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REMARKS ON VACUUM STATE AND UNIQUENESS OF
CONCENTRATION PROCESS

VLADIMIR G. DANILOV

Abstract. We give two examples of nonuniqueness of generalized solutions
of pressureless gas dynamics systems. In both of these examples, the presence

of the Dirac δ-function leads to nonuniqueness.

1. Introduction

In this note, we present two examples of nonuniqueness of the solution of the
pressureless gas dynamics system. This system has the form

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2) = 0,
(1.1)

and, as is well known, in the domain, where the solution belongs to C1, it is
equivalent to the system

∂ρt + ∂x(ρu) = 0,

∂tu +
1
2
∂xu2 = 0.

(1.2)

However, these systems are quite different if one considers generalized solutions.
In both cases, the nonuniqueness of the solution originates from the fact that the

initial condition contains the Dirac δ-function. We also note that the nonuniqueness
of the solution of system (1.1) in the examples presented here arises because of a
quite different mechanism than that found in [7, p. 145].

This type of nonuniqueness for system (1.1) arises because of the properties of
the conditions posed on the discontinuity curve, which are analogs of the Rankine–
Hugoniot conditions for shock waves. (These conditions are usually implicit condi-
tions in works concerning the study of (1.1), (1.2) in general functional spaces).

Moreover, our solutions for system (1.1) is an entropy solution in the sense of [7,
Definition 2]. Such a solution must be unique due to the result of [7].

Apparently, this can be explained by the fact that there are different definitions
of the generalized solution. In this paper, we use the definitions given in [3]. These
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definitions are direct analogies of the definitions (in the form of integral identities)
of generalized solutions of conservation laws belonging to L1 ∩ L∞.

A definition of δ-shock wave type generalized solutions in the form of integral
identities was given in [3], where the integral identities were obtained as the limits
of the results obtained by substituting approximate solutions (weak asymptotic
solutions in [3]) into the original equations. In what follows, we present another
(heuristic) method for obtaining these integral identities.

All of this shows that these definitions based on integral identities are quite
natural. We note that, in the literature, another approach is well known in the
definition of δ-shock wave type solutions for systems (1.1) and (1.2), see, e.g.,
[1, 2, 7, 12].

In these works, the generalized solution of the continuity equation in systems
(1.1) and (1.2) is determined in the form of an integral identity over the measure
determined by the function ρ. Since the Dirac δ-function on the trajectory of
the discontinuity is considered as a term in the density of this measure and the
functions depending on the velocity u must be integrated, it follows from formal
considerations that the value of u must be determined on the trajectory of the
discontinuity. It is clear that such an approach cannot be uniquely possible. For
example, in system (1.2), the definition of the generalized solution for the second
equation (for u) is in no way related to ρ and it is defined by a general definition of
the L′ ∩ L∞ solution of the conservation law. But it turns out that this definition
must take account of the second equation (about which the first equation does not
know anything).

Apparently, all this originates from the attempts to define the product δ(z)H(z)
(of the Dirac δ-function by the Heaviside function), which formally appears in
substituting the δ-shock wave type solution into the system of equations.

Nevertheless, it is well known that such a definition is not unique. In [6], a
new method for constructing integral identities determining the δ-shock wave type
solutions was proposed.

In this method, we priorly do not assume that there is some fixed definition of the
product δ(z)H(z). We only assume that the equation holds in the sense of the space
D′(Rn+1). As a rule, such an assumption in the case of conservation laws implies
a definition of the usual generalized solution in the form of an integral identity.
Absolutely the same was obtained in [6]. Moreover, we present these considerations
and construct the corresponding definition for the system of equations (1.1), see
Sec. 2. Thus, our remark about the nonuniqueness of the δ-shock wave type solution
to system (1.1) has one more explanation: this nonuniqueness is related to the
nonuniqueness of the definition of the product of generalized functions. If we fix
such a definition, then, of course, the nonuniqueness disappears. We describe this
in more detail in Sec. 2.

The nonuniqueness for system (1.2) arises when we consider an unstable step in
the initial data for u and the δ-function for ρ at the point of jump of u. This means
that the mass concentrated at the origin of the rarefaction domain fills the vacuum
“nonuniquely.”

Of course, the examples given below cast a shadow on the physical consistency
of the models related to systems (1.1) and (1.2). In any case, one must attentively
examine the conclusions about the real processes obtained using these models.
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2. Results

Definitions of generalized δ-shock wave type solutions to systems (1.1) and (1.2).

Definition 2.1. Let Γ = {γi, i ∈ I} be a graph in the half-plane {x ∈ R1, t ≥ 0}
containing C1 arcs γi, and let I be a finite set. By I0 ⊂ I we denoted the arcs
starting from the point x0

k ∈ R1. A distribution ρ(x, t) and a graph Γ, where

ρ(x, t) = R(x, t) + E(t)δ(Γ), E(t)δ(Γ) =
∑
i∈I

ei(t)δ(γi),

ei(t) ∈ C1(γi), γi = {x = ϕi(t)},
(2.1)

R(x, t) ∈ C1((R1×R+) \Γ) and a function u = u(x, t) ∈ L∞(R1×R+)∩C1((R1×
R+) \ Γ). is called a generalized δ-shock wave type solution to (1.2) if the integral
identities ∫ ∞

0

∫
R1

(uζt +
1
2
u2ζx) dxdt +

∫
R1

(uζ)
∣∣∣
t=0

dx = 0, (2.2)∫ ∞

0

∫
R1

(Rζt + uRζx) dxdt +
∑
i∈I

∫
γi

ei(t)
dζ

dti
dt

+
∫

R1
Rζ

∣∣∣
t=0

dx +
∑
k∈I0

ek(0)ζ(ϕk(0), 0) = 0,

(2.3)

hold for all test functions ζ(x, t) ∈ D(R1 × R1
+) and d

dti
= ∂

∂t + ϕit
∂
∂x .

The appearance of the summand∑
i∈I

∫
γi

ei(t)
dζ

dti
dt

in (2.3) can easily be explained. Indeed, let ρ have the form (2.1), then differenti-
ating in t, we obtain (see [6])

ρt =
∑
i∈I

ei(t)(−ϕit)δ′(γi) + smoother summands.

Hence it is clear that we must have

(ρu)x = −
∑
i∈I

ei(−ϕit)δ′(γi) + smoother summands. (2.4)

Now, for any test function ζ(x, t) such that ζ(x, 0) = 0, we have

〈ρt + (uρ)x, ζ〉 = −〈ρ, ζt(x, t)〉 − 〈ρu, ζx(x, t)〉
= −〈R, ζt(x, t)〉 − 〈E(t)δ(Γ), ζt(x, t)〉 − 〈Ru, ζx〉

+
∑
i∈I

〈ei(t)(−ϕit)δ(γi), ζx(x, t)〉

= −〈R, ζt〉 − 〈Ru, ζx〉 −
∑
i∈I

∫
γi

ei(t)(ζt + ϕitζx) dt.

Here 〈, ζ〉 denotes the action of a generalized function on a test function ζ.
Of course, these calculations are not a proof, this is only a motivation.
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Definition 1 gives a method for calculating the functions contained in (2.1).
Suppose that

u = u0 +
∑
i∈I

H(x− ϕi)ui, (2.5)

where ϕi(t), u0(x, t), and ui(x, t) are smooth functions (i.e., the velocities have
jumps on the curves x = ϕi). Then, integrating by parts, we obtain∫ ∞

0

∫
R1\

S
{x=ϕi}

(Rt + (uR)x)ζ dxdt

−
∑
i∈I

∫
x=ϕi

{[R]ϕit − [uR]}ζ dt +
∑
i∈I

∫
γi

eitζ dt = 0,

where [g] is a jump of the function g across the discontinuity curve x = ϕi(t),
[g] = g(ϕi + 0)− g(ϕi − 0).

This and (2.2) imply the system of equations

ut +
1
2
(u2)x = 0,

Rt + (uR)x = 0 (x, t) ∈ R1 × R1
+ \

⋃
i∈I

{x = ϕi},
(2.6)

ϕit = u(ϕi + 0, t) + u(ϕi − 0, t) =
1
2

[u2]
[u]

∣∣∣
x=ϕi

,

eit = ϕit[R]|x=ϕi − [uR]|x=ϕi , i ∈ I.

(2.7)

The signs of the summands in (2.7) differ from the signs of the similar summands
in [3], since the jumps on the curves x = ϕi are defined in different ways. Systems
(2.6), (2.7) and (2.13), (2.14) are, in fact, known, see [1, 12].

In this case, at the nodes of the graph Γ lying above the axis {t = 0}, the
following “Kirchhoff laws” must be satisfied:∑

i∈In Ak

ei(t∗k − 0) =
∑

i∈Out Ak

ei(t∗k + 0), (2.8)

where In and Out are the respective sets of incoming and outgoing arcs associated
with a certain node Ak = (xk, t∗k).

For system (1.1), we have the definition of the solution in the following form.

Definition 2.2. Let Γ = {γi, i ∈ I} be a graph in the half-plane {x ∈ R1, t ≥ 0}
containing C1 arcs γi, and let I be a finite set. By I0 ⊂ I we denoted the arcs
starting from the point x0

k ∈ R1. A functions u = u(x, t) ∈ L∞(R1×R+)∩C1((R1×
R+) \ Γ), a distribution ρ(x, t), and a graph Γ, where

ρ(x, t) = R(x, t) + E(t)δ(Γ), E(t)δ(Γ) =
∑
i∈I

ei(t)δ(γi),

ei(t) ∈ C1(γi), γi = {x = ϕi(t)} .

(2.9)
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The function R(x, t) ∈ C1((R1 × R+) \ Γ) is called a generalized δ-shock wave type
solution of (1.1) if the integral equalities∫ ∞

0

∫
R1

(Ruζt + Ru2ζx) dxdt +
∑
i∈I

∫
γi

ϕitei(t)
dζ

dti
dt

+
∫

R1
(Ruζ)

∣∣∣
t=0

dx +
∑
k∈I0

ϕkt(0)ek(0)ζ(ϕk(0), 0) = 0,

(2.10)

∫ ∞

0

∫
R1

(Rζt + uRζx) dxdt +
∑
i∈I

∫
γi

ei(t)
dζ

dti
dt

+
∫

R1
Rζ

∣∣∣
t=0

dx +
∑
k∈I0

ek(0)ζ(ϕk(0), 0) = 0,

(2.11)

hold for all test functions ζ(x, t) ∈ D(R1 × R1
+) and d

dti
= ∂

∂t + ϕit
∂
∂x .

Relation (2.11) coincides exactly with relation (2.3). The second summand in
the left-hand side of (2.10) can also be easily explained as well as the corresponding
summand in (2.9). Indeed, in view of (2.4), we have

(ρu2)x =
∑
i∈I

eiϕ
2
itδ

′(γi) + smoother summands. (2.12)

Now, just as above, for any test function ζ(x, t) such that ζ(x, 0) = 0, we have

〈(ρu)t + (ρu2)x, ζ〉 = −〈ρu, ζt〉 − 〈ρu2, ζx〉

= −〈Ru, ζt〉 −
∑
i∈I

eiϕit〈δ(γi), ζt〉 − 〈Ru2, ζx〉 −
∑
i∈I

ei(ϕit)2〈δ(γi), ζx〉

= −〈Ru, ζt〉 − 〈Ru2, ζx〉 −
∑
i∈I

∫
γi

eiϕit(ζt + ϕitζx) dt.

As in Definition 2.1, Definition 2.2 leads to a system of equations for the unknown
functions u, R, ei, ϕi contained in (2.10), (2.11):

(Ru)t + (Ru2)x = 0,

Rt + (Ru)x = 0, (x, t) ∈ (R1 ×R+
1 ) \

⋃
{x = ϕi},

(2.13)

(eiϕit)′t = ϕit[Ru]
∣∣∣
x=ϕi

− [Ru2]
∣∣∣
x=ϕi

,

eit = ϕit[R]
∣∣∣
x=ϕi

− [Ru]
∣∣∣
x=ϕi

, i ∈ I.
(2.14)

Here an analog of the two “Kirchhoff laws” is given by the equations∑
i∈In Ak

ei(t∗k − 0) =
∑

i∈Out Ak

ei(t∗k + 0),

∑
i∈In Ak

ei(t∗k − 0)ϕit(t∗k − 0) =
∑

i∈Out Ak

ei(t∗k + 0)ϕit(t∗k + 0).
(2.15)

Obviously, a significant distinction of system (2.13) from Eqs. (2.7) is that system
(2.13) consists of second-order equations and, formally, to solve this system, it is
required to know the values ei(0), ϕi(0), and ϕit(0) (!). Obviously, these values
cannot be found from the initial conditions for the original problem (we discuss
this later in more detail).
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Thus, we have the following theorem.

Theorem 2.3. Suppose that system (2.6)–(2.8) ( (2.13)–(2.15)) for t ∈ [0, T ] has a
classical solution. Then system (1.2) (respectively, (1.1)) has a generalized δ-shock
wave type solution in the sense of Definition 2.1 (Definition 2.2).

Thus, just as in the case of classical shock waves, constructing generalized δ-
shock type solutions is reduced to solving a system of ordinary differential equations
[8, 9, 10].

The existence of the solution, for example, in the case of piecewise constant
initial functions u|t=0 and ρ|t=0, can be proved easily.

As is easy to see, the solutions to systems (1.1) and (1.2) in the sense of the
definitions given above satisfy the conservation laws in the following form.

Suppose that there exists a number A such that

〈ρ(x, t), η(x)〉 = 0, t ∈ [0, T ],

for any test function η(x), sup η(x) ∈ R1 \ [−A,A], where 〈ρ, η〉 denotes the action
of a generalized function ρ(x, t) on the the test function η(x), t is a parameter,
and ρ(x, t) is a component of the solution to system (1.1) or (1.2) in the sense of
the above definitions constructed using the solutions of systems (2.13)–(2.15) or
(2.6)–(2.8).

Lemma 2.4. For any test function ζ(x), ζ(x) = 1 for x ∈ [−A,A], t ∈ [0, T ], the
following relation holds:

〈ρ(x, t), ζ(x)〉 = 〈ρ(x, 0), ζ(x)〉.

For system (1.1), we can formulate one more conservation law.

Lemma 2.5. The following relation holds:

〈ρu, ζ(x)〉 = 〈ρu|t=0, ζ(x)〉.

where t ∈ [0, T ], ζ is a test function satisfying the assumption of Lemma 1, ρ and
u are solutions of system (1.1) in the sense of Definition 2.2 constructed using
solutions of system (2.13)–(2.15).

The proof of Lemma 1 can be found in [4]. Here we only prove Lemma 2 whose
proof is similar to the proof of Lemma 1.

For simplicity, we consider the case in which the graph Γ contains a single arc
x = ϕ(t). Then we have

d

dt
〈ρu, ζ〉 =

d

dt

∫
R1

Ru dt + (eϕt)t

= −ϕt[Ru]
∣∣∣
x=ϕ

+
∫ ϕ

−∞
(Ru)t dx +

∫ ∞

ϕ

(Ru)t dx + (eϕ′t)
′
t

= −
∫ ϕ

−∞
(Ru2)x dx−

∫ ∞

ϕ

(Ru2)x dx + (eϕt)t − ϕt[Ru]
∣∣∣
x=ϕ

= [Ru2]
∣∣∣
x=ϕ

− ϕt[Ru]
∣∣∣
x=ϕ

+ (eϕt)t = 0.

The last equality is precisely the first equation in (2.14).
Now it is natural to pose the problem of the uniqueness of the solution.
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Examples of nonuniqueness. In what follows, we give an answer to this question
about the uniqueness in the form of examples. The general answer is the following:
the solution may be nonunique if the initial conditions for ρ contain an atomic
measure (the Dirac δ-function).

In particular, the solution of the Cauchy problem to system (1.2) is constructed
in [2] in the case where the initial profile of velocity is an unstable step function.
To construct the second component ρ of the solution, i.e., to solve the continuity
equation, the authors [2] choose a class of functions invariant under the scaling
transformation

x → kx, t → kt.

Indeed, the group of scaling transformations acts on the solution of the system
considered. But these are particular solutions. For example, in [11], such solutions
are considered in a quite different context. In [2], the statement that a vacuum
domain exists is derived from the assumption that such invariant solutions are
unique. Such a statement cannot be made based only on the consideration of
particular solutions.

The following natural question arises: Can solutions that are not contained in
the class of solutions invariant under the action of the scaling group help to fill a
vacuum?

More generally, the question can be formulated as follows: Do there exist any
natural conditions ensuring the uniqueness of the Goursat problem solutions con-
sidered in [2]. In this small note, we give an affirmative answer to this question.
Namely, for any initial regular distribution ρ with compact support (perhaps, with
a first kind discontinuity), the solution of the Goursat problem is zero in the rar-
efaction domain.

In our considerations, we do not use the regularization procedure, which uni-
formly approximates the solution of the Cauchy problem for (1.1). This can be
done using the simple formulas from [5], but the problem is very simple and does
not require any special technical methods.

So the solution of the Cauchy problem for (1.2) with the initial conditions

u|t=0 =

{
ul, x < x0,

ur, x > x0,
ul,r = const, ul < ur,

ρ|t=0 =

{
ρl, x < x0,

ρr, x > x0,
ρl,r ≥ 0,

(2.16)

for t > 0 has the form

u =


ul, x < x0 + ult,

ul + x−ult−x0
t , x ∈ [x0 + ult, x0 + urt],

ur, x > x0 + urt,

(2.17)

and, respectively,

ρ =


ρl(x− ult), x < x0 + ult,

ρ0(x−x0
t )t−1, x ∈ (x0 + ult, x0 + urt),

ρr(x− ult), x > x0 + urt,

(2.18)

where ρ0 = ρ0(z) is an arbitrary C1-function.
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Formulas (2.17), (2.18) can be verified by a direct substitution. We only note
that since the function u in (2.17) is continuous for t > 0, the Rankine-Hugoniot
type conditions are identically satisfied on the lines x = x0 + ujt, j = l, r, because
the equation for ρ is linear in ρ.

Calculating the integral
∫

R1 ρ(x, t) dt for t > 0 (ρ(x, t) is defined in (2.18)), we
obtain ∫

R1
ρ(x, t) dx =

∫
x<x0

ρl dx +
∫

x>x0

ρr dx +
∫ ur

ul

ρ0(z) dz.

Hence, since ρ|t=0 is nonnegative and 〈ρ, ζ〉 is preserved by Lemma 1, we have∫ ur

ul

ρ0(z) dz = 0.

Otherwise, we come to a contradiction, because from (2.16) and the mass conser-
vation law we must have

〈ρ|t=0, ζ〉 =
∫

x<x0

ρl dx +
∫

x>x0

ρr dx =
∫

x<x0

ρl dx +
∫

x>x0

ρr dx +
∫ ur

ul

ρ0(z) dz.

We point out that we derived this relation without any assumptions on the prop-
erties of particular solutions to system (1.2). We also note that a (more general
than that in [2]) assumption ensuring the uniqueness of the solution of the Gour-
sat problem in the case under study could be the assumption that ρ is bounded.
However, if simultaneously with the rarefaction wave we consider shock waves in
the u-component, then δ-shock type solutions arise, which is prohibited by the
boundedness condition.

But if the initial condition for ρ is replaced by the condition

ρ|t=0 = ρlH(x0 − x) + ρrH(x− x0) + ρ̂δ(x− x0),

then the choice of the function ρ0 in (2.18) is restricted only by the condition∫ ur

ul

ρ0(z) dz = ρ̂

and the solution of this “singular” Goursat problem is not unique.

Nonuniqueness of the Cauchy problem solution in the case of system (1.1). It is
proved in [3] that for system (1.1) to have a solution of the form

u = u0(x, t) + u1(x, t)H(ϕ(t)− x),

ρ = ρ0(x, t) + ρ1(x, t)H(ϕ(t)− x) + e(t)δ(x− ϕ(t))
(2.19)

in the sense of the integral identity introduced in [3] (also see Definition 2 at the
beginning), it is necessary that besides of other relations the following equations
must be satisfied

et(t) = −([uρ]− [ρ]ϕt)|x=ϕ,
d

dt
(eϕt) + ([u2ρ]− [uρ]ϕt)|x=ϕ = 0, (2.20)

where [f ]|x=ϕ = f(ϕ(t) + 0)− f(ϕ(t)− 0) as above.
We restrict ourselves to considering the case

u0 = u1 = const, u0 < 0, u0 + u1 > 0, ρ0 = ρ1 = const ≥ 0. (2.21)

Obviously, to construct the solution in this case, it suffices to construct the
solution to system (1.2), which in this case is a system with constant coefficients.
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We note that if conditions (2.20) are satisfied, then the inequality

u(x2, t)− u(x1, t)
x2 − x1

≤ 0

holds for any small x1, x2 and hence the condition (see [7, p. 119])

u(x2, t)− u(x1, t)
x2 − x1

≤ 1
t

that the solution is an entropy solution is also satisfied.
Next, it follows from Definition 2.2 that

ρu2 = ρru
2
r + H(ϕ(t)− x)(ρ1u

2
l − ρru

2
r) + e(ϕt)2δ(x− ϕ(t))

and ρu2 weakly converges to its initial value under the assumption that the functions
e(t) and ϕt(t) are continuous for t ≥ 0. This readily follows from the formulas for
the solution of system (2.20) given below.

It is easy to see that (2.20) form a second-order system of equations for e, ϕ. The
original system is a first-order system, hence the value ϕt(0) remains undetermined.
In [12], it is shown that, in the case of constant ui, ρi, i = 1, 2, system (2.3) has a
unique solution if e(0) = 0. In this case, the solution is independent of ϕt(0).

The formula for ϕ(t) obtained in [12, Theorem 4.3] has the form

ϕ(t) =
e(0) + [uρ]t−

√
e(0)2 + 2e(0)et(0)t + ρrρl(ur − ul)2t2

[ρ]
, [ρ] 6= 0,

It follows from the first equation in (2.20) that the values of the constants et(0)
and ϕt(0) can be expressed linearly in terms of each other

et(0) = [uρ]0 − [ρ]0ϕt(0),

where [ ]0 = [ ]
∣∣
t=0

and hence the quantities [ ]0 are functions of the argument ϕ(0).
From these formulas it is easily seen that, in the case e(0) = 0, the expression

ϕt(0) (et(0)) is not contained in the formula for ϕ(t).
Indeed, for e(0) = 0 and [ρ] 6= 0, relations (2.20) imply the following equation

for ϕt(0):
ϕt(0)2[ρ]0 − 2ϕt(0)[uρ]0 + [u2ρ]0 = 0.

Solving this equation under the additional condition ur|t=0 < ϕ̇(0) < ul|t=0, which
is necessary for the existence of the desired δ-shock type solutions, we obtain

ϕt(0) =
(
[uρ]0 −

√
([uρ]0)2 − [ρ]0[u2ρ]0

)
([ρ]0)−1 =: G(ϕ(0)).

Thus, in the case e(0) = 0, the missing constant is determined by the natural initial
data of the problem.

It is also easy to verify that et(0) > 0 in this case. Hence from the second
equation in (21) we obtain |d

2ϕ
dt2 (0)| < ∞. Therefore, although the coefficient of the

second derivative d2ϕ
dt2 vanishes for t = 0, system (2.20) has a smooth solution at

least in the small in t. This can be proved as usual, by reducing the problem to an
integral equation.

The case ρ1|t=0 = −[ρ]0 = 0 is considered similarly (see [12]) for ui, ρi = const.
In this case,

e(t) = e(0)− t[ρu] = e(0)− tρ[u]
and the problem is reduced to solving the ordinary differential equation

et(t)ϕt + eϕtt = ϕtρ[u]− ρ[u2].
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Hence we obtain

ϕt =
[u2]
2[u]

+
(
ϕt(0)− [u2]

2[u]

) e(0)
(e(0)− tρ[u])2

.

It is clear that for e(0) = 0, the solution is independent of the constant ϕt(0), which
cannot be determined from the Cauchy conditions. We note once more that (23)
implies that [u] = −u1 < 0.

We note that if we use the construction of the nonconservative Volpert-Khudaev
product and the definition of the measure solution that follows from this construc-
tion, then we, as was already noted in the Introduction, fix the definition of the
product δ(z)H(z). In this case, this means that we set u|x=ϕ = ϕt and, in particu-
lar, ϕt(0) = u|x=ϕ

t=0
. Thus, the last term in the first integral identity in Definition 3

seems to be determined by specifying the initial velocity and the solution of the en-
tire system (1.1) is determined by specifying two initial conditions (for the velocity
and density) in the form (21). But, as was already noted, this is a delusion: such
a method for specifying the initial conditions is not necessary (unique).

Thus, we see that the “singular” Cauchy problem for system (1.1) does not have
the property that the solution is unique and the problem whose initial conditions
do not contain the Dirac function has a unique solution.
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