\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 155, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/155\hfil Streaming semigroup] {New approach to streaming semigroups with multiplying boundary conditions} \author[M. Boulanouar\hfil EJDE-2008/155\hfilneg] {Mohamed Boulanouar} \address{Mohamed Boulanouar\newline LMCM, Universit\'e de Poitiers, 86000, Poitiers, France} \email{boulanouar@free.fr} \thanks{Submitted May 15, 2008. Published November 12, 2008.} \subjclass[2000]{47D06} \keywords{Streaming operator; general boundary conditions; semigroup} \begin{abstract} This paper concerns the generation of a $C_0$-semigroup by the streaming operator with general multiplying boundary conditions. A first approach, presented in \cite{Boulanouar1}, is based on the Hille-Yosida's Theorem. Here, we present a second approach based on the construction of the generated semigroup, without using the Hille-Yosida's Theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newcommand{\abs}[1]{|#1|} \newcommand{\norm}[1]{\|#1\|} \section{Introduction} Let us consider a particle population (neutrons, photons, molecules of gas,\dots ) in some domain of $\mathbb{R}^n$. Each particle is distinguished by its position $x\in X\subset\mathbb{R}^n$ and its directional velocity $v\in V\subset\mathbb{R}^n$. If we denote by $f(t,x,v)$ the density of particles having, at the time $t$, the position $x$ with the directional velocity $v$, then particle population is governed by the following evolution equation \begin{equation}\label{e:E1} \frac{\partial f}{\partial t}(t)=-v\cdot\nabla_xf(t)=:T_Kf(t), \end{equation} where $(x,y)\in\Omega=X\times V$ and $t\geq0$. The operator $T_K$ is called the streaming operator describing the transport of particles and it is equipped with following general boundary conditions \begin{equation}\label{e:E2} f(t)\big|_{\Gamma_-}=K\big(f(t)\big|_{\Gamma_+}\big) \end{equation} where $f(t)|_{\Gamma_-}$ (resp. $f(t)|_{\Gamma_+}$) is the incoming (resp. outgoing) particle flux which is the restriction of the density $f(t)$ on the subset $\Gamma_-$ (resp. $\Gamma_+$) of $\partial X\times V $. The boundary operator $K$ is linear and bounded on suitable function spaces. All of known boundary conditions (vacuum, specular reflections, periodic,\dots ) are special examples of our general context. (see the next section for more explanations). When $\|K\|\leq1$, the existence of a strongly continuous semigroup has been investigated by several authors and important results have been cleared in \cite{Beals,Protopopescu,Voigt}. However, the case $\|K\|\geq1$ has been rarely studied and the first approach, based on Hille-Yosida's Theorem, is given in \cite{Boulanouar1} according to some geometrical restrictions on $X$ and $V$ that we have expressed in the definition \ref{DEFINITION}. Namely, the difficulty regarding the case $\|K\|>1$ is linked to the increasing number of incoming particles. In this case, the time sojourn of particles in $X$ may be arbitrary small and intuitively the boundary operator $K$ does not take too much into account such as particles. The motivation, of this present work, is to give a second approach when $\|K\|\geq1$ without using the Hille-Yosida's Theorem. This approach is concerned by two steps. The first one is devoted to the construction of a $C_0$-semigroup. In the second one, we show that $T_K$ is the infinitesimal generator of this semigroup. To obtain our objective, we use our technics successfully applied in \cite{Boulanouar4,Boulanouar5}. We point out that this work is new and gives the explicit expression of the generated semigroup. \section{Estatement of the problem} We consider Banach space $L^p(\Omega)$ ($1\leq p<\infty$) with its natural norm \begin{equation}\label{e:NORME1} \|\varphi\|_p=\Big[\int_{\Omega}\abs{\varphi(x,v)}^pdxd\mu\Big]^{1/p}, \end{equation} where $\Omega=X\times V$ with $X\subset \mathbb{R}^n$ be a smoothly bounded open subset and $d\mu$ be a Radon measure on $\mathbb{R}^n$ with support $V$. We also consider the partial Sobolev space $$ W^p(\Omega)=\{\varphi\in L^p(\Omega),\; v\cdot\nabla_x\varphi\in L^p(\Omega)\}, $$ with the norm $\|\varphi\|_{W^p(\Omega )}= [\|\varphi\|_p^p+\norm{v\cdot\nabla_x\varphi}_p^p]^{1/p}$. We set $n(x)$ the outer unit normal at $x\in\partial X$, where $\partial X$ is the boundary of $X$ equipped with the measure of surface $d\gamma$. We denote \begin{gather*} \Gamma=\partial X\times V,\quad \Gamma_0=\{(x,v)\in\Gamma,\; v\cdot n(x)=0\},\\ \Gamma_+=\{(x,v)\in\Gamma,\; v\cdot n(x)>0\},\quad \Gamma_-=\{(x,v)\in\Gamma,\; v\cdot n(x)<0\}, \end{gather*} and suppose that $d\gamma d\mu(\Gamma_0)=0$. For $(x,v)\in \Omega $, the time which a particle starting at $x$ with velocity $-v$ needs until it reaches the boundary $\partial X$ of $X$ is denoted by $$ t(x,v)=\inf\{t>0,\; x-tv\not \in X\}. $$ Similarly, if $(x,v)\in \Gamma_+$ we set $$ \tau(x,v)=\inf\{t>0,\; x-tv\not \in X\}. $$ Now, we use the context of \cite{Boulanouar1} as follows \begin{definition}\label{DEFINITION} \rm The pair $(X,V)$ is regular if $$ \tau_0:= \inf_{(x,v)\in \Gamma_+}\tau(x,v)>0. $$ \end{definition} We also consider the trace spaces $L^p(\Gamma_{\pm})$ equipped with the norm \begin{equation*} \|\varphi\|_{L^p(\Gamma_{\pm})}= \Big[\int_{\Gamma_{\pm}}\abs{\varphi(x,v)}^pd\xi\Big]^{1/p}, \end{equation*} where $d\xi=\abs{v\cdot n(x)}d\gamma d\mu$. The first consequence of the regularity of the pair $(X,V)$ is as follows. \begin{lemma}[\cite{Boulanouar1}]\label{TRACES} If the pair $(X,V)$ is regular, then the trace applications $$ \gamma_+\;:W^p(\Omega)\; \longrightarrow L^p(\Gamma_+),\quad \gamma_-\;:W^p(\Omega)\; \longrightarrow L^p(\Gamma_-), $$ are linear and continuous. \end{lemma} Finally, if we consider the boundary operator \begin{equation}\label{e:K} K\in\mathcal{L}\left(L^p(\Gamma_{+}),L^p(\Gamma_{-}) \right), \end{equation} then the previous Lemma gives a sense to the operator \begin{gather*} T_K\varphi=-v\cdot\nabla_x\varphi\quad \text{defined on the domain}\\ D(T_K)=\{\varphi\in W^p(X\times V),\; \gamma_-\varphi=K\gamma_+\varphi\}. \end{gather*} We set $\|K\|:=\|K\|_{\mathcal{L}(L^p(\Gamma_{+}),L^p(\Gamma_{-}))}$ for the rest of this article. If $K=0$, the operator $T_0$ has properties that we summarize as follows. \begin{lemma}\label{LEMMA2.2} The operator $T_0$, on $L^p(\Omega )$ $(p\geq1)$, generates a contraction $C_0$-semi\-group $\{U_0(t)\}_{t\geq0}$ given by \begin{equation}\label{LEMMA2.2:b} U_0(t)\varphi(x,v)= \chi\left(t-t(x,v)\right)\varphi\left(x-tv,v\right), \end{equation} where \begin{equation}\label{LEMMA2.2:c} \chi\left(t-t(x,v)\right)= \begin{cases} 1&\text{if } t(x,v)-t\geq0,\\ 0&\text{otherwise.} \end{cases} \end{equation} \end{lemma} We conclude this section with the following lemma that we will need later. \begin{lemma}\label{LEM2.2} Suppose that the pair $(X,V)$ is regular and let $\varphi\in W^p(\Omega)$ and $\lambda>0$. If we set \begin{equation}\label{e:DECOMPOSITION} \begin{gathered} \Psi(x,v)=\epsilon_\lambda(x,v)\gamma_-\varphi(x-t(x,v)v,v),\\ \Phi=\varphi-\Psi, \end{gathered} \end{equation} where $\epsilon_\lambda(x,v)=e^{-\lambda t(x,v)}$, then the following statements hold \begin{enumerate} \item $\Psi\in W^p(\Omega)$ and $\Phi\in D(T_0)$; \item the application $t\geq0\rightarrow \gamma_+[U_0(t)\varphi]\in L^p(\Gamma_+)$ is continuous. \end{enumerate} \end{lemma} \begin{proof} (1) Let $\varphi\in W^p(\Omega)$ and $\lambda>0$. As we have $v\cdot\nabla_x\Psi+\lambda\Psi=0$ with $\gamma_-\Psi=\gamma_-\varphi\in L^p(\Gamma_-)$, then a simple calculation gives us \begin{equation*} \norm{v\cdot\nabla_x\Psi}_p^p=\lambda\|\Psi\|_p^p \leq\lambda\big[\frac{1}{p\lambda}\big]^{1/p} \norm{\gamma_-\varphi}_{L^p(\Gamma_-)}^p<\infty \end{equation*} which implies \begin{gather*} \|\Psi\|_{W^p(\Omega)}=[\|\Psi\|_p^p+\norm{v\cdot\nabla_x\Psi}_p^p]^{1/p} <\infty,\\ \norm{\Phi}_{W^p(\Omega)}=\norm{\varphi-\Psi}_{W^p(\Omega)} \leq\|\varphi\|_{W^p(\Omega)}+\|\Psi\|_{W^p(\Omega)}<\infty, \end{gather*} and therefore $\Psi$ and $\Phi$ belong to $W^p(\Omega)$. Furthermore, we trivially have $\gamma_-\Phi=\gamma_-(\varphi-\Psi)=\gamma_-\varphi-\gamma_-\varphi=0$ and thus $\Phi\in D(T_0)$. (2) Let $\varphi\in W^p(\Omega)$ and $\lambda>0$. For all $h>0$ and all $t\geq0$ we have \begin{equation}\label{e:az} \begin{aligned} &\norm{\gamma_+U_0(t+h)\varphi-\gamma_+U_0(t)\varphi}_{L^p(\Gamma_+)}\\ &=\norm{\gamma_+U_0(t+h)\Psi-\gamma_+U_0(t)\Psi+\gamma_+ U_0(t+h)\Phi-\gamma_+U_0(t)\Phi}_{L^p(\Gamma_+)}\\ &\leq \norm{\gamma_+U_0(t+h)\Psi-\gamma_+U_0(t)\Psi}_{L^p(\Gamma_+)} +\norm{\gamma_+U_0(t+h)\Phi-\gamma_+U_0(t)\Phi}_{L^p(\Gamma_+)}\\ &=:I_1(h)+I_2(h). \end{aligned} \end{equation} As $\Phi\in D(T_0)$, Lemmas \ref{TRACES} and \ref{LEMMA2.2}, imply \begin{equation*} \begin{aligned} \lim_{h\to0}I_2(h) &= \lim_{h\to0}\norm{\gamma_+U_0(t+h)\Phi-\gamma_+U_0(t)\Phi}_{L^p(\Gamma_+)}\\ &\leq\norm{\gamma_+}_{\mathcal{L}(D(T_0),L^p(\Gamma_+))} \lim_{h\to0}\norm{U_0(t+h)\Phi-U_0(t)\Phi}_{D(T_0)}\\ &=0. \end{aligned} \end{equation*} Next, a simple calculation shows that \begin{align*} \lim_{h\to0}I_1(h)^p &=\lim_{h\to0}\norm{\gamma_+U_0(t+h)\Psi -\gamma_+U_0(t)\Psi}_{L^p(\Gamma_+)}^p\\ &=\lim_{h\to0}\int_{\Gamma_+} \abs{\chi(t+h-t(x,v))e^{\lambda(t+h)}-\chi(t-t(x,v))e^{\lambda t}}^p \abs{\Psi(x,v)}^pd\xi\\ &=0 \end{align*} This completes the proof. \end{proof} \section{Construction of the semigroup} In this section, we construct the semigroup $\{U_K(t)\}_{t\geq0}$ when $\|K\|\geq1$. In order to show Theorem \ref{THEOREM3.1} which is the main result, we begin by \begin{lemma}\label{LEMMA3.1} The following Cauchy's problem \begin{equation} \begin{gathered} \frac{du}{dt}+v\cdot\nabla_x u=0,\quad (t,x,v)\in(0,\infty)\times \Omega ;\\ \gamma_-u=f_-\in L^p\left(\mathbb{R}_+,L^p(\Gamma_-)\right);\\ u(0)=f_0\in L^p(\Omega), \end{gathered} \label{Pf-f0} \end{equation} admits a unique solution $u=u(t,x,v)=u(t)(x,v)$. Furthermore, for all $t\geq0$, we have \begin{equation}\label{LEMMA3.1:a} \norm{u(t)}_p^p+ \int_0^t\norm{\gamma_+u(s)}_{L^p(\Gamma_+)}^pds =\int_0^t\norm{f_-(s)}_{L^p(\Gamma_-)}^pds+\norm{f_0}_p^p. \end{equation} \end{lemma} \begin{proof} Let $f_-\in L^p\left(\mathbb{R}_+,L^p(\Gamma_-)\right)$ and $f_0\in L^p(\Omega)$. First. Using \cite[pp.1124]{Dautray} it follows that Cauchy's problem ${\rm P(f_-,f_0)}$ has a unique solution given by \begin{equation}\label{LEMMA3.2:dd} u(t,x,v)=\xi\left(t-t(x,v)\right)f_-(t-t(x,v),x-t(x,v)v,v)+U_0(t)f_0(x,v). \end{equation} where $\xi$ is given in Lemma \ref{LEMMA3.2}. Next. Multiplying first equation of Cauchy's problem ${\rm (P)}(f_-,f_0)$ by $\mathop{\rm sgn} u\abs{u}^{p-1}$ and using \begin{equation*} \mathop{\rm sgn} u\abs{u}^{p-1}v\cdot\nabla_xu=\frac{1}{p}v\cdot\nabla_x\abs{u}^p, \end{equation*} with an integrating over $\Omega$, we obtain \begin{align*} \frac{1}{p}\frac{d\norm{u(t)}_p^p}{dt} &=\frac{1}{p}\int_{\Gamma_-}\abs{\gamma_-u(t,x,v)}^pd\xi -\frac{1}{p}\int_{\Gamma_+}\abs{\gamma_+u(t,x,v)}^pd\xi\\ &=\frac{1}{p}\int_{\Gamma_-}\abs{f_-(t,x,v)}^pd\xi -\frac{1}{p}\int_{\Gamma_+}\abs{\gamma_+u(t,x,v)}^pd\xi\\ &=\frac{1}{p}\norm{f_-(t)}_{L^p(\Gamma_-)}^p- \frac{1}{p}\norm{\gamma_+u(t)}_{L^p(\Gamma_+)}^p \end{align*} which implies, by integration with respect to $t$, that \begin{equation*} \norm{u(t)}_p^p-\norm{f_0}_p^p= \int_0^t\norm{f_-(s)}_{L^p(\Gamma_-)}^pds- \int_0^t\norm{\gamma_+u(s)}_{L^p(\Gamma_+)}^pds \end{equation*} and achieves the proof. \end{proof} \begin{remark} \label{rmk3.1} \rm In the sequel, we use the fact that all expression on the form of \eqref{LEMMA3.2:dd} is automatically solution of Cauchy's problem ${\rm P(f_-,f_0)}$. \end{remark} The second consequence of the regularity of the pair $(X,V)$ is as follows. \begin{lemma}\label{LEMMA3.2} Suppose that the pair $(X,V)$ is regular and let \begin{equation*} \xi\left(t-t(x,v)\right)= \begin{cases} 1&\text{if } t(x,v)-t\leq0,\\ 0&\text{otherwise.} \end{cases} \end{equation*} If $0\leq t\leq \tau_0$, then we have $\gamma_+\xi\left(t-t(\cdot,\cdot)\right)=0$. \end{lemma} \begin{proof} By the regularity of the pair $(X,V)$, we have $$ 0\leq t\leq\tau_0= \inf_{(x,v)\in \Gamma_+}\tau(x,v)\leq \tau(x,v) $$ a.e. $(x,v)\in\Gamma_+$, and therefore \begin{equation*} \gamma_+\left[\xi(t-t(\cdot,\cdot))\right](x,v)= \xi(t-\tau(x,v))=0, \end{equation*} a.e. $(x,v)\in\Gamma_+$. \end{proof} \begin{lemma}\label{LEMMA3.3} Suppose that the pair $(X,V)$ is regular. For all $0\leq t\leq \tau_0$, the operator $A_K(t)$ given by \begin{equation*} A_K(t)\varphi(x,v)= \xi\left(t-t(x,v)\right)K\left[\gamma_+U_0\left(t-t(x,v)\right) \varphi\right]\left(x-t(x,v)v,v\right) \end{equation*} is a linear and bounded from $L^p(\Omega)$ into itself. Furthermore, we have \begin{enumerate} \item $A_K(0)=0$; \item $\lim_{t\searrow0}\norm{A_K(t)\varphi}_p=0$ for all $\varphi\in L^p(\Omega)$; \item $\gamma_+A_K(t)=0$ for $0\leq t\leq\tau_0$; \item $A_K(t)A_K(s)=0$ for all $0\leq t,s\leq\tau_0$ such that $0\leq t+s\leq\tau_0$. \end{enumerate} \end{lemma} \begin{proof} Let $0\leq t\leq \tau_0$ and $\varphi\in L^p(\Omega)$. As $u(t)=A_K(t)\varphi$ is the solution of Cauchy's problem ${\rm P}(f_-=K\left[\gamma_+U_0(\cdot)\varphi\right], f_0=0)$ then \eqref{LEMMA3.1:a} and the boundedness of $K$ implies \begin{equation*} \norm{A_K(t)\varphi}_p^p\leq\int_0^t \norm{K\left[\gamma_+U_0(s)\varphi\right]}_{L^p(\Gamma_-)}^pds \leq\|K\|^p\int_0^t \norm{\gamma_+U_0(s)\varphi}_{L^p(\Gamma_+)}^p. \end{equation*} However, $u(t)=U_0(t)\varphi$ is solution of Cauchy's problem \eqref{Pf-f0} with $f_-=0, f_0=\varphi$, and therefore \eqref{LEMMA3.1:a} implies \begin{equation}\label{LEMMA3.3:aa} \int_0^t\norm{\gamma_+U_0(s)\varphi}_{L^p(\Gamma_+)}^p =\|\varphi\|_p^p-\norm{U_0(t)\varphi}_p^p. \end{equation} From the previous two relations we obtain \begin{equation*} \norm{A_K(t)\varphi}_p^p \leq\|K\|^p\left[\|\varphi\|_p^p-\norm{U_0(t)\varphi}_p^p\right] \leq\|K\|^p\|\varphi\|_p^p \end{equation*} which implies that $A_K(t)\varphi\in L^p(\Omega)$ and the boundedness of the operator $A_K(t)$ follows. Points (1) and (2) follow from the fact that $\{U_0(t)\}_{t\geq0}$ is a $C_0$-semigroup. (3) This point obviously follows from previous Lemma. (4) Let $0\leq t,s\leq\tau_0$ such that $0\leq t+s\leq\tau_0$ and $\varphi\in L^p(\Omega)$. A simple calculation shows that the expression of $A_K(t)A_K(s)\varphi$ contains the following function \begin{equation*} \alpha(x,v,x',v'):= \xi\Bigl(s-t\Bigl(x'-\bigr(t-t(x,v)\bigr)v',v'\Bigr)\Bigr) \end{equation*} for a.e $(x,v)\in\Omega$ and a.e $(x',v')\in\Gamma_+$. Using the definition of $\xi$ in previous Lemma, we get that \begin{align*} \alpha(x,v,x',v')=0&\Longleftrightarrow s0$, then we have \begin{equation*} \lim_{t\searrow0} \big\|\frac{A_K(t)\varphi+U_0(t)\Psi-\Psi}{t}-\lambda\Psi\big\|_p= \norm{K\gamma_+\varphi-\gamma_-\varphi}_{L^p(\Gamma_-)} \end{equation*} where $\Psi$ is given by \eqref{e:DECOMPOSITION}. \end{lemma} \begin{proof} Let $0