}\Big( \int_{v\leq \tau_{0}} A_1^{p} (\mu+\tau_{0})^{rp} dx+\int_{v\geq \tau_{0}} v^{p} (\mu+v)^{rp} dx\Big) + |\Omega| A_3^{p}+\int_{v\geq \tau_{0}} v^{p}dx\Big] \\ &\leq 2^{p-1} \Big[\Big(A_2 A_1(\mu+\tau_{0})^{r}\Big)^{p}|\Omega| + A_2^{p}\int_{v\geq \tau_{0}} (\mu+v)^{(r+1)p} dx + |\Omega| A_3^{p}+\int_{v\geq \tau_{0}} v^{p}dx\Big]\\ &\leq 2^{p-1} [(A_2 A_1(\mu+\tau_{0})^{r})^{p}|\Omega|+ A_2^{p}C((r+1)p) + |\Omega| A_3^{p}+C(p)] =E_{g}^{p}\\ \end{align*} and \[ \int_{\Omega} f(u,v)^{p} dx\leq A_2^{p} C(rp)=E_{f}^{p}. \] We conclude that \begin{align*} \|\Upsilon(u,v)\|_{p} & \leq \|g(u,v)\|_{p} +\frac{c}{a-d}[\|f(u,v)\|_{p}+\alpha\|u\|_{p} +\beta |\Omega|] +\sigma \|v\|_{p} \\ &\leq E_{g}+\frac{c}{a-d}[E_{f}+(\alpha K+\beta)|\Omega|] +\sigma \sqrt[p]{C(p)}. \end{align*} We conclude that the unique solution of \eqref{e1.1}--\eqref{e1.4} is globally and uniformly bounded in $[0,+\infty[\times\Omega$. \end{proof} \subsection*{Acknowledgments} The author wants to thank Professors A. Youkana and M. Mechab for their kind advice, and the anonymous referee for his/her comments that improved the final version of this article. \begin{thebibliography}{00} \bibitem{alik} N. Alikakos, \emph{$L^{p}-$Bounds of solutions of Reaction-Diffusion Equations}, comm. P.D.E. 4(1979),827-828. \bibitem{badr} S. Badraoui,\emph{Existence of global solutions for systems of reaction-diffusion equations on unbounded domains}, Electronic J. Diff. Equations, Vol 2002 (2002), No 74, 1610. \bibitem{cast} C. Castillo-Chavez, K. Cook, W. Huang and S. A. Levin, \emph{On the role of long incubation periods in the dynamics of acquires immunodeficiency syndrome, AIDS}, J. Math. Biol. 27(1989) 373-398. Vol(2002), No 74, 1610. \bibitem{coll} P. Collet and J. Xin, \emph{Global Existence and Large Time Asymptotic Bounds of L1 Solutions of Thermal Diffusive Combustion Systems on $R^{N}$},Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 23(1996),625-642. \bibitem{cran} M. Crandall, A. Pazy, and L. Tartar, \emph{Global Existence and Boundedness in Reaction-Diffusion Systems}. SIAM J. Math. Anal. 18 (1987), 744-761. \bibitem{cuss} E. L. Cussler, \emph{Diffusion}, Cambridge university press, second edition, 1997. \bibitem{fitz} E.Fitzgibbon, M.Langlais, F.Marpeau and J. J. Morgan, \emph{Modeling the circulation of a disease between two host populations on non coincident spatial domains}, , to appear in J. Biological Invasions. Vol(2002), No 74, 1610. \bibitem{frie} A. Friedman, \emph{Partial Differential Equation of Parabolic Type}, Prentice Hall Englewood Chiffs N. J. 1964. \bibitem{hama} Y.Hamaya, \emph{On the asymptotic behavior of the diffusive epidemic model (AIDS)}, Nonlinear Analysis 36 (1999) \bibitem{hark} A. Haraux and M. Kirane, \emph{Estimation $C^{1}$ pour des problemes paraboliques semi$-$lineaires}. Ann. Fac. Sci. Toulouse Math. 5 (1983), 265-280. \bibitem{hary} A. Haraux and A. Youkana, \emph{On a result of K. Masuda Concerning Reaction-Diffusion Equations}. Tohoku. Math. J. 40 (1988), 159-163. \bibitem{henr} D. Henry, \emph{Geometric Theory of Semilinear Parabolic Equations}. Lecture Notes in Mathematics 840, Springer$-$Verlag, New york, 1984. \bibitem{kane} J. I. Kanel and M. Kirane, \emph{Global Solutions of Reaction-Diffusion Systems with a Balance Law and Nonlinearities of Exponential Growth}. Journal of Differential Equations 165, 24-41 (2000). \bibitem{kira} M. Kirane, \emph{Global bounds and asymptotics for a system of reaction$-$diffusion equations}. J. Math. Anal. Appl. 138 (1989), 1172-1189. \bibitem{kiri} M. Kirane and S. Kouachi, \emph{Global Solutions to a System of Strongly Coupled Reaction-Diffusion Equations}. Nonlinear Anal. 26 (1996), 1387-1396. \bibitem{kouac} S. Kouachi, \emph{ Existence of global solutions to Reaction$-$Diffusion systems via a Lyapunov functional}. Electrnic Journal of Differential Equations, Vol 2001 (2001), no. 68, pp. 1-10. \bibitem{koua} S. Kouachi and A. Youkana, \emph{Global Existence for a Class of Reaction$-$Diffusion System}. Bulletin of the Polish Academy of Science, Vol 49, no. 3, (2001). \bibitem{masu} K. Masuda, \emph{On the Global Existence and Asymptotic Behaviour of Reaction-Diffusion Equations}. Hokkaido Math. J. 12 (1983), 360-370. \bibitem{melk} L. Melkemi, A. Z. Mokrane, and A. Youkana, \emph{On the uniform boundness of the solutions of systems of reaction-diffusion equtions}. EJQTDE, 2005, no. 24. 1-10. \bibitem{pazy} A. Pazy, \emph{Semigroups of Linear Operators and Applications to Partial Differential Equations}. Springer Verlag, New York, 1983. \bibitem{smol} J. A. Smoller, \emph{Shock Wave and Reaction$-$Diffusion Equations}. Springer-Verlag, New york, 1983. \bibitem{soma} L. W. Somathilake and J. M. J. J. Peiris, \emph{Global Solutions of a strongly coupled reaction-diffusion system with different diffusions coefficients},Journal of Applied Mathematics, Hindawi, (2005), 23-36. \bibitem{webb} G. F. Webb, \emph{A reaction-diffusion model for a deterministic diffusive epidemic}, J. Math. anal. Appl. 84 (1981) 150-161. \bibitem{zeid} E. Zeidler, \emph{Nonlinear functional analysis and its applications}, Tome II/b, Springer Verlag, 1990. \end{thebibliography} \end{document}