
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 42, pp. 1–31.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

SOBOLEV GRADIENTS FOR DIFFERENTIAL ALGEBRAIC
EQUATIONS

ROBIN NITTKA, MANFRED SAUTER

Abstract. Sobolev gradients and weighted Sobolev gradients have been used

for the solution of a variety of ordinary as well as partial differential equations.
In the article at hand we apply this method to linear and non-linear ordinary

differential algebraic equations and construct suitable gradients for such prob-
lems based on a new generic weighting scheme. We explain how they can be

put into practice. In the last part, we discuss the performance of our publicly

available implementation on some differential algebraic equations and present
further applications.

1. Introduction

Differential algebraic equations (DAE) have a wide range of applications. Inter
alia they appear in electrical circuit simulation [13], control theory [19], and in mod-
els of mechanical systems [39], to name only a few prominent examples. Recently, a
considerable amount of research has been put into this field, see [20] and references
therein. The general formulation of a DAE is

f(t, u(t), u′(t)) = 0, t ∈ (0, T) (1.1)

with some function f : R×Rn×Rn → Rm whose partial derivative with respect to
the third argument may be singular. A sufficiently smooth function u : (0, T)→ Rn

satisfying (1.1) is called solution of the DAE. Though looking similar to ordinary
differential equations, differential algebraic equations show fundamental differences
in many aspects. Even for linear problems the solution space can be infinite dimen-
sional, and initial conditions do in general not impose uniqueness. Furthermore,
initial conditions might not admit a local solution, and guessing feasible initial
conditions is virtually impossible in many cases [5, Subsection 5.3.4].

Computing a numerical solution to a given DAE is a very delicate task. The
algebraically coupled equations arising in various engineering fields tend to be nu-
merically difficult [10]. For example thermo-fluid systems are naturally described
by high index DAE [15], as are DAE resulting from batch distillation process mod-
eling [14]. Most methods need antecedent transformations reducing the coupling.

2000 Mathematics Subject Classification. 65L80, 41A60, 34A09.
Key words and phrases. Differential algebraic equations; weighted Sobolev gradients;

steepest descent; non-linear least squares; consistent initial conditions.
c©2008 Texas State University - San Marcos.

Submitted March 4, 2008. Published March 20, 2008.

1

2 R. NITTKA, M. SAUTER EJDE-2008/42

Those index reductions are complicated and can introduce considerable numeri-
cal error by themselves [20, Chapter 6]. Additionally, the special structure of the
problem is often lost.

Here we present an alternative way to deal with DAE that has several significant
advantages over the usual approaches. We use a steepest descent method based on
Sobolev gradients to minimize an error functional in an appropriate function space.
This very general method has been successfully employed to treat Ginzburg-Landau
equations for superconductivity, conservation equations, minimal flow problems and
minimal surface problems, among others [31]. The theoretical framework of Sobolev
steepest descent was first presented by John W. Neuberger [30]. Our method treats
the given DAE directly, without differentiation or other prior transformations. Fur-
thermore, it is not necessary to impose the initial values, which is a great advantage
over the step-by-step methods that are usually employed. But in case one wants to
impose supplementary conditions, this is possible with little additional theoretical
effort. For example, it is possible to solve initial value or boundary value problems.
The only other software for solving differential algebraic boundary value problems
we know of is Ascher’s and Spiteri’s COLDAE [3].

We propose steepest descent methods using weighted Sobolev gradients for the
numerical treatment of DAE. In section 2 we provide the underlying theory. In
section 3 we take an operator theoretical point of view to introduce a space which
seemingly has not been considered before in this generality within the literature
about Sobolev steepest descent. We prove that, in a sense motivated by section 2.1,
this space which is related the problem itself has advantages over the usual Sobolev
spaces. We continue this idea in section 4 where we explain that it is superior
also in some other sense involving the Fredholm property. In section 5 we show
how various Sobolev gradients can be applied to fully non-linear DAE, following
the usual ideas as well as generalizing the concept of section 3. In section 6 we
discuss the discretization techniques used for the numerics, also covering non-linear
problems and supplementary conditions. Section 7 contains details of our publicly
available implementation [32] and shows, via tables and plots, how our program
behaves on some intricate examples. Finally, section 8 summarizes our results.

2. Sobolev Steepest Descent

In section 2.1 we list some basic facts about the theory of Sobolev gradients. For
details we refer to John W. Neuberger’s monograph [31]. In section 2.2 we focus
on the basic case of linear DAE with constant coefficients. The general form of this
equation is

M1u
′(t) + M2u(t) = b(t), t ∈ (0, T), (2.1)

where M1,M2 ∈ Rm×n are constant matrices. The function b ∈ L2(0, T ; Rm)
is called the inhomogeneity or right hand side. We look for weak solutions in
L2(0, T ; Rn).

2.1. General Setting. Let V and H be Hilbert spaces, A ∈ L (V,H), and b ∈ H.
Usually, A is a differential operator and V an appropriate Sobolev space. We are
looking for solutions u ∈ V of the equation Au = b.

The (continuous) Sobolev gradient approach to this problem is the following.
Define the quadratic functional

ψ : V → R+, u 7→ 1
2 ‖Au− b‖2H

EJDE-2008/42 SOBOLEV GRADIENTS 3

and try to find a zero (or at least a minimizer) by steepest descent, i. e., by solving
the Hilbert space valued ordinary differential equation

ϕ̇(t) = −∇ψ (ϕ(t)) , ϕ(0) = u0 (2.2)

for an arbitrary initial estimate u0 ∈ V and letting t → ∞. Here ∇ψ(u) denotes
the unique representation of the Fréchet derivative ψ′(u) ∈ V ′ as a vector in V
whose existence is guaranteed by the Riesz-Fréchet representation theorem. The
derivative of ψ is

〈ψ′(u), h〉 = (Au− b | Ah)H = (A∗Au−A∗b | h)V , (2.3)

hence

∇ψ(u) = A∗Au−A∗b.

In [31, Theorems 4–6], the following facts are proved.

Theorem 2.1. If b ∈ Rg A, then ϕ(t) defined in (2.2) converges to some ω ∈ V
in the norm of V , and Aω = b. The vector ω is the zero of ψ nearest to u0 in the
metric of V . Furthermore, for every b ∈ H the images Aϕ(t) converge to PRg Ab as
t→∞, i. e., to the orthogonal projection of b onto the closure of the range of A.

Thus, we can characterize convergence of ϕ(t) in terms of the range of A.

Corollary 2.2. There exists a global solution ϕ to the differential equation (2.2).
The trajectory (ϕ(t))t∈R+

converges in V if and only if

PRg Ab ∈ Rg A. (2.4)

Then the limit is the solution of the problem Au = PRg Ab with minimal distance to
u0.

Proof. First note that the unique solution of equation (2.2) is

ϕ(t) = e−tA∗Au0 +
∫ t

0

e−(t−s)A∗AA∗b ds.

Using the decomposition b = PRg Ab + Pker A∗b, we see that ϕ(t) depends only on
PRg Ab, not on b itself. Replacing b by its projection onto Rg A, theorem 2.1 asserts
that under condition (2.4) the steepest descent converges and the limit has the
claimed property.

For the converse implication, assume that ϕ(t) converges to some ω ∈ V . Then

Aω ← Aϕ(t)→ PRg Ab

by theorem 2.1 and continuity of A. Hence PRg Ab ∈ Rg A, and thus condition (2.4)
is fulfilled. �

The corollary shows in particular that the operator A has closed range if and
only if ϕ(t) converges for every b ∈ H. But if Rg A is not closed, then arbitrarily
small perturbations of b in the norm of H alter the convergence behavior. However,
it can be proved that ϕ̇(t)→ 0 for every b ∈ H if ψ is non-negative and convex.

4 R. NITTKA, M. SAUTER EJDE-2008/42

2.2. Application to differential algebraic equations. Now we turn to lin-
ear, autonomous, first-order DAE, allowing time-dependent inhomogeneities. This
means we fix matrices M1,M2 ∈ Rm×n such that ker M1 6= {0} and a function
b ∈ L2(0, T ; Rm) and consider the DAE

M1u
′ + M2u = b, u ∈ H1(0, T ; Rn). (2.5)

For V := H1(0, T ; Rn), H := L2(0, T ; Rm) and Au := M1u
′ + M2u this fits into

the framework of section 2.1. For convenience, we frequently identify a matrix
M ∈ Rm×n with a bounded linear operator from L2(0, T ; Rn) to L2(0, T ; Rm) acting
as (Mu)(x) := M(u(x)). It is obvious that these operators map H1(0, T ; Rn) into
H1(0, T ; Rm).

We already have discovered that the steepest descent converges whenever there is
a solution to converge to—and then it picks the nearest solution. But even if there
is no solution the steepest descent might converge. As we have seen in corollary 2.2
this happens if and only if PRg Ab ∈ Rg A for the given b ∈ L2(0, T ; Rm). Hence it is
natural to ask whether Rg A is closed because then the steepest descent converges
for every b. Unfortunately, in general this is not the case as the following necessary
condition shows.

Proposition 2.3. If the operator A defined above has closed range, then

Rg (M2|ker M1) ⊂ Rg M1. (2.6)

In other words, if A has closed range, then M2 maps ker M1 into Rg M1.

For the proof we use the following simple observation.

Lemma 2.4. Let V be a subspace of Rn and assume that u ∈ H1(0, T ; Rn) satisfies
u(x) ∈ V for almost every x ∈ (0, T). Then u′(x) ∈ V for almost every x ∈ (0, T).

Proof. Let PV denote a projection of Rn onto V . We consider PV also as an operator
on H1(0, T ; Rn) defined by pointwise application. Then linearity of differentiation
yields

u′(x) = (PV u)′ (x) = PV u′(x) ∈ V

for almost every x ∈ (0, T). This proves the claim. �

Proof of proposition 2.3. Assume that Rg A is closed and that condition (2.6) does
not hold, i. e., that there exists a vector e ∈ ker M1 ⊂ RN such that M2e 6∈ Rg M1.
Fix any sequence (vk) in H1(0, T) converging to a function v ∈ L2(0, T) \H1(0, T)
in the norm of L2(0, T) and define uk := vke. Then vkM2e = Auk ∈ Rg A for all
k ∈ N by lemma 2.4, hence vM2e = lim vkM2e ∈ Rg A. Since we assumed that
Rg A = Rg A there exists u ∈ H1(0, T ; Rn) such that Au = vM2e. We decompose

u = u1 + u2, where u1 := P(ker M1)
⊥u and u2 := Pker M1u,

and note that u′2 ∈ ker M1 almost everywhere by the above lemma, whence

vM2e = Au = M1u
′
1 + M2u.

Now fix a row vector q ∈ R1×m satisfying qM2e = 1 and qM1 = 0. Such a vector
exists because e is chosen such that span{M2e} ∩ Rg M1 = {0}. Finally, observe
that

qM2u = q (vM2e−M1u
′
1) = v 6∈ H1(0, T),

contradicting u ∈ H1(0, T ; Rn). �

EJDE-2008/42 SOBOLEV GRADIENTS 5

The following simple examples of DAE show the different behavior that may
occur regarding the closedness of the range. We will revisit them in section 3.

Example 2.5. Let M1 :=
(

0 0
1 0

)
and M2 :=

(
0 0
0 1

)
. Then A

(
u
v

)
=

(
0

u′+v

)
, whence

Rg A =
{(

0
f

)
: f ∈ L2(0, T)

}
is closed.

Example 2.6. Let M1 :=
(

1 0
1 0

)
and M2 :=

(
0 0
0 1

)
. Then A

(
u
v

)
=

(
u′

u′+v

)
. Propo-

sition 2.3 shows that Rg A is not closed.

Example 2.7. Let M1 :=
(

0 1
0 0

)
and M2 :=

(
1 0
0 1

)
. Then A

(
u
v

)
=

(
v′+u

v

)
. We will

prove later that Rg A is not closed, see example 3.6. We point out, however, that
this does not follow from proposition 2.3.

As we have seen, we cannot expect the steepest descent to converge for any
right hand side b. But some regularity assumption on b might ensure convergence.
More precisely, the authors suggest to investigate whether b ∈ H1(0, T ; Rm) implies
PRg Ab ∈ Rg A.

3. Closedness

Considering V = H1(0, T ; Rn) as done in section 2 is natural since this space is
the maximal subspace of L2(0, T ; Rn) for which u′ can be defined. However, noting
that the equation M1u

′ + M2u = b can also be written as (M1u)′ + M2u = b, we
see that it suffices to require M1u to be in H1(0, T ; Rm), which may be the case
even if u 6∈ H1(0, T ; Rn). More precisely, the part of u in ker M1 is allowed to be
only L2 instead of H1. Indeed, the following lemma shows that this describes the
maximal subspace of L2(0, T ; Rn) to which A can be extended.

Proposition 3.1. Define

D(Ā) :=
{
u ∈ L2(0, T ; Rn) : M1u ∈ H1(0, T ; Rm)

}
⊂ L2(0, T ; Rn),

Āu := (M1u)′ + M2u.

Then the operator Ā : L2(0, T ; Rn) ⊃ D(Ā) → L2(0, T ; Rm) is closed. It is the
closure of the operator A : L2(0, T ; Rn) ⊃ H1(0, T ; Rn) → L2(0, T ; Rm) defined in
section 2.2.

Proof. Denote V := D(Ā). To show that Ā is closed, fix a sequence (uk) in V
converging in the norm of L2(0, T ; Rn) to a function u such that Āuk converges to
a function v in L2(0, T ; Rm). We have to prove that u ∈ V and Āu = v. Define
wk := M1uk ∈ H1(0, T ; Rm). Then wk →M1u in L2(0, T ; Rn) and

Āuk = w′
k + M2uk → v in L2(0, T ; Rm),

hence
w′

k → v −M2u in L2(0, T ; Rm).

The differentiation operator on L2(0, T ; Rm) with domain H1(0, T ; Rm) is closed,
hence wk →M1u and w′

k → v−M2u implies that M1u ∈ H1(0, T ; Rn) and (M1u)′ =
v −M2u. This means precisely that u ∈ V and Āu = v. We have shown that Ā is
closed.

Now let P be a projection of Rn onto ker M1. We claim that

V =
{
u ∈ L2(0, T ; Rn) : (I − P)u ∈ H1(0, T ; Rn)

}
. (3.1)

6 R. NITTKA, M. SAUTER EJDE-2008/42

To see this, note that the restriction M̃1 : Rg(I −P)→ Rg M1 of M1 to Rg(I −P)
is invertible and satisfies M̃−1

1 M1u = (I − P)u. This shows that (I − P)u is
in H1(0, T ; Rn) whenever M1u is in H1(0, T ; Rm). The other inclusion similarly
follows from M1u = M1(I − P)u.

To show that Ā is the closure of A, for each u ∈ V we have to find a se-
quence (uk) ⊂ H1(0, T ; Rn) such that uk → u in L2(0, T ; Rn) and Auk → Āu in
L2(0, T ; Rm). Fix u ∈ V and define w := (I − P)u and v := Pu. The representa-
tion (3.1) shows that w ∈ H1(0, T ; Rn). Since H1(0, T ; Rn) is dense in L2(0, T ; Rn),
there exists a sequence (vk) in H1(0, T ; Rn) which converges to v in L2(0, T ; Rn).
Define uk := w + Pvk ∈ H1(0, T ; Rn). Then uk → w + Pv = w + v = u in
L2(0, T ; Rn), thus

Auk = M1w
′ + M2uk →M1w

′ + M2u = Āu in L2(0, T ; Rm).

This shows that (uk) is a sequence with the desired property. �

The following corollary restates the closedness of Ā in different words, using a
well-known characterization of closed operators.

Corollary 3.2. The space V := D(Ā) equipped with the inner product

(u | v)V := (u | v)L2(0,T ;Rn) +
(
Āu | Āv

)
L2(0,T ;Rm)

is a Hilbert space. The operator Ā : V → L2(0, T ; Rm) is bounded.

This shows how to apply the method of steepest descent to the operator Ā.
In general, this will lead to trajectories and limits which are different from those
obtained by the approach in section 2, since ∇ψ is taken with respect to some other
inner product. So the question arises which space should be used (also compare
to section 6.2). The next corollary shows that from a theoretical point of view the
situation improves if H1(0, T ; Rn) is replaced with V .

Lemma 3.3. Let A : X ⊃ D(A) → Y be a closable operator, and let Ā be its
closure. Then Rg A ⊂ Rg Ā ⊂ Rg A. In particular, if Rg A is closed, then Rg Ā is
closed.

Proof. The first inclusion is obvious since Ā extends A. Now let y ∈ Rg Ā. Then
there exists x ∈ D(Ā) such that Āx = y. By definition of the closure there exists a
sequence (xn) ⊂ D(A) such that xn → x in X and Axn → Āx = y in Y . But this
proves that y is a limit of a sequence in Rg A, hence y ∈ Rg A. �

Corollary 3.4. Let b ∈ L2(0, T ; Rm) and consider problem (2.1). If the steepest
descent with respect to the inner product in H1(0, T ; Rn) converges for the right hand
side b, then the steepest descent with respect to the inner product from corollary 3.2
converges for that right hand side as well.

Proof. This follows from corollary 2.2 combined with lemma 3.3. �

To illustrate that using of Ā instead of A may improve the situation, but not
always does, we again consider the examples of section 2.2. Here again, A refers to
the operator defined in section 2.2, whereas Ā and V are as in corollary 3.2. The
examples also show that relation (2.6) is independent of Rg Ā being closed.

EJDE-2008/42 SOBOLEV GRADIENTS 7

Example 3.5. Let M1 and M2 be as in example 2.6. Then

V =
{(

u
v

)
: u ∈ H1(0, T), v ∈ L2(0, T)

}
,

Rg Ā =
{(

u′

u′ + v

)
: u ∈ H1(0, T), v ∈ L2(0, T)

}
= L2(0, T ; R2).

We used that every function in L2(0, T) is the derivative of a function in H1(0, T).
This shows that Ā is surjective. In particular Rg Ā is closed, whereas Rg A is not
as seen in example 2.6.

Example 3.6. Consider again the matrices M1 and M2 from example 2.7. Then

V =
{(

u
v

)
: u ∈ L2(0, T), v ∈ H1(0, T)

}
,

Rg Ā =
{(

v′ + u
v

)
: u ∈ L2(0, T), v ∈ H1(0, T)

}
= L2(0, T)×H1(0, T).

Hence Rg Ā is dense in L2(0, T ; R2), but not closed. By lemma 3.3 this implies that
also Rg A is not closed. This proves the claim of example 2.7.

4. Fredholm Property

Assuming that there exists a solution of (2.5) we are interested in the convergence
behavior of the Sobolev steepest descent. For example the so-called Lojasiewicz-
Simon inequality can be used to investigate the rate of convergence [17]. On the
other hand, for the non-linear case treated in the next section a special instance of
this inequality has been used to prove convergence for arbitrary initial estimates [31,
Section 4.2].

A particularly simple method to show that a Lojasiewicz-Simon inequality holds
locally near a critical point u0 ∈ V is by checking that ψ′′(u0) = A∗A is a Fredholm
operator [12, Corollary 3]. Unfortunately, theorem 4.2 shows that we never are in
this situation when A is the operator of section 2. This fact is interesting in its own
right. Of course this does not mean that the Lojasiewicz-Simon inequality cannot
be fulfilled for any steepest descent coming from a DAE; we give an example at the
end of the section.

Lemma 4.1. Let D : H1(0, T)→ L2(0, T), u 7→ u′. Then D∗D = I − (I −∆N)−1,
where ∆N denotes the Neumann Laplacian ∆Nu = u′′ with domain

D(∆N) =
{
u ∈ H2(0, T) : u′(0) = u′(T) = 0

}
.

Proof. By definition, (D∗Du | v)H1 = (Du | Dv)L2 for all u, v ∈ H1(0, T). Thus it
suffices to show that∫ T

0

u′v′
!=

((
I − (I −∆N)−1

)
u | v

)
H1

=
∫ T

0

uv +
∫ T

0

u′v′ −
∫ T

0

(
(I −∆N)−1u

)
v −

∫ T

0

(
(I −∆N)−1u

)′
v′.

8 R. NITTKA, M. SAUTER EJDE-2008/42

This is an immediate consequence of the integration by parts formula, using that
(I −∆N)−1u ∈ D(∆N). In fact,∫ T

0

(
(I −∆N)−1u

)′
v′ =

(
(I −∆N)−1u

)′
v
∣∣T
0
−

∫ T

0

(
(I −∆N)−1u

)′′
v

=
∫ T

0

(
(I −∆N)(I −∆N)−1u− (I −∆N)−1u

)
v.

Collecting the terms, the claimed identity follows. �

As the embedding of H2(0, T) into H1(0, T) is compact, the above lemma shows
that D∗D is a compact perturbation of the identity. This result generalizes to
D : H1(0, T ; Rn) → L2(0, T ; Rn), u 7→ u′ by considering every component sepa-
rately.

Theorem 4.2. Consider the operator A : H1(0, T ; Rn) → L2(0, T ; Rm) defined by
A := DM1 + ιM2 as introduced in section 2. Here the matrices M1 and M2 act as
operators from H1(0, T ; Rn) into H1(0, T ; Rm), and the differentiation D and the
embedding ι map from H1(0, T ; Rn) into L2(0, T ; Rn). Then A∗A = MT

1 M1+K for
a compact operator K acting on H1(0, T ; Rn) which shows that A∗A is a Fredholm
operator if and only if ker M1 = {0}.

Proof. The embedding ι is compact, hence also ι∗ is a compact operator. By
lemma 4.1, D∗D = I + K̃ for a compact operator K̃. Using the ideal property of
compact operators, we obtain

A∗A = M∗
1 M1 + K = MT

1 M1 + K

for a compact operator K on H1(0, T ; Rn). Because compact perturbations of Fred-
holm operators remain Fredholm operators [1, Corollary 4.47], A∗A is a Fredholm
operator if and only if MT

1 M1 is. If M1 has trivial kernel, then MT
1 M1 is invert-

ible and hence a Fredholm operator. If on the other hand ker M1 6= {0}, then
dim ker MT

1 M1 = ∞ as an operator on H1(0, T ; Rn), implying that MT
1 M1 is not

a Fredholm operator. �

However, the next example shows that Ā∗Ā might be a Fredholm operator even
though A∗A is not. This shows that also in this sense we can improve the situation
by replacing A by Ā.

Example 4.3. For M1 :=
(

1 0
0 0

)
and M2 :=

(
0 0
0 1

)
let Ā be defined as in proposi-

tion 3.1. It is easy to check that

ker Ā =
{(

u
0

)
: u ≡ c ∈ R

}
and Rg Ā = L2(0, T)× L2(0, T),

proving that Ā is a Fredholm operator of index 1. This shows that also Ā∗Ā is a
Fredholm operator, see [1, Theorems 4.42 and 4.43].

On the other hand, Ā∗Ā is not necessarily a Fredholm operator, e. g. it is not for
M1 :=

(
1 0

)
and M2 :=

(
0 1

)
. It would be useful to have a characterization of

Ā∗Ā being a Fredholm operator in terms of the matrices M1 and M2. This would
provide a tool to investigate the rate of convergence of the steepest descent.

EJDE-2008/42 SOBOLEV GRADIENTS 9

5. The Non-Linear Case

In this section we consider the general, fully non-linear first order DAE

f(t, u(t), u′(t)) = 0 (5.1)

where f : [0, T] × Rn × Rn → Rm. We treat this case in utmost generality, not
caring about convergence. Instead, we focus on the theoretical background needed
to formulate various steepest descent equations corresponding to the gradients in-
troduced in sections 2 and 3.

We need to formulate the DAE (5.1) in a functional analytic way in order to
apply Sobolev gradient methods. We want to define the operator

F : H1(0, T ; Rn)→ L2(0, T ; Rm), F (u) := t 7→ f(t, u(t), u′(t)) (5.2)

and to minimize the (non-linear) functional

ψ : H1(0, T ; Rn)→ R, ψ(u) := 1
2‖F (u)‖22. (5.3)

Such an operator F is frequently called Nemytskii operator [2, Chapter 1] or dif-
ferential operator [4]. We require it to be well-defined and at least differentiable.
This is the case if f fulfills certain regularity and growth conditions. For the sake
of completeness, we prove a lemma of this kind. Similar conditions involving higher
order partial derivatives can be found which guarantee F to be of higher regularity,
for example of class C2.

We say that a function g : [0, T] × Rn × Rn → Rm satisfies the growth assump-
tion (G) if for every compact set K ⊂ Rn there exist constants C,M > 0 only
depending on f , T and K such that

∀t ∈ [0, T] ∀x ∈ K ∀y ∈ Rn |g(t, x, y)| ≤ C |y|+ M (G)

where | · | denotes a norm in Rm or Rn, respectively. Similarly, we say that g
satisfies the boundedness assumption (B) if for every compact set K ⊂ Rn there
exists L > 0 only depending on f , T and K such that

∀t ∈ [0, T] ∀x ∈ K ∀y ∈ Rn |g(t, x, y)| ≤ L. (B)

Lemma 5.1. Let f : [0, T]×Rn×Rn → Rm be measurable, and denote its arguments
by (t, x, y). Assume that f is of class C2 with respect to (x, y). We denote the
matrix-valued partial derivative of f with respect to x by fx, and similarly for y
and higher order partial derivatives. Assume that f , fx, fxx and fxy satisfy (G)
and that fy and fyy satisfy (B). Then F as in (5.2) is a mapping of class C1

from H1(0, T ; Rn) to L2(0, T ; Rm), and its derivative at u ∈ H1(0, T ; Rn) applied
to h ∈ H1(0, T ; Rn) is

(F ′(u)h) (t) = fx(t, u(t), u′(t))h(t) + fy(t, u(t), u′(t))h′(t) (5.4)

for almost every t ∈ [0, T].

Proof. Let u ∈ H1(0, T ; Rn) be arbitrary. As H1(0, T) continuously embeds into
C[0, T], u can be chosen to be a continuous function. Thus there exists R such
that |u(t)| ≤ R for all t ∈ [0, T]. Let K be the closure of the ball B(0, R + 1). For
this K, fix constants C, M and L simultaneously satisfying (G) and (B) for all the
functions in the assumptions. The estimate |F (u)(t)| ≤ C|u′(t)| + M , t ∈ [0, T],

10 R. NITTKA, M. SAUTER EJDE-2008/42

shows F (u) ∈ L2(0, T ; Rm). Similarly, for F ′(u) defined by (5.4) we obtain

‖F ′(u)h‖22 =
∫
|(F ′(u)h) (t)|2 ≤

∫
2
(

(C|u′(t)|+ M)2 |h(t)|2 + L2|h′(t)|2
)

≤ 4
(
C2 ‖u′‖22 + TM2

)
‖h‖2∞ + 2L2 ‖h′‖22 .

Because H1(0, T) embeds into L∞(0, T) continuously, this proves the boundedness
of F ′(u) as an operator from H1(0, T ; Rn) to L2(0, T ; Rm).

Next, we show that F ′(u) is indeed the derivative of F at u. For every t ∈ R
and x, y ∈ Rn, denote by ot,x,y : Rn × Rn → Rm the error in the expansion

f(t, x + ε1, y + ε2) = f(t, x, y) + fx(t, x, y)ε1 + fy(t, x, y)ε2 + ot,x,y(ε1, ε2)
∣∣∣ (

ε1

ε2

) ∣∣∣.
We have to show that the error(

F (u + h)(t)− F (u)(t)− (F ′(u)h)(t)
)∣∣∣ (

h(t)
h′(t)

) ∣∣∣−1

= ot,u(t),u′(t)(h(t), h′(t))

approaches zero as a function in t with respect to the norm of L2(0, T ; Rm) as h
tends to zero in H1(0, T ; Rn). For this we employ the estimate

|g(x + h)− g(x)− g′(x)h| ≤
N∑

i,j=1

sup
y∈[x,x+h]

∣∣gxixj
(y)

∣∣ |hi| |hj |

for functions g : RN → R of class C2 which can be verified by iterated applications
of the mean value theorem. Thus by the assumptions on the second derivatives, for
small enough h ∈ H1(0, T ; Rn) we obtain that

∣∣ot,u(t),u′(t)(h(t), h′(t))
∣∣ ≤ sup |fxx| |h|2 + 2 sup |fxy| |h| |h′|+ sup |fyy| |h′|2

(|h|2 + |h′|2)1/2

≤ 3
(
C(|u′|+ |h′|) + M

)
|h|+ L|h′|

for every t ∈ [0, T]. By similar arguments as above, this estimate shows that
o·,u(·),u′(·)(h(·), h′(·)) goes to zero in L2(0, T ; Rm) as h tends to zero in H1(0, T ; Rn).
This proves that F ′(u) is the derivative of F at u.

Finally, the continuity of the operator-valued function F ′ on H1(0, T ; Rn) can be
proved in a similar manner. For this, we have to make use of the growth conditions
on the second order derivatives. �

Remark. The lemma suffices for most applications. For example for quasi-linear
problems, i. e., for f(t, x, y) = g(t, x)y + h(t, x), and thus in particular for linear
and semi-linear problems, the above assumptions are fulfilled whenever g and h are
sufficiently smooth, independently of their growth behavior.

The assumptions on f can be weakened by imposing more regularity on the
solution u as the following corollary shows.

Corollary 5.2. Assume that f : [0, T] × Rn × Rn is of class C2. Then F defined
as in (5.2) is a mapping of class C1 from H2(0, T ; Rn) to L2(0, T ; Rm), and its
derivative is as stated in equation (5.4).

EJDE-2008/42 SOBOLEV GRADIENTS 11

Proof. Since functions in H1(0, T) are bounded, the values of f(t, u(t), u′(t)) re-
main in a bounded set as t ranges over [0, T] and u ranges over the unit ball in
H2(0, T ; Rn), and the same statement holds for the partial derivatives. Using this
fact, the arguments are similar to the proof of the lemma. �

However, it might happen that solutions of (5.1) are of class H1 but not of class
H2, see for example equation (7.3) in section 7.4. In such cases we impose too
much regularity when choosing this Sobolev space. For a general discussion about
the technique of using spaces of higher order than strictly necessary for Sobolev
descent methods, we refer to [31, Section 4.5].

For the moment, we assume that F : H1(0, T ; Rn)→ L2(0, T ; Rn) is of class C1.
Later we will need higher regularity. By the chain rule, the derivative of ψ defined
in (5.3) is

ψ′(u)h = (F (u) | F ′(u)h)L2 = (F ′(u)∗F (u) | h)H1 .

Analogously to the linear case, we define the H1 Sobolev gradient as

∇H1ψ(u) = F ′(u)∗F (u)

and consider trajectories of the corresponding steepest descent equation (2.2). It
is possible to find sufficient conditions under which those trajectories converge to a
solution of (5.1). In fact, this is one of the main topics in the monograph [31].

However, it is known that for some examples using a weighted Lebesgue mea-
sure for the computation of the Sobolev gradient—giving rise to weighted Sobolev
gradients—improves the situation significantly, cf. [24, 25, 26, 27]. This comple-
ments our discussion in section 3 where we showed that the convergence behavior
can be improved by choosing an inner product related to the problem itself. We
now generalize the inner product considered in that section to the non-linear case.
To this end, we equip H1(0, T ; Rn) with a variable inner product making it into a
Riemannian manifold. A similar idea has been investigated by Karátson and Neu-
berger in a recent article [21] where they identify Newton’s method as a steepest
descent with respect to a certain variable inner product. The resulting method is
quite similar to what we present here. However, they make assumptions which are
not fulfilled in our case.

For the rest of this section, we make use of the notations of [22].

Lemma 5.3. Let F : H1(0, T ; Rn) → L2(0, T ; Rm) be of class C2. Choose λ > 0.
Then the mapping

g2 : H1(0, T ; Rn)→ L2
sym

(
H1(0, T ; Rn)

)
defined by

g2(u) :=
(

(f, g) 7→ λ (f | g)H1(0,T ;Rn) + (F ′(u)f | F ′(u)g)L2(0,T ;Rm)

)
makes H1(0, T ; Rn) into an infinite dimensional Riemannian manifold.

Proof. We choose only one chart as the atlas of the manifold X := H1(0, T ; Rn),
namely the identity mapping onto the Banach space E := H1(0, T ; Rn). The tan-
gent bundle is trivial, i. e., TX ∼= X × E. In this case, a Riemannian metric on
X is a sufficiently smooth mapping g = (g1, g2) from X to X ×L2

sym(E) such that
g1 = id and g2(u) is positive definite for every u ∈ X. Choose g = (id, g2) with g2

as above. Then g is of class C1 by the chain rule, and g2(u) is positive definite. �

12 R. NITTKA, M. SAUTER EJDE-2008/42

Here λ > 0 can be chosen arbitrarily. Large values of λ increase the distance
of g2 to a singular form, whereas for small values of λ the metric is closer to the
original problem. Both effects are desirable, so one has to find a balance between
these goals when choosing λ.

We want to apply the steepest descent method on Riemannian manifolds. For
finite dimensional manifolds, a discussion of this can be found for example in [38,
Section 7.4]. We have to compute the gradient ∇gψ of the functional ψ defined
in (5.3). By definition, the gradient at u ∈ H1(0, T ; Rn) satisfies

ψ′(u)h = (F (u) | F ′(u)h)L2 = (F ′(u)∗F (u) | h)H1

= (∇gψ(u) | h)g = λ (∇gψ(u) | h)H1 + (F ′(u)∇gψ(u) | F ′(u)h)L2

for every h ∈ H1(0, T ; Rn). Thus, we obtain the representation

∇gψ(u) = (λ + F ′(u)∗F ′(u))−1
F ′(u)∗F (u)

for u ∈ H1(0, T ; Rn). If F is of class C2, there exists a (local) solution to the
steepest descent equation (2.2) for any initial value u0 ∈ H1(0, T ; Rn).

Note that if the problem is linear, i. e., if there exist matrices M1 and M2 and
a function b such that F (u)(t) = M1u

′(t) + M2u(t) − b(t), then the Riemannian
metric in lemma 5.3 equals the inner product corresponding to the graph norm
of the operator Au = M1u

′ + M2u. Thus our approach indeed generalizes the
discussion of section 3 to the non-linear case.

We mention that these considerations lead to numerical computations similar to
the Levenberg-Marquardt algorithm. This algorithm adapts to local properties of
the functional by varying λ. Of course we could resemble this in our setting by
letting λ smoothly depend on u ∈ H1(0, T ; Rn), thus introducing a slightly more
complicated Riemannian metric on the space. If we let λ tend to zero, we arrive
at the Gauss-Newton method for solving non-linear least squares problems. For a
detailed treatment these methods see for example [33, Section 10.3].

In the literature about Sobolev gradient methods, one notices that a lot of prop-
erties of linear problems carry over to the non-linear ones under some regularity
conditions. But it seems to be an open question whether there exists a non-linear
analogue to the fact that the Sobolev descent converges to the nearest solution of
the equation, if one exists. It is natural to assume that this question is closely re-
lated to the theory of Riemannian metrics. More precisely, it is quite possible that
up to reparametrization the trajectories of the steepest descent are geodesics of a
suitable Riemannian metric. If this is the case, then this fact should be regarded
as the appropriate generalization of the linear result. Those questions are beyond
the scope of this article, but we propose this investigation as a rewarding topic of
research.

6. Numerics

First we deal with general linear non-autonomous DAE. We explain our dis-
cretization and how we calculate a Sobolev gradient. In the abstract setting dif-
ferent norms lead to different gradients. We show how this can be transferred
to the finite dimensional numerical setting taking the graph norm introduced in
corollary 3.2 as an example. We introduce several different gradients with varying
numerical properties. After that we discuss the overall steepest descent algorithm
and the step size calculation. Then we move on to the fully non-linear case as in

EJDE-2008/42 SOBOLEV GRADIENTS 13

section 5 and show how the numerics of the linear case can be generalized. Finally,
we show how supplementary conditions can be integrated into Sobolev steepest
descent.

6.1. Discrete Formulation of Linear DAE. First, we treat equation (2.1) where
the matrices M1 and M2 may depend on t ∈ [0, T]. For all discretizations we
employ the finite differences scheme. We fix an equidistant partition of [0, T] into
N subintervals of length δ := T

N . We define a finite dimensional version of a vector
valued function w as the vector w̃ containing the values w(0), w(δ), . . . , w(T). Hence
a numerical solution is represented by ũ ∈ R(N+1)n with structure

ũ =
(
ũk

)N

k=0
, ũk ≈ u(δk) ∈ Rn for k = 0, . . . , N.

Define the block diagonal matrices A,B ∈ R(N+1)m×(N+1)n with blocks M1(0),
M1(δ), . . . , M1(T) and M2(0), M2(δ), . . . , M2(T), respectively. An approximation
of the functional ψ is given by

ψ̃ : R(N+1)n → R+, ũ 7→ T
2(N+1)

∥∥Qũ− b̃
∥∥2

R(N+1)m , (6.1)

where the matrix Q is defined as

Q = AD1 + B, Q ∈ R(N+1)m×(N+1)n (6.2)

for a matrix D1 ∈ R(N+1)n×(N+1)n that numerically differentiates each component
of a discretized function. The matrix Q is a discrete version of the differential
operator of the DAE. Note that we replaced the L2 function space norm by the
corresponding finite dimensional Euclidean norm.

There are many possible choices for the matrix D1. We use central differences
involving both neighbor grid points in the interior and forward and backward dif-
ferences at the boundary, all of them O(δ2) approximations. For n = 1 the differ-
entiation matrix is

D
(1)
1 =

1
2δ

1 −4 3
−1 0 1

.
−1 0 1
−3 4 −1

 ∈ R(N+1)×(N+1). (6.3)

In general it is
D1 = D

(n)
1 = D

(1)
1 ⊗ In,

where ⊗ denotes the Kronecker matrix product (see e. g. [20, p. 220]) and In the
n× n identity matrix.

6.2. Different Gradients in Finite Dimensional Spaces. We regard the deriv-
ative ψ̃′(ũ) as a linear functional acting on R(N+1)n. Then the ordinary Euclidean
gradient of ψ̃ at ũ can be calculated in terms of the matrix Q as follows.

ψ̃′(ũ)h = T
N+1

(
Qũ− b̃ | Qh

)
R(N+1)m

=
(

T
N+1

(
QT Qũ−QT b̃

)
| h

)
R(N+1)n

This equality holds for all h ∈ R(N+1)n, thus

∇eψ̃(ũ) := T
N+1

(
QT Qũ−QT b̃

)
(6.4)

is the Euclidean gradient.

14 R. NITTKA, M. SAUTER EJDE-2008/42

Now we explain how to compute different Sobolev gradients. To this end, note
that the above Euclidean gradient does not correspond in any way to the gradient
of ψ in the abstract setting. In fact, QT is the adjoint of Q with respect to the
Euclidean inner product whereas in (2.3) the adjoint is taken with respect to the
norm in H1. Thus, we have to discretize the H1 inner product and use it to calculate
the corresponding finite dimensional adjoint.

Any inner product can be related to the ordinary Euclidean inner product via a
positive definite matrix. For H1(0, T ; Rn) we choose

SH := I(N+1)n + DT
1 D1. (6.5)

By definition, the Sobolev gradient ∇Hψ̃(ũ) at the point ũ has to satisfy

ψ̃′(ũ)h =
(
∇Hψ̃(ũ) | h

)
H

=
(
SH∇Hψ̃(ũ) | h

)
R(N+1)n

=
(
∇eψ̃(ũ) | h

)
R(N+1)n

for all h ∈ R(N+1)n. Therefore, to calculate the gradient ∇H numerically it suffices
to solve the linear system

SHx = ∇eψ̃(ũ) (6.6)
for the unknown x ∈ R(N+1)n.

Using the Sobolev gradient ∇H instead of ∇e already results in significantly bet-
ter numerical performance. Nevertheless, further improvements can be achieved
using appropriately weighted Sobolev gradients. For a detailed treatment of steep-
est descent in weighted Sobolev spaces in the context of ODE and PDE with sin-
gularities, we refer to [24].

Section 3 already indicated the graph norm as a promising candidate for a norm
that is tailored to the structure of the DAE. Hence we consider inner products
in finite dimensions that are related to the graph norm. Natural candidates are
associated with the positive definite matrices

SW1,λ := λI(N+1)n + AT DT
1 D1A,

SW2,λ := λI(N+1)n + AT DT
1 D1A + BT B,

SG,λ := λI(N+1)n + QT Q,

(6.7)

for λ > 0. The identity matrix guarantees positive definiteness, while the respective
other part determines the relation to the DAE. By choosing λ smaller, the graph
part gains more weight. Note that SG,1 is a straightforward discretization of the
graph norm. We can calculate the corresponding Sobolev gradients ∇W1,λ, ∇W2,λ

and ∇G,λ as before by solving linear systems similar to equation (6.6).
We mention that the matrices in (6.7) are still sparse but structurally more

complicated than the matrix SH defined in (6.5) which corresponds to the H1 inner
product. The matrix SH is block-diagonal, which allows us to solve the linear
system individually within each block. All the n blocks equal IN+1 + (D(1)

1)T D
(1)
1

which is a band matrix depending only on the choice of numerical differentiation.
As it usually is tridiagonal or pentadiagonal, efficient solvers are available for the
corresponding linear systems.

6.3. Discrete Steepest Descent Algorithm and Step Size Calculation. We
want to discretize the continuous steepest descent (2.2). Once we have decided
which gradient ∇ to use, we follow the usual scheme of steepest descent algorithms
and the more general line search methods [33, Chapter 3]. First we fix an ini-
tial estimate ũ0. Then we know that −∇ψ̃(ũ0) is a descent direction of ψ̃ at ũ0,

EJDE-2008/42 SOBOLEV GRADIENTS 15

i. e., ψ̃(ũ0) locally decreases along the direction of the negative gradient. More
precisely, the negative gradient specifies the direction in which the directional de-
rivative (Gâteaux derivative, cf. [2]) becomes minimal among all directions of unit
length which is where the choice of the norm comes in.

For a discretization of the continuous steepest descent (2.2), we have to make
steps which are small enough such that ψ̃ still decreases, and large enough such
that it decreases significantly. A straight-forward choice for the step size s∗ is the
least non-negative real number that minimizes ψ̃(ũ − s∗∇), assuming that such a
number exists. Here we abbreviated ∇ψ̃(ũ) by ∇. Of course, if ∇ 6= 0 there exists
a positive s∗ such that ψ̃(ũ − s∗∇) < ψ̃(ũ). Since this is the only occurrence of
the gradient in the algorithm, the scaling of the gradient can be compensated by
the choice of s∗. Thus the results remain the same if we drop the factor T

N+1 in
formula (6.4) for our calculations.

In the linear case it is easy to calculate the optimal s∗ by interpolation, as along
a line the functional is a quadratic polynomial. But in the non-linear case this
is a more difficult problem. In practice, it usually is sufficient to calculate a local
minimizer instead of the global minimizer s∗. Nocedal and Wright give a description
of sophisticated step-length selection algorithms [33, Section 3.5]. Those algorithms
try to use function values and gradient information as efficiently as possible and
produce step sizes satisfying certain descent conditions. In our implementation we
assume local convexity and search along an exponentially increasing sequence for
the first increase of ψ̃ on the line. We then perform a ternary search with this
upper bound yielding a local minimizer of ψ̃.

We experienced that usually it is advantageous to damp the step size s∗, i. e., to
multiply s∗ by a factor µ ∈ (0, 1), when using the gradient itself for the direction.
Alternatively, our implementation provides the possibility to incorporate previous
step directions and step sizes into the calculation of the new ones. This pattern is
employed in non-linear conjugate gradient methods, and it can be used with Sobolev
gradients as well; see for example the Polak-Ribière or Fletcher-Reeves formulae [33,
Section 5.2].

Algorithm 1 is a summary of our final discrete steepest descent procedure. This is
a straight-forward application of the general discrete steepest descent method for a
given cost functional. Sufficient conditions for convergence to a minimizer involving
convexity and gradient inequalities can be found for example in [33, Chapter 3].

Algorithm 1. Discrete steepest descent
Generate some initial guess ũ0. | e. g. a constant function
i← 0
while ũi does not have target precision do
∇e ← Euclidean gradient of ψ̃ at ũi | see equation (6.4)
Build linear system incorporating supp. cond. at ũi. | sections 6.2 and 6.6
∇S ← solution of linear system for right hand side ∇e | see equation (6.5)
s∗ ← choose good step size for ∇S | section 6.3
ũi+1 ← ũi − µs∗∇S | damped update, 0 < µ ≤ 1
i← i + 1

end while

6.4. Least Squares Method. We now describe the close connection between the
Sobolev gradient∇G,λ coming from SG,λ as in (6.7) and the well-known least squares

16 R. NITTKA, M. SAUTER EJDE-2008/42

method. In the limit λ → 0 the resulting linear system might be singular, but is
still solvable for the given right hand side. In fact, for λ → 0 the linear system
corresponding to equation (6.6) becomes

QT Qx = QT (Qũ− b̃).

Note that we have rescaled the Euclidean gradient by the factor N+1
T as justified in

section 6.3. Starting the discrete steepest descent at an initial guess ũ0 we compute
x and take a step of length δ ≥ 0 into the direction −x. The parameter δ is chosen
such that ψ(ũ− δx) is minimal. We claim that δ = 1. In fact, for this δ we arrive
at ũ− x which satisfies the normal equations of the problem Qy = b̃, i. e.,

QT Q(ũ− x) = QT Qũ−
(
QT Qũ−QT b̃

)
= QT b̃.

This shows that ũ − x globally minimizes the functional, thus proving δ = 1.
Moreover, this shows that in the limit descent with∇G,λ converges to the solution of
the least squares problem in the first step. Note, however, that positive definiteness
is a very desirable property for a linear system and a direct solution of the normal
equations may be numerically considerably more difficult.

This relation indicates a possible reason why also for the non-linear case the
convergence of the steepest descent is observed to be fastest for ∇G,λ with small λ,
at least among the gradients we have used.

6.5. The Non-Linear Case. In the setting of equation (5.1), define A(ũ) and
B(ũ) as block diagonal matrices with blocks fy(kδ, ũk, D1ũk) and fx(kδ, ũk, D1ũk)
for k = 0, . . . , N , respectively. We use the function

F̃ : R(N+1)n → R(N+1)m, ũ 7→
(
f(kδ, ũk, D1ũk)

)
k

as discretization of F defined by (5.2). Observe that F̃ ′(ũ)h = A(ũ)D1h + B(ũ)h,
which resembles (5.4). Then ψ̃(ũ) := 1

2

∥∥F̃ (ũ)
∥∥2

2
has derivative

ψ̃′(ũ)h =
(
F̃ (ũ) | (A(ũ)D1 + B(ũ)) h

)
=

(
Q(ũ)T F̃ (ũ) | h

)
, (6.8)

where we set Q := AD1 + B as in the notation of the linear case.
Now we can proceed as in the linear case. The only difference is that the matrices

A and B depend on the current position ũ, and hence the positive definite matrices
defined as in (6.7) change during the process as well. This corresponds to steepest
descent under a variable inner product introduced in lemma 5.3. It is also connected
to quasi-Newton methods which update an approximation of the Hessian at each
step. For details on quasi-Newton methods see [33, Chapter 6].

Originally we came up with this method for non-linear DAE as a direct gen-
eralization of the linear case. Only for a formal justification we have equipped
H1(0, T ; Rn) with a natural structure making it into a Riemannian manifold lead-
ing to the gradient we use. However, consequently following this second approach
we would have been led to a algorithm which slightly differs from algorithm 1.
As in general Riemannian manifolds do not carry a vector space structure, there
are no “straight lines” the steepest descent could follow. One usually employs the
exponential map of the manifold as a substitute, traveling along geodesics. Al-
though there is no difference between these two variants for continuous steepest
descent, i. e., in the limit of infinitesimally small step size, for the numerics one

EJDE-2008/42 SOBOLEV GRADIENTS 17

has to choose. We decided in favor of the straight lines since computing the expo-
nential map means solving an ordinary differential equation which is a much more
complicated operation unnecessarily complicating the implementation.

6.6. Supplementary Conditions. To support linear supplementary conditions,
we want the steepest descent steps to preserve specified features of the initial func-
tion. Therefore, we use Sobolev gradients that do not change these features. We
remark that the methods of this chapter can be applied using any gradient. We
have chosen the space H1(0, T ; Rn) with its usual norm only for clarity of expo-
sition. More precisely, let u0 ∈ H1(0, T ; Rn) be an initial estimate satisfying the
supplementary conditions. Denote by Ha the closed linear subspace of H1(0, T ; Rn)
such that u0 + Ha is the space of all functions in H1(0, T ; Rn) satisfying the sup-
plementary conditions. We call Ha the space of admissible functions.

Define the functional ψa as

ψa : Ha → R+, ψa(u) := ψ(u0 + u) = 1
2 ‖F (u0 + u)‖2L2 .

We have to calculate the gradient of ψa with respect to the space Ha equipped with
the inner product induced by H1(0, T ; Rn). As this gradient naturally lies in the
space of admissible functions, steepest descent starting with u0 will preserve the
supplementary conditions while minimizing ψa.

Let Pa be the orthogonal projection of H1(0, T ; Rn) onto Ha. Now ψ′a(u)h =
ψ′(u0 + u)h for h ∈ Ha, and consequently

ψ′a(u)Pah = ψ′(u0 + u)Pah = ((∇ψ)(u0 + u) | Pah)H1

= (Pa(∇ψ)(u0 + u) | h)H1

(6.9)

for all h ∈ H1(0, T ; Rn). It follows that (∇ψa)(u) = Pa(∇ψ)(u0 + u).
Now we transfer this to the finite dimensional setting in a numerically tractable

way. Let C ∈ Rk×(N+1)n be a matrix such that H̃a := ker C is a finite dimensional
version of Ha. The set of functions satisfying the supplementary conditions intro-
duced by the matrix C is given by ũ0+H̃a for any valid function ũ0. We understand
ψ̃a(ũ) as a functional on H̃a analogously to the above definition of ψa.

Denote by P̃a the orthogonal projection in R(N+1)n onto ker C with respect to
the Euclidean inner product. We search for ∇S ∈ H̃a satisfying ψ̃a(ũ) = (∇S | h)
for all h ∈ H̃a. Similarly to (6.9), we calculate for any h ∈ R(N+1)n

ψ̃′a(ũ)P̃ah = ψ̃′(ũ0 + ũ)P̃ah =
((
∇eψ̃

)
(ũ0 + ũ) | P̃ah

)
e

=
(
P̃a

(
∇eψ̃

)
(ũ0 + ũ) | h

)
e

!=
(
∇S | P̃ah

)
S

=
(
P̃aSP̃a∇S | h

)
e
.

Defining Sa := P̃aSP̃a, it is obvious that Sa is positive definite if restricted to
H̃a since S is positive definite. To calculate the discrete Sobolev gradient we have
to solve the linear system

Sax = P̃a (∇eψ)(ũ0 + ũ)

for x in H̃a. Note that one could use the conjugate gradient method for solving
this system, as the right hand side is in H̃a, cf. [13, Algorithm 13.2] and [33,
Algorithm 5.2].

This approach allows us to impose very general linear supplementary conditions,
like boundary conditions or periodic boundary conditions for the function as well

18 R. NITTKA, M. SAUTER EJDE-2008/42

as for its derivative, or other not necessarily local linear conditions at arbitrary grid
points. Only fixing values is computationally unproblematic, as this corresponds
to deleting appropriate columns and rows in S and the calculated gradient. But
more general supplementary conditions result in a non-sparse orthogonal projection
matrix P̃a and a dense inner product matrix Sa. This renders sparse solvers useless.
Then it might help to regard the calculation of the gradient under supplementary
conditions as an equality constrained linear least squares optimization problem.
For details, we refer to the book of Golub and van Loen [16, Section 12.1].

7. Implementation Details and Examples with Tables and Plots

We present numerical results for some of the problems we used in the develop-
ment of our algorithm to illustrate its strengths and weaknesses. Altogether we
utilized various sample problems from different sources to test the correctness and
to study the performance in representative cases. The reader is welcome to check
out the source code containing many example problems, which is freely available
online [32].

In subsection 7.1 we discuss the results for an interesting example investigated by
Mahavier who studied ODE problems with singularities in the context of Sobolev
gradients [26, 24]. Another interesting problem, posing difficulties to several solvers,
is discussed in subsection 7.2 which we found in [36]. The results for a few more
intricate example problems from the IVP Testset [28] are discussed in subsection 7.3.
One possible application utilizing the feature that no initial conditions have to be
specified is explained in section 7.4. In this context, an example exposing an at
first sight surprising behavior is described in 7.4.3. For testing purposes, several
boundary value problems have been treated, among them examples from Ascher
and Spiteri [3]. Other employed test problems stem from the books of Hairer
and Wanner [18], Kunkel and Mehrmann [20] and Carey, Richardson, Reed and
Mulvaney [13] and from the IVP and BVP website of Cash [11].

When we speak of the index of a DAE in an example we always refer to the
differentiation index which agrees with the index of nilpotency for linear DAE with
constant coefficients [18, Section VII.1]. There are several other index concepts
for DAE, each stressing different aspects of the equation [36, Section 2.4]. By the
maximal absolute error and the average absolute error of a numerical approximation
ũ we mean

Eabs(ũ) := max
i=0,...,N

‖u(ti)− ũ(ti)‖∞ and Eavg(ũ) := T
N+1

N∑
i=0

‖u(ti)− ũ(ti)‖22,

respectively, where u is a (highly) exact solution. The value ψ̃(ũ) is called the
residual at ũ.

Please keep in mind that our implementation aims at generality and could be
considerably optimized for more specialized cases. Thus it would not make sense
to give timings of program runs in the following. We mention that the computer
architecture as well as compiler flags have impact on the numerical values. There
are parameters affecting the rate of convergence and the quality of the numerical
results which we do not describe here in detail. Those parameters include precision
bounds for termination checks of the linear solvers and control details of the line
search in the gradient direction. However, all parameters which severely affect the
results are documented.

EJDE-2008/42 SOBOLEV GRADIENTS 19

7.1. Non-Linear ODE with Irregular Singularity. ODE with meromorphic
coefficients can be formulated as a singular ODE which is a special case of a DAE.
More precisely, one can remove an kth order pole at t0 by multiplying the corre-
sponding equation with (t − t0)k, thereby getting a coefficient function in front of
the highest derivative y(n) with a root at t0. However, these examples are very
special and relatively simple examples of DAE and hence are often not regarded as
actual DAE. The following example is of this type.

We consider the non-linear ordinary differential equation{
t2y′(t) = 2ty(t) + y(t)2 for t ∈ [0, 1]
y(1) = 1

with solution y(t) =
t2

2− t
,

which is discussed in [26, Section 4]. Note that Mahavier introduces and employs
weighted Sobolev descent for such problems. He calculates the gradient with respect
to a discretized weighted Sobolev space tailored to the problem. For semi-linear
ODE problems our gradient ∇W1 of section 6.2 corresponds directly to the weighted
Sobolev gradients there. We solve the above problem on the interval [0, 1] starting
with the initial function u0(t) = t. In tables 1 and 2 we did not damp the steepest
descent to allow for comparison with Mahavier’s results [26]. However, there re-
main minor differences due to discretization, scaling and the employed line-search
method.

Table 1 lists the convergence behavior for several gradients. The Euclidean gra-
dient shows poor performance whereas the usual Sobolev gradient already improves
the situation significantly. Best performance is achieved by the weighted Sobolev
gradient and the gradient corresponding to the graph norm, the latter being slightly
ahead. Similar observations can be made about the average errors listed in table 2.
Damping with 0.85 yields considerably better results. For example in the graph
norm case with N = 1000 and λ = 1 this damping yields to convergence in less
than 1000 steps to a residual below 3 · 10−15, an average error of about 2 · 10−10

and a maximal error of about 4 · 10−4. This is significantly better than what is
achieved in the same setting without damping after 10000 steps. In that case the
residual is only reduced to about 1 · 10−14 despite of the higher number of steps.
The reason for this improvement lies in the usual convergence behavior of steepest
descent methods. Often they exhibit the tendency to zig-zag [33, see Section 3.3]
which is somewhat mitigated by this simple damping. For this reason we always
used a damping factor of µ = 0.85 in the numerics unless otherwise stated.

To compare the behavior of the gradients for increasing grid size we show results
for a finer equidistant grid of size N = 10000 in table 3. Note that the residual
of the exact solution is approximately 6.79 · 10−17 for this grid. The Euclidean
gradient completely fails to converge and exhibits horrible numerical performance.
The ordinary Sobolev gradient copes fairly with the finer grid. Among the gradients
with λ = 1, again ∇W1 and ∇G achieve the best results.

However, for all gradients under consideration an appropriate choice of λ im-
proves the numerical performance. For example using ∇W1,0.05 in the above setting
we get a residual of 2·10−17 after 1000 steps, with Eavg ≈ 10−11 and Eabs ≈ 2·10−4.
But in the case of steepest descent with ∇G, the impact of a smaller value is ex-
traordinary. The rightmost two columns of table 3 show the results for λ = 10−3

and λ = 10−5. The norm of the gradient dropped below 10−12 in 110 and 42
steps, respectively. With even smaller values of λ even better results are achieved.

20 R. NITTKA, M. SAUTER EJDE-2008/42

Table 1. Residuals for grid size N = 100 without damping (µ = 1).

Residual (starting with 4.06 · 10−1 for ũ0)

Steps Euclidean ∇e Sobolev ∇H Weighted ∇W1 Graph ∇G

5 3.7 · 10−1 6.7 · 10−4 2.2 · 10−05 6.4 · 10−06

10 3.6 · 10−1 3.8 · 10−4 3.5 · 10−06 7.2 · 10−07

20 3.3 · 10−1 2.0 · 10−4 5.9 · 10−07 9.9 · 10−08

50 2.8 · 10−1 7.9 · 10−5 5.6 · 10−08 8.4 · 10−09

100 2.2 · 10−1 3.7 · 10−5 9.7 · 10−09 1.4 · 10−09

200 1.5 · 10−1 1.6 · 10−5 1.7 · 10−09 2.5 · 10−10

500 7.1 · 10−2 5.5 · 10−6 1.8 · 10−10 3.7 · 10−11

1000 2.9 · 10−2 2.3 · 10−6 4.3 · 10−11 1.8 · 10−11

2000 9.8 · 10−3 9.9 · 10−7 2.0 · 10−11 1.5 · 10−11

5000 1.7 · 10−3 3.1 · 10−7 1.5 · 10−11 1.4 · 10−11

10000 3.9 · 10−4 1.2 · 10−7 1.4 · 10−11 1.4 · 10−11

Table 2. Average errors for grid size N = 100 without damping
(µ = 1).

Average Error (starting with 6.17 · 10−2 for ũ0)

Steps Euclidean ∇e Sobolev ∇H Weighted ∇W1 Graph ∇G

5 6.0 · 10−2 7.8 · 10−3 2.3 · 10−4 1.0 · 10−4

10 5.9 · 10−2 5.7 · 10−3 8.1 · 10−5 3.1 · 10−5

20 5.8 · 10−2 4.0 · 10−3 2.8 · 10−5 9.6 · 10−6

50 5.4 · 10−2 2.3 · 10−3 7.0 · 10−6 2.2 · 10−6

100 4.8 · 10−2 1.5 · 10−3 2.4 · 10−6 7.6 · 10−7

200 4.0 · 10−2 9.4 · 10−4 8.5 · 10−7 2.6 · 10−7

500 2.6 · 10−2 4.9 · 10−4 2.1 · 10−7 6.6 · 10−8

1000 1.6 · 10−2 3.0 · 10−4 7.6 · 10−8 2.5 · 10−8

2000 8.6 · 10−3 1.8 · 10−4 2.9 · 10−8 1.2 · 10−8

5000 3.1 · 10−3 9.0 · 10−5 1.1 · 10−8 9.0 · 10−9

10000 1.3 · 10−3 5.3 · 10−5 9.3 · 10−9 8.0 · 10−9

For λ = 10−19 and µ = 1 we obtain a residual of about 10−23 in 6 steps, with
Eavg ≈ 10−15 and Eabs ≈ 4 · 10−6. However, in general choosing λ that small leads
to failure of the linear solver and huge numerical errors.

In the setting of this singular ODE, Sobolev descent with respect to the graph
norm gives results which are superior to the steepest descent method relying on
weighted Sobolev spaces as in [26]. Additionally, choosing a small λ vastly im-
proves the rate of convergence in many cases, but is numerically more demanding.
However, steepest descent with respect to the graph norm is computationally more
expensive than weighted Sobolev steepest descent. This is because SG has to be
constructed in each iteration because it depends on ũ, whereas SW1 remains the
same during the process for this example.

7.2. A Small Non-Trivial Linear DAE. Consider for η ∈ R the non-autonomous
linear index 2 DAE(

1 0
1 ηt

)
u′(t) +

(
1 ηt
0 1 + η

)
=

(
exp(−t)

0

)
. (7.1)

EJDE-2008/42 SOBOLEV GRADIENTS 21

Table 3. Residuals for grid size N = 10000 with damping factor
µ = 0.85.

Residual (starting with 4.0 · 10−1 for ũ0)

Steps ∇e ∇H ∇W1 ∇G,1 ∇G,10−3 ∇G,10−5

5 4.0 · 10−1 8.3 · 10−4 2.6 · 10−05 5.2 · 10−06 2.4 · 10−09 2.4 · 10−09

10 4.0 · 10−1 2.6 · 10−4 3.9 · 10−06 5.8 · 10−07 7.7 · 10−14 1.5 · 10−17

20 4.0 · 10−1 1.2 · 10−4 4.2 · 10−07 9.3 · 10−09 9.8 · 10−16 1.2 · 10−20

30 4.0 · 10−1 5.7 · 10−5 1.4 · 10−08 2.5 · 10−09 2.5 · 10−16 4.9 · 10−21

40 4.0 · 10−1 4.2 · 10−5 4.6 · 10−09 1.2 · 10−09 8.8 · 10−17 1.3 · 10−21

50 4.0 · 10−1 1.5 · 10−5 3.0 · 10−09 6.3 · 10−10 3.5 · 10−17

100 3.9 · 10−1 9.1 · 10−6 2.3 · 10−10 3.1 · 10−11 4.3 · 10−19

150 3.9 · 10−1 3.3 · 10−6 3.4 · 10−11 2.9 · 10−12

200 3.9 · 10−1 1.2 · 10−6 1.0 · 10−11 2.0 · 10−12

400 3.9 · 10−1 2.8 · 10−7 3.3 · 10−13 4.7 · 10−14

1000 3.5 · 10−1 6.9 · 10−8 3.2 · 10−14 2.6 · 10−15

Eavg 5.9 · 10−2 3.3 · 10−5 1.3 · 10−09 3.0 · 10−10 1.4 · 10−12 4.5 · 10−14

Eabs 3.3 · 10−1 4.3 · 10−2 8.9 · 10−04 5.6 · 10−04 8.5 · 10−05 1.9 · 10−05

This equation has been introduced by Petzold, Gear and Hsu in [34]. In the range
η < −0.5 it is known to pose difficulties to several numerical methods for DAE,
among them the implicit Euler method, BDF, and RadauIIA. More information
about this equation along with some numerical tests can be found in [36, Sec-
tion 4.2]. It has a unique solution given by

u(t) =
(

(1− ηt) exp(−t)
exp(−t)

)
.

Thus, the only consistent initial value is u(0). In our test we always set η = −0.8,
choose the initial function to equal 2 in both components, and solve the equation
on the interval [0, 3] for the grid size N = 1000. Apart from the least squares
case where we do not use damping, we always set µ = 0.85. The residual of the
initial function is 2.99, with Eavg = 15.37 and Eabs = 1.95. In table 4 we show
results of the steepest descent method applied to problem (7.1) using the gradient
∇G,λ for different values of the parameter λ. To facilitate comparison we also list
results of ordinary Sobolev descent employing ∇H and of the least squares method.
The latter can be applied since the problem is linear. Steps which reached optimal
residuals with respect to solver and floating point precision are marked with ∗.
We omit the results for the Euclidean gradient which decreases the residual only
to about 6.09 · 10−1 in the first 10000 steps. In figures 1 and 2 we illustrate the
development of the steepest descent for these gradients. The individual plots depict
the results’ first components after several steps, where darker color corresponds to
more iterations.

Again, descent with ∇G,1 reduces the residual faster than descent with the ordi-
nary Sobolev gradient. Decreasing λ results in even better convergence. However,
note that ordinary Sobolev descent attains superior error values. This can be un-
derstood by looking at the plots in figure 1. The solutions found by ordinary
Sobolev descent approach the solution slowly, but in a very regular and smooth
way, whereas descent according to the graph norm approaches the solution rapidly
in the interior of the interval [0, 3] and only afterwards and more slowly at the
interval boundaries. Regarding the error values, λ has to be decreased to 10−3 for

22 R. NITTKA, M. SAUTER EJDE-2008/42

Table 4. Results for problem (7.1).

Gradient Steps Residual Avg. Error Max. Error
∇H 100 2.6 · 10−04 5.6 · 10−02 3.2 · 10−1

1000 1.0 · 10−06 1.1 · 10−03 1.1 · 10−1

10000 7.9 · 10−09 5.1 · 10−05 4.5 · 10−2

∇G,1 100 2.8 · 10−05 2.1 · 10−01 2.1 · 10+0

1000 7.5 · 10−08 2.8 · 10−02 1.8 · 10+0

10000 3.8 · 10−10 3.1 · 10−03 8.7 · 10−1

∇G,10−3 10 5.2 · 10−07 5.4 · 10−02 2.0 · 10+0

100 5.9 · 10−10 3.8 · 10−03 9.6 · 10−1

1000 6.9 · 10−13 3.2 · 10−04 1.3 · 10−1

10000 5.0 · 10−15 6.5 · 10−05 2.7 · 10−2

∇G,10−5 10 6.2 · 10−10 3.8 · 10−03 9.6 · 10−1

100 4.0 · 10−13 2.7 · 10−04 1.1 · 10−1

1000 6.3 · 10−16 3.3 · 10−05 1.4 · 10−2

10000 1.4 · 10−17 8.2 · 10−06 4.0 · 10−3

∇G,10−10 5 1.7 · 10−08 2.6 · 10−05 1.0 · 10−2

10 1.3 · 10−16 1.1 · 10−05 5.6 · 10−3

20 5.2 · 10−18 3.4 · 10−06 2.5 · 10−3

60 2.8 · 10−23 1.3 · 10−11 5.0 · 10−6

300∗ 2.9 · 10−28 4.8 · 10−11 7.9 · 10−6

Least Squares 1 1.7 · 10−13 8.0 · 10−02 4.6 · 10−1

5 3.2 · 10−23 1.1 · 10−11 5.2 · 10−6

10∗ 2.3 · 10−28 4.8 · 10−11 7.9 · 10−6

the graph norm gradient to deliver results on par with descent according to ∇H.
Interestingly enough, the least squares method needs 10 steps to reach the optimal
residual. The oscillations depicted in the right plot of figure 2 are due to numerical
errors of the linear solver. If one further decreases λ, descent with respect to ∇G,λ

becomes more similar to solving the linear least squares problem and starts to show
oscillating behavior, too.

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

(1 + 0.8t) exp(−t)

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

(1 + 0.8t) exp(−t)

Figure 1. Some descent steps with ∇H (left) and with ∇G,1 (right).

EJDE-2008/42 SOBOLEV GRADIENTS 23

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

(1 + 0.8t) exp(−t)

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

(1 + 0.8t) exp(−t)

Figure 2. left: some descent steps with ∇G,10−10 ,
right: development solving least squares problem

7.3. More Involved Test Problems. We ran our implementation on two prob-
lems of the IVP Testset [28] of the University of Bari (formerly released by CWI
Amsterdam).

7.3.1. Chemical Akzo Nobel problem. This is a initial value problem consisting of
a stiff semi-linear DAE of index 1 with n = m = 6. As the square-root is taken in
several components the domain of ψ is not the whole space H1(0, 180; R6). This
poses difficulties for the line search algorithm, as we have to ensure that we do not
leave the domain of definition, decreasing the step width if necessary.

Another problem is that our implementation does not cope well with stiff prob-
lems. This is not surprising, as we did not incorporate any mechanisms to refine
the grid (also compare to section 7.6). But the algorithm tries to find the opti-
mal numerical solution a fixed given grid. We can, however, apply our method
in a step-by-step manner by solving the equation on short intervals if we ensure
by appropriate initial conditions that we can glue the solutions together. This
works reasonably well and as a byproduct ensures that the solution stays in the
domain of definition. Still, it is computationally quite demanding to get highly
exact numerical results with this approach.

7.3.2. Andrews’ Squeezing Mechanism. The equation of Andrews’ squeezing mech-
anism is a non-stiff semi-linear index 3 DAE with 14 differential and 13 algebraic
equations. It is described in detail by Hairer and Wanner [18, Section VII.7]. How-
ever, our implementation is not designed to cope with the extreme scaling issues
between the individual components and has problems with this equation. To get a
rough idea, be aware that at a fixed position the solution vector has the structure
y =

(
q q̇ q̈ λ

)T , where q ∈ R7 and λ ∈ R6. For the correct solution, the mag-
nitude of y5 is of order 10−2 on the interval [0, 0.003], whereas y16 is of order 106.
Without appropriate preconditioning, the linear solver cannot handle this discrep-
ancy. A preconditioning strategy for index 3 DAE arising from multibody systems
is proposed in [6] in the context of Newmark integration schemes.

7.4. Solution Space Estimation. The structure of the set of solutions of general
DAE can be quite complicated. Even the calculation of consistent initial values is
a non-trivial task (see section 1). The presented steepest descent method allows
to start from any initial function. The choice of the initial function determines
the calculated numerical solution. Thus, it is natural to ask whether valuable

24 R. NITTKA, M. SAUTER EJDE-2008/42

information about the set of solutions can be acquired by running the steepest
descent method multiple times for a large number of sufficiently different initial
functions.

The question arises which initial functions to choose to get sufficiently diverse
solutions and whether this method really has the tendency to exhaust the full set of
solutions. Here, we always took linear functions as initial estimates. We generated
them by prescribing random function values, uniformly distributed in [−2, 2]n, at
both interval boundary points of [0, T]. Figure 3 shows plots of initial values of
corresponding numerical solutions. The 3-dimensional plots belong to specifically
designed linear DAE with known solution space.

-40-20020
-10

0
10

-40
-20

0
20
40

-4-12
-2.5

-1
0.5

2

-1.5
-0.5
0.5
1.5

Figure 3. A 2-dimensional space (left) and 3-dimentional space
(right) of consistent initial values.

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

numerical initial values

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

numerical initial values

Figure 4. Numerical initial values of the Figure Eight Problem;
left: 10000 points, right: 100 points

7.4.1. The Figure Eight Problem. We ran our steepest descent implementation
10000 times, starting with random initial functions, on the problem{

u1(t)2 + u′1(t)2 − 1 = 0,

2u1(t)u′1(t)− u2(t) = 0,

where t ∈ [0, 1]. We used a uniform grid with N = 300 grid points, a damping
factor of 0.85 and made 30 descent steps using the gradient ∇G,10−5 . Usually the
residual dropped below 10−16 within the first 12 descent steps. We only cared
about the function value at t = 0 of the numerical solution. The plot of these
numerically consistent initial conditions is shown in figure 4. From the picture it

EJDE-2008/42 SOBOLEV GRADIENTS 25

becomes evident why this problem is called the “figure eight problem”. In the right
picture, only the first 100 initial values are shown. Obviously the distribution is
not uniform. We found this equation in the sample problem collection of a DAE
solver written by Rheinboldt [35].

We remark that this is the only problem in the whole article to which lemma 5.1
does not apply. In fact, the example actually does not fit into our framework because
F as in (5.2) does not even map into L2(0, T ; Rm). Nevertheless, the numerics work
without any difficulties.

7.4.2. Dimension Estimation. For linear DAE the set of consistent initial values, in
the following denoted by C ⊂ Rn, is a finite dimensional affine subspace of Rn. To
estimate its dimension we produce a large amount of numerically consistent initial
values. When using these vectors to determine the dimension of C one faces the
problem that they are numerically disturbed and have almost surely full dimension.

Assume we have a number of numerical initial values v1, . . . vN , N � n. A first
idea to determine the dimension is based on the Gaussian elimination method with
complete pivoting, which is also called total or maximal pivoting [16, Section 3.4].
First we shift the vectors vj such that they have sample mean 0. If one takes the
matrix A containing all the vj as columns one expects the total pivots during the
Gaussian elimination process to decrease and to relate in some way to the dimension
of this point set. The index of the most significant drop would then be the estimate
of the dimension of C.

A second approach utilizes principal component analysis (PCA), which is a well
established method to reduce the dimension of data by introducing a change to
a lower dimensional new coordinate system. An introduction to PCA is given by
Lay [23, Section 8.5]. More precisely, for some target dimension d ∈ N0, d ≤ n, PCA
can be used to determine a shift ĉ ∈ Rn and an orthogonal projection P̂ ∈ Rn×n

onto a d-dimensional linear subspace of Rn which minimizes the quadratic error

E(d) := min
{ N∑

i=1

‖(I − P)(vi − c)‖22 : c ∈ Rn, P a d-dim. orth. proj.
}

.

Since we are only interested in the error E(d), the necessary calculations are
relatively simple. One can show that ĉ can be chosen independently of d as the
sample mean of the vectors vi, i = 1, . . . , N . The scaled covariance matrix

S :=
N∑

i=1

(ri − ĉ)(ri − ĉ)T ,

is a positive semi-definite matrix whose eigenvalues we denote by λ1 ≥ · · · ≥ λn. It
can be shown that

E(d) =
n∑

i=d+1

λi.

Using a numerical method to calculate eigenvalues, we are able to compute E(d).
We estimate the dimension as d∗ = 0 if the entire variance E(0) is below some
bound and otherwise as the minimal d∗ ∈ N0 such that E(d∗) ≤ 0.999 · E(0).
Hence we reduce the dimension as much as possible while still preserving 99.9% of
the entire variance.

We successfully applied this to several small linear DAE with index up to 3.
Using the theory of regular matrix pencils [18, Section VII.1] it is easy to construct

26 R. NITTKA, M. SAUTER EJDE-2008/42

linear DAE with constant coefficients with certain index and known solution space.
Table 5 shows the results for such a constructed index 3 system with n = m = 13
where the solution space is 4-dimensional. We point out that the method using
pivots also works surprisingly well. However, the automatic decision should be
improved. In this example, it finds 99.9% of the variance in a subspace of dimension
3 although the most significant drop occurs between the fourth and fifth eigenvalue.

Unfortunately, this method has some deficiencies. One problem is the depen-
dency on highly accurate numerical solutions, which are harder to obtain for the
higher index case. Additionally, it is heavily dependent on the scaling of the prob-
lem and tends to underestimate the real dimension for problems with a higher
dimensional solution space because of insufficient diversity of the numerical solu-
tions. The latter problem could possibly be addressed by a more sophisticated
choice of initial functions.

Table 5. left: pivots and eigenvalues for an index 3 DAE with
4-dimensional solution space, right: logarithmic plot of the pivots’
absolute values and the eigenvalues

Number Total pivots Eigenvalues
1 −13.1 13468.2
2 12.8 10269.7
3 8.5 3517.9
4 −1.3 22.0
5 0.9 · 10−04 1.6 · 10−08

6 0.6 · 10−04 6.2 · 10−09

7 −1.5 · 10−07 8.5 · 10−14

8 −1.1 · 10−07 2.3 · 10−14

9 7.8 · 10−10 6.5 · 10−19

10 5.2 · 10−10 4.9 · 10−19

11 −3.9 · 10−10 3.6 · 10−19

12 4.2 · 10−11 2.1 · 10−21

13 −1.5 · 10−20 4.1 · 10−35
10−35

10−30

10−25

10−20

10−15

10−10

10−5

100

105

2 4 6 8 10 12

partial pivoting
total pivoting

eigenvalues

7.4.3. Detection of Non-Uniqueness. A DAE might have an infinite dimensional
solution space, and even for given initial values the problem need not have a unique
solution. An example of a linear DAE which exhibits non-uniqueness for some given
initial value is(

−t t2

−1 t

)
u′ +

(
1 0
0 1

)
u = 0, u(0) = 0 for t ∈ [0, 2]. (7.2)

This problem is taken from Kunkel and Mehrmann [20, Chapter 8, Exercise 3]. The
left plot in figure 5 shows the first component of 100 numerical solutions having
started at random linear functions satisfying the initial condition of equation (7.2).
The residuals of the numerical solutions are of magnitude 10−12.

Another interesting example problem was presented by Ascher and Spiteri [3,
Example 2] as a test problem for their boundary value problem solver COLDAE.
This problem is a boundary value problem admitting exactly 2 different classical

EJDE-2008/42 SOBOLEV GRADIENTS 27

solutions. One can simplify it to an equivalent initial value problem as follows,
without changing the behavior of our program significantly.

u′(t) = y(t) + cos(t)

0 = (u(t)− sin(t))(y(t)− exp(t))
on [0, 1], where u(0) = 0 (7.3)

The two solutions are(
u(t)
y(t)

)
=

(
sin(t) + exp(t)− 1

exp(t)

)
and

(
u(t)
y(t)

)
=

(
sin(t)

0

)
.

For the numerics we used a uniform grid with N = 1000 and a damping factor
of 0.85. Applying our method using the discretized H1 norm and starting from
random linear initial functions which satisfy the initial conditions, we experienced
poor convergence speed and arrived at an approximation for the second solution
most of the time. The right plot in figure 5 shows a numerical solution after 10000
steps using H1 descent. Its residual is about 6.41 · 10−8 and ỹ obviously deviates
from y(t) = 0, especially at the interval boundaries. Using the discretized graph
norm the steepest descent converged in around 100 steps to a numerical solution
with a residual of about 10−20.

However, for both gradients certain initial functions resulted in unexpected nu-
merical solutions, e. g. the left plot in figure 6. The jump in the component ỹ and
the bend in the first component harm classical differentiability. However, looking
at equation (7.3) we see that y(t) need not be differentiable if we understand the
problem as in section 3. In fact, our numerical solution resembles a weak solution
in D(Ā) (compare to proposition 3.1). This shows that even with finite differences
we are able to find weak solutions in accordance with the abstract theory. This
particular plot was generated using graph norm descent. Ordinary H1 descent has
a tendency to smooth things out which interferes with jump solutions and results
in worse convergence.

However, our discretization with finite differences yields problems. Using steep-
est descent with∇G, we also get solutions as depicted in the right picture in figure 6.
This originates in the central differences of (6.3) used for the numerical approxima-
tion of the derivative. In this case we experience a decoupling of the grid into even
and odd indices where ỹ(t) ≈ exp(t). There, ũ oscillates between two possible local
solutions. Using the finite element method instead would solve such deficiencies.

-2

-1

0

1

2

3

0 0.5 1 1.5 2

first comp. of solutions

0

0.3

0.6

0.9

1.2

0 0.2 0.4 0.6 0.8 1

first component ũ(t)
last component ỹ(t)

sin(t)

Figure 5. left: example of IVP without unique solution,
right: results for (7.3) after H1 descent

28 R. NITTKA, M. SAUTER EJDE-2008/42

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

ũ(t)
sin(t)

ỹ(t)
exp(t)

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

ũ(t)
ỹ(t)

Figure 6. left: generalized numerical solution for (7.3),
right: example illustrating problems of the discretization

7.5. Implementation. We implemented our software in the C++ programming lan-
guage using the paradigm of compile-time polymorphism. It makes heavy use of
the Standard Template Library and the basic linear algebra routines provided by
the ublas library, which is part of the well known Boost project [9]. The soft-
ware was developed using GNU/Linux on x86 architecture and compiled with the
GCC C++ compiler. For solving the involved linear systems we used the conjugate
gradient method [33, Chapter 5], Gauss-Seidel with successive over-relaxation [16,
Section 10.1] and the impressive PARDISO solver [37], being part of the Intel Math
Kernel Library [29], which can solve sparse positive definite and indefinite sys-
tems efficiently via parallel factorization. We also used functions provided by the
MKL to calculate the singular value decomposition of a matrix. We need this to
construct projection matrices for general supplementary conditions. For auxiliary
calculations we used the computer algebra system Maple.

7.6. Possible Improvements.

7.6.1. Finite elements. Finite element methods could turn out to be a rewarding
alternative to the finite difference scheme admitting convergence even if the solu-
tions fail to be smooth. This should be not too difficult to implement. Numerically
it is more demanding because numerical integration methods have to be employed
to get the coefficients for the chosen basis.

7.6.2. Non-uniform grids. Analyzing the structure of the given DAE, it may be
possible to calculate an optimal grid for the discretization, or to refine the grid
during the descent process. Refinements of the grid are technically easy to integrate,
since new intermediate grid points can be inserted interpolating the current values in
a neighborhood. However, updating to the new matrices is an expensive operation.

7.6.3. Functionals defined only on subsets of H1(0, T ; Rn). In Section 5, we as-
sumed the function f to be defined on [0, T]×Rn×Rn. If f can only be evaluated
on a subset of this space (e. g. because of a square root) the domain D(ψ) of ψ is
not the whole space H1(0, T ; Rn). Usual steepest descent does not respect this and
can leave the domain, even if there exists a solution u ∈ D(ψ). We have discussed
this phenomenon in section 7.3.1. This issue could probably be addressed by as-
signing a penalty to the Sobolev gradient calculation prohibiting strong tendencies
towards the boundary of the domain D(ψ).

EJDE-2008/42 SOBOLEV GRADIENTS 29

7.6.4. Other projections. The projection onto the feasible functions used in Sec-
tion 6.6 does not have to be the orthogonal one. One can choose among all projec-
tions trying to find one with beneficial properties, i. e., a sparse projection that still
is numerically stable. Basic building blocks of such matrices have been constructed
in [7].

7.6.5. Combination with conventional methods. If desired, one can mix conventional
techniques with our approach. For example one could estimate consistent initial
conditions using Sobolev descent locally at the left boundary, then run a multi-step
method to calculate a rough approximate solution, and then refine this initial guess
again by Sobolev gradient methods on the whole interval.

7.6.6. Implementation Issues. Our step size control should be replaced by more
robust line search algorithms enforcing Wolfe conditions, cf. [33, Chapter 3]. Error
estimates, failure tolerance, and a decent user interface have to be provided. The
efficiency of the whole algorithm has to be improved in order to meet the standards
of current DAE solvers.

8. Conclusion

As pointed out before, the method of Sobolev steepest descent differs greatly
from the usual step-by-step methods, thus introducing both new kinds of problems
and advantages.

Our approach has some drawbacks. The procedure itself tends to be expensive
in terms of runtime and memory usage compared to the conventional multi-step
methods. It is complicated to generate an appropriate mesh, since we have to fix a
mesh size a priori whereas step-by-step methods may adjust their mesh according
to local error estimates. Such refinements can be put into practice in our setting,
too, but changes of the mesh are expensive. Moreover, convergence of the Sobolev
descent is guaranteed only under restrictive conditions. Hence currently the user
has to investigate for each kind of DAE separately whether the algorithm behaves
as desired. It certainly is an interesting problem for further research to find general
conditions under which Sobolev descent finds a solution for a DAE.

Yet, a new technique also introduces new possibilities. We regard it as one of
the main features that no initial conditions need to be supplied. Only some ini-
tial estimate for the solution is needed, not necessarily a good one. In general,
it is difficult to find consistent initial conditions for DAE. In [5, Subsection 5.3.4]
they state, that “Often the most difficult part of solving a DAE system in applica-
tions is to determine a consistent set of initial conditions with which to start the
computation”. For more information on this topic see [8] or [40, Chapter 2].

Another advantage is the possibility to impose arbitrary linear supplementary
conditions, even non-local ones. The authors do not know of any other program
that can handle such general data. In principle, the user can point the algorithm
towards a solution with particular characteristics by providing it with a suitable
initial estimate, although admittedly it is not clear in what sense the algorithm
respects this hint. Moreover, no previous transformations such as differentiation
of the equations have to be applied, and hence we do not artificially increase the
number of equations and the numerical errors.

As the next step for the theory of solving DAE via Sobolev descent the authors
suggest to generalize the results of section 3 to the non-autonomous, the semi-linear

30 R. NITTKA, M. SAUTER EJDE-2008/42

and the fully non-linear case. We mention that the concept of the graph norm
for Sobolev gradient descent is rather generic and easily generalizes to arbitrary
differential problems, even involving non-local and partial differential operators, to
which the theory could finally be extended. Although it is easier and more common
to use an ordinary Sobolev space for all applications, we emphasize that using a
metric more closely related to the equation itself obviously improves the algorithm.
Thus this modification should at least be considered whenever Sobolev gradients
are employed. It may provide some insight to discuss the effects of the different
metrics and to compare the convergence theoretically.

As for the continuation of our practical efforts, one should consider to address
the deficiencies of our implementation discussed in 7.6. In particular, it seems to
be important to put 7.6.1 into practice since finite element methods are the more
natural choice when working with Sobolev spaces.

Acknowledgments.
This article has been inspired by John W. Neuberger who suggested applying
Sobolev gradient methods to the field of DAE. The authors would like to thank
him for his patience and aid. This work has been started during the authors’ stay
at the University of North Texas as a guests.

Parts of this article were developed while one of the authors was sponsored by
the graduate school “Mathematical Analysis of Evolution, Information and Com-
plexity” of the University of Ulm.

References

[1] Y.A. Abramovich and C.D. Aliprantis, An Invitation to Operator Theory, American Mathe-
matical Society, 2002.

[2] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Univ. Press, 1993.
[3] U.M. Ascher and R.J. Spiteri, Collocation Software for Boundary Value Differential-Algebraic

Equations, SIAM Journal on Scientific Computing 15 (1994), no. 4, 938–952.

[4] J. Appell and P.P. Zabrejko, Nonlinear superposition operators, Cambridge Univ. Press, 1990.
[5] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value Problems

in Differential-Algebraic Equations, Elsevier Science Publishing, New York, 1989.

[6] C.L. Bottasso, D. Dopico, and L. Trainelli, On the optimal scaling of index three DAEs in
multibody dynamics, Multibody System Dynamics 19 (2008), no. 1–2, 3–20.

[7] M.W. Berry, M.T. Heath, I. Kaneko, M. Lawo, R.J. Plemmons, and R.C. Ward, An Algorithm

to Compute a Sparse Basis of the Null Space, Num. Mathematik 47 (1985), no. 4, 483–504.
[8] P.N. Brown, A.C. Hindmarsh, and L.R. Petzold, Consistent Initial Condition Calculation

for Differential-Algebraic Systems, SIAM Journal on Scientific Computing 19 (1998), no. 5,
1495–1512.

[9] Boost C++ Library, http://www.boost.org.

[10] S.L. Campbell, High-Index Differential Algebraic Equations, Mechanics Based Design of
Structures and Machines 23 (1995), no. 2, 199–222.

[11] J. Cash, BVP and IVP software page, http://www.ma.ic.ac.uk/~jcash.

[12] R. Chill, The Lojasiewicz-Simon gradient inequality in Hilbert spaces,
http://www.math.univ-metz.fr/~chill/procloja.pdf, 2006.

[13] G.F. Carey, W.B. Richardson, C.S. Reed, and B.J. Mulvaney, Circuit, Device and Process

Simulation: Mathematical and Numerical Aspects, Wiley, 1996.
[14] E.F. Costa, R.C. Vieira, A.R. Secchi, and E.C. Biscaia, Dynamic simulation of high-index

models of batch distillation processes, Latin American Applied Research 33 (2003), 155–160.

[15] B.W. Gordon and H. Asada, Modeling, Realization, and Simulation of Thermo-Fluid Systems
Using Singularly Perturbed Sliding Manifolds, Journal of Dynamic Systems, Measurement,

and Control 122 (2000), 699–707.

[16] G.H. Golub and C.F. van Loan, Matrix Computations, third ed., John Hopkins University
Press, Baltimore and London, 1996.

http://www.boost.org
http://www.ma.ic.ac.uk/~jcash
http://www.math.univ-metz.fr/~chill/procloja.pdf

EJDE-2008/42 SOBOLEV GRADIENTS 31

[17] A. Haraux, M. Ali Jendoubi, and O. Kavian, Rate of decay to equilibrium in some semilinear

parabolic equations, Journal of Evolution Equations 3 (2003), no. 3, 463–484.

[18] E. Hairer and G. Wanner, Solving ordinary differential equations, 2. Stiff and differential
algebraic problems, second revised ed., Springer Series in Computational Mathematics, vol. 14,

Springer, 1996.

[19] A. Kumar and P. Daoutidis, Control of nonlinear differential algebraic equation systems,
Chapman & Hall/CRC, 1999.

[20] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical

Solution, Textbooks in Mathematics, European Mathematical Society, 2006.
[21] J. Karátson and J.W. Neuberger, Newton’s method in the context of gradients, Electronic

Journal of Differential Equations 2007 (2007), no. 124, 1–13.

[22] S.A. Lang, Differential and Riemannian Manifolds, Springer, 1995.
[23] D.C. Lay, Linear Algebra and Its Applications, Addison-Wesley, 1994.

[24] W.T. Mahavier, A Numerical Method for Solving Singular Differential Equations Utilizing
Steepest Descent in Weighted Sobolev Spaces, Ph.D. thesis, University of North Texas, 1995.

[25] W.T. Mahavier, A convergence result for discreet steepest decent in weighted sobolev spaces,

Abstract and Applied Analysis 2 (1997), no. 1, 67–72.
[26] W.T. Mahavier, A numerical method utilizing weighted Sobolev descent to solve singular

differential equations, Nonlinear World 4 (1997), no. 4, 435–456.

[27] W.T. Mahavier, Weighted Sobolev Descent for singular first order partial Differential Equa-
tions, Southwest Journal of Pure and Applied Mathematics 1 (1999), 41–50.

[28] F. Mazzia, F. Iavernaro, and C. Magherini, Test Set for Initial Value Problem Solvers,

http://pitagora.dm.uniba.it/~testset/, 2006, Release 2.3 September 2006.
[29] Intel Math Kernel Library,

http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/

[30] J.W. Neuberger, Projection Methods for Linear and Nonlinear Systems of Partial Differential
Equations, Dundee Conference on Differential Equations, vol. 564, Springer Lecture Notes,

1976, pp. 341–349.
[31] J.W. Neuberger, Sobolev gradients and differential equations, Springer, 1997.

[32] R. Nittka and M. Sauter, Implementation with source code and examples of Sobolev Gradients

for Differential Algebraic Equations,
http://cantor.mathematik.uni-ulm.de/m5/nittka/research/2007/sobolev_dae/, 2007.

[33] J. Nocedal and S.J. Wright, Numerical Optimization, second ed., Springer Series in Opera-

tions Research, Springer, 2006.
[34] L. R. Petzold, C. W. Gear, and H. H. Hsu, Differential-Algebraic Equations Revisited, Pro-

ceedings Oberwolfach Workshop on Stiff Equations, Institut für Geometrie und Praktische

Mathematik der TH Aachen, June 1981, Bericht 9.
[35] W.C. Rheinboldt, Sample problems for dae solve.tgz,

http://www.netlib.org/ode/daesolve/, 2000.
[36] S. Schulz, Four Lectures on Differential-Algebraic Equations,

http://www.math.auckland.ac.nz/Research/Reports/ (497), 2003.

[37] O. Schenk and K. Gärtner, On fast factorization pivoting methods for sparse symmetric
indefinite systems, Electronic Transactions on Numerical Analysis 23 (2006), 158–179.

[38] C. Udriste, Convex Functions and Optimization Methods on Riemannian Manifolds,
Springer, 1994.

[39] R. von Schwerin, Multibody System Simulation: Numerical Methods, Algorithms, and Soft-

ware, Springer, 1999.

[40] K.D. Yeomans, Initialization Issues in General Differential Algebraic Equation Integrators,
Ph.D. thesis, North Carolina State University, 1997.

Robin Nittka

University of Ulm, Institute of Applied Analysis, D-89069 Ulm, Germany
E-mail address: robin.nittka@uni-ulm.de

Manfred Sauter

University of Ulm, Institute of Applied Analysis, D-89069 Ulm, Germany
E-mail address: manfred.sauter@uni-ulm.de

http://pitagora.dm.uniba.it/~testset/
http://www.intel.com/cd/software/products/asmo-na/eng/perflib/mkl/
http://cantor.mathematik.uni-ulm.de/m5/nittka/research/2007/sobolev_dae/
http://www.netlib.org/ode/daesolve/
http://www.math.auckland.ac.nz/Research/Reports/

	1. Introduction
	2. Sobolev Steepest Descent
	2.1. General Setting
	2.2. Application to differential algebraic equations

	3. Closedness
	4. Fredholm Property
	5. The Non-Linear Case
	6. Numerics
	6.1. Discrete Formulation of Linear DAE
	6.2. Different Gradients in Finite Dimensional Spaces
	6.3. Discrete Steepest Descent Algorithm and Step Size Calculation
	6.4. Least Squares Method
	6.5. The Non-Linear Case
	6.6. Supplementary Conditions

	7. Implementation Details and Examples with Tables and Plots
	7.1. Non-Linear ODE with Irregular Singularity
	7.2. A Small Non-Trivial Linear DAE
	7.3. More Involved Test Problems
	7.4. Solution Space Estimation
	7.5. Implementation
	7.6. Possible Improvements

	8. Conclusion
	Acknowledgments

	References

