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OSCILLATION THEORY FOR A PAIR OF SECOND ORDER
DYNAMIC EQUATIONS WITH A SINGULAR INTERFACE

PALLAV KUMAR BARUAH, DASU KRISHNA KIRAN VAMSI

Abstract. In this paper we consider a pair of second order dynamic equations
defined on the time scale I = [a, c] ∪ [σ(c), b]. We impose matching interface

conditions at the singular interface c. We prove a theorem regarding the re-

lationship between the number of eigenvalues and zeros of the corresponding
eigenfunctions.

1. Introduction

The study of waves plays a important role in physical sciences. Waves of simple
nature oscillate with a fixed frequency and wave-length. The study of these simple
sinusoidal waves form the basis for the study of almost all forms of linear wave
motion. The oscillation nature of waves can be modelled by differential equations
specifically by ordinary Sturm-Liouville operators. In [1], the oscillatory nature of
the self-adjoint second order dynamic equation

Lx(t) = (px∆)∆(t) + q(t)xσ(t)

is discussed. Also, Sturm’s comparison and separation theorems have been proved
for the self-adjoint matrix equations

LX(t) = (PX∆)∆(t) + Q(t)Xσ(t).

In [15], the oscillatory and nonoscillatory behaviour of solutions of second-order
linear difference equations is discussed. In literature of time scales, substantial
amount of work has been done on oscillation behaviour of nonlinear dynamic equa-
tions [2, 3, 4, 5, 6, 16].

In the literature we find a new class of interface problems, termed as mixed pair
of equations, discussed in the papers [7, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23]
where two different differential equations are defined on adjacent intervals with a
common point of interface and the solutions satisfy a matching condition at the
point of interface. We observe that the above problem for the regular case has been
discussed in [17, 18, 19, 20, 21, 23]. In [7] the authors discuss an application of the
classical Weyl limit criterion to define the coefficients with well-known Wronskian
boundary conditions to tackle the singularity at the boundary for this class of

2000 Mathematics Subject Classification. 45C05, 34C10.
Key words and phrases. Eigenvalues; eigenfunctions; dynamic equations; angle function;

zeros of a function.
c©2008 Texas State University - San Marcos.

Submitted July 18, 2007. Published March 20, 2008.

1



2 P. K. BARUAH, D. K. K. VAMSI EJDE-2008/43

problems. Though this work is specifically for Sturm-Liouville problems, it paves
a way to study the problem of singularity at the end boundary points. But the
problem of having a singularity at the point of interface remained unexplored. This
problem of having singularity at the point of interface is discussed in [8, 9]. In
[8], the Green’s matrix is obtained for a boundary value problem involving a pair
of dynamic equations with a singular interface. In [9], the existence of matching
solutions for an initial value problem involving a pair of dynamic equations with a
singular interface is discussed.

In this paper we study the oscillation theory for dynamic equations and also deal
with the problem of having singularity at the point of interface. In this direction,
we intend to study the oscillation behaviour for a pair of dynamic equations having
a singularity at the point of interface. In this paper, we prove a theorem that gives
the relationship between the number of eigenvalues and zeros of the corresponding
eigenfunctions.

In Section 2, we give few mathematical definitions, which we use through the rest
of the paper and in Section 3, we define the pair of second order dynamic equations
with matching interface conditions. We also define the angle functions Θ and Θ̂.
In Section 4, we prove a theorem involving the angle functions Θ and Θ̂. Finally,
in Section 5, we prove a theorem that gives the relationship between number of
eigenvalues and zeros of the corresponding eigenfunctions.

2. Mathematical Preliminaries

Definition 2.1. Let T be a time scale. For t ∈ T we define the forward jump
operator σ : T → T by

σ(t) := inf{s ∈ T : s > t},
while the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

If σ(t) > t, we say that t is right-scattered, while ρ(t) < t we say that t is left-
scattered. Points that are right-scattered and left-scattered at the same time are
called isolated. Also, if t < sup T and σ(t) = t, then t is called right-dense, and
if t > inf T and ρ(t) = t, then t is called left-dense. Points that are right-dense
and left-dense at the same time are called dense. Finally, the graininess function
µ : T → [0,∞) is defined by

µ(t) := σ(t)− t.

Definition 2.2. A function f : T → R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at left-
dense points in T. The set of rd-continuous functions f : T → R will be denoted
by

Crd = Crd(T).

The set of functions f : T → R that are differentiable and whose derivative is
rd-continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T, R).

Definition 2.3. The function Θ(x, y) = tan−1
(

x
y

)
that gives the angle that the

point (x, y) makes with the positive x-axis is called the angle function.
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3. Pair of Dynamic Equations and the Angle Functions

Let I1 = [a, c], I2 = [σ(c), b] and I = I1 ∪ I2 for −∞ < a, b, c < ∞. Let

L1X1 =
1
r1

(−(p1X
∆
1 )∆ + q1X1) (3.1)

be defined on I1, and let

L2X2 =
1
r2

(−(p2X
∆
2 )∆ + q2X2) (3.2)

be defined on I2, where pi ∈ C1
rd(Ii), qi and ri ∈ C1

rd(Ii) are real valued functions,
pi(t) > 0 and ri(t) > 0 for all t ∈ Ii, i = 1, 2. We assume that the functions X1, X2

satisfy the matching conditions

X1(c) = X2(σ(c)), (3.3)

p1(c)X∆
1 (c) = p2(σ(c))X∆

2 (σ(c)). (3.4)

For a real number λ, let us consider the pair of dynamic equations

L1X1 = λX1 on I1, (3.5)

L2X2 = λX2 on I2, (3.6)

together with the matching interface conditions (3.3), (3.4). It follows from [1,
Corollary 5.90 and Theorem 5.119] that problem (3.5), (3.6) along with conditions
(3.3), (3.4) has two linearly independent real valued solutions. For a real valued
nontrivial solution X = (X1, X2) of (3.5), (3.6) along with conditions (3.3), (3.4),
we define the new dependent variables ρ1, ρ2 and Θ1,Θ2 by

Xi(t) = ρi(t) sinΘi(t), (3.7)

pi(t)X∆
i (t) = ρi(t) cos Θi(t), (3.8)

where the angle function Θi(t) satisfies

Θi(t) = tan−1 Xi(t)
pi(t)X∆

i (t)
for t ∈ Ii, i = 1, 2. (3.9)

From conditions X1(c) = X2(σ(c)), p1(c)X∆
1 (c) = p2(σ(c))X∆

2 (σ(c)), and

Θi(t) = tan−1 Xi(t)
pi(t)X∆

i (t)
for t ∈ Ii, i = 1, 2,

we get that
Θ1(c) = Θ2(σ(c)). (3.10)

We define

Θ(t) =

{
Θ1(t), t ∈ I1

Θ2(t), t ∈ I2.

We notice that Θ is a continuous and almost everywhere continuously differentiable
real valued function defined on I = I1∪I2. Also, from relations (3.7), (3.8), for any
nontrivial solutions of (3.5), (3.6) along with conditions (3.3), (3.4) it follows that
ρi(t) 6= 0 for all t ∈ Ii, i = 1, 2, as ρi(t) = 0 implies that Xi(t) = 0 contradicting
our assumption of nontrivial solutions. Also, since X1(c) = X2(σ(c)) and Θ1(c) =
Θ2(σ(c)), from (3.7) we have ρ1(c) = ρ2(σ(c)), and hence, for t ∈ I. X(t) = 0 if and
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only if Θ(t) = nπ, for some integer n. If we let gi(t) = λri(t)− qi(t), t ∈ Ii, i = 1, 2,
equations (3.5), (3.6) can be rewritten in the form

(p1X
∆
1 )∆ + g1X1 = 0 on I1 (3.11)

(p2X
∆
2 )∆ + g2X2 = 0 on I2 . (3.12)

Let p̂i, q̂i, r̂i, ĝi, ρ̂i, Θ̂i, i = 1, 2, be another set of functions as defined preceding
discussions. We define

p(t) =

{
p1(t), t ∈ I1

p2(t), t ∈ I2,
p̂(t) =

{
p̂1(t), t ∈ I1

p̂2(t), t ∈ I2,

g(t) =

{
g1(t), t ∈ I1

g2(t), t ∈ I2,
ĝ(t) =

{
ĝ1(t), t ∈ I1

ĝ2(t), t ∈ I2,

Θ̂(t) =

{
Θ̂1(t), t ∈ I1

Θ̂2(t), t ∈ I2.

Upon delta differentiation, with respect to t, we have from (3.9) for Θ(t), Θ∆(t) =
Θ′(t) (as I1 and I2 are continuous intervals and (3.4)), which is equal to

1

1 +
( X(t)

p(t)X′(t)

)2

d

dx

X(t)
p(t)X ′(t)

=
p(t)(X ′(t))2 −X(t)(p(t)X ′(t))′

(p(t)X ′(t))2 + X2(t)

=
p(t)(X ′(t))2 + g(t)X2(t)

(p(t)X ′(t))2 + X2(t)
.

Equations (3.7), (3.8) imply

Θ∆(t) =
1

ρ2(t)

( 1
p(t)

ρ2(t) cos2(Θ(t)) + g(t)ρ2(t) sin2 Θ(t)
)
.

Hence,

Θ∆(t) =
1

p(t)
sin2 Θ(t) + g(t) sin2 Θ(t), for t ∈ I. (3.13)

Similarly, for Θ̂(t), we have

Θ̂∆(t) =
1

p̂(t)
sin2 Θ̂(t) + g(t) sin2 Θ̂(t), for t ∈ I. (3.14)

4. A Theorem Involving Angle Functions

Theorem 4.1. Let p̂(t) ≤ p(t) and g(t) ≤ ĝ(t) for all t ∈ I1 ∪ I2. Let X(t) be a
solution of (3.11), (3.12), (3.3), (3.4), and let X̂ be a solution of

(p̂1X̂
∆
1 )∆ + ĝ1X̂1 = 0 on I1, (4.1)

(p̂2X̂
∆
2 )∆ + ĝ2X̂2 = 0 on I2, (4.2)

satisfying the matching conditions

X̂1(c) = X̂2(σ(c)), (4.3)

p̂1(c)X̂∆
1 (c) = p̂2(σ(c))X̂∆

2 (σ(c)) (4.4)

Then, if Θ̂(d) ≥ Θ(d) for some d ∈ (a, c] ∪ [σ(c), b), then Θ̂(t) ≥ Θ(t) for all
t ∈ (d, c] ∪ [σ(c), b).
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Proof. Case I Let us suppose that d ∈ [σ(c), b). Then Θ̂(d) ≥ Θ(d) implies that
Θ̂2(d) ≥ Θ2(d), and from hypothesis of the theorem we have that p̂2(t) ≤ p2(t) and
ĝ2(t) ≥ g2(t) for all t ∈ [σ(c), b). For t ∈ I2, we have, from relations (3.13) and
(3.14)

Θ∆
2 (t) =

1
p2(t)

sin2 Θ2(t) + g2(t) sin2 Θ2(t),

Θ̂∆
2 (t) =

1
p̂2(t)

sin2 Θ̂2(t) + ĝ2(t) sin2 Θ̂2(t).

Let δ2 = Θ̂2 −Θ2. Then, we have

δ∆
2 =

1
p̂2(t)

sin2 Θ̂2(t) + ĝ2(t) sin2 Θ̂2(t)−
1

p2(t)
sin2 Θ2(t)− g2(t) sin2 Θ2(t)

=
1

p̂2(t)
sin2 Θ̂2(t)−

1
p2(t)

cos2 Θ2(t) + ĝ2(t) sin2 Θ̂2(t)− g2(t) sin2 Θ2(t)

=
( 1

p̂2
− 1

p2

)
cos2 Θ̂2 + (ĝ2 − g2) sin2 Θ2 +

1
p2

(cos2 Θ̂2 − cos2 Θ2)

− ĝ2(sin2 Θ2 − sin2 Θ̂2).

As we know that cos2 Θ = 1− sin2 Θ, we have

δ∆
2 =

( 1
p̂2
− 1

p2

)
cos2 Θ̂2 + (ĝ2 − g2) sin2 Θ2

+
(
ĝ2 −

1
p2

)
(sin Θ̂2 + sinΘ2)(sin Θ̂2 − sinΘ2)

≥ h2(t) + f2(t)δ2(t),

where 0 ≤ h2(t) ≤ 1
p̂2
− 1

p2
+ ĝ2 − g2, |f2(t)| ≤ 2

(
|ĝ2(t)| + 1

p2(t)

)
; as we have

sinΘ2, sin Θ̂2, cos Θ2, cos Θ̂2 bounded above by one and for small values of Θ̂2 and
Θ2, we have sin Θ̂2 ≈ Θ̂2 and sinΘ2 ≈ Θ2. Clearly, the functions f2 and h2 both
are locally integrable on I2. Let k2(t) = exp

(
−

∫ t

d
f2(t)dt

)
> 0. Then, we have,

(k2δ2)∆ = (k2δ
′
2 + k2

′δ2), since Θ∆ = Θ′. So, we have (k2δ2)∆ = k2δ
′
2 − k2f2δ2 =

k2(δ′2 − f2δ2) ≥ k2h2 ≥ 0 since, δ
′

2 ≥ h2(t) + f2(t)δ2(t)), and therefore k2δ2 is
an increasing function; i.e., k2(t1)δ2(t1) ≤ k2(t2)δ2(t2), for t1 ≤ t2. We have
δ2(d) = (Θ̂2(d) − Θ2(d)) ≥ 0, hence, it follows that δ2(t) ≥ 0 for all t ∈ (d, b), as
k2(d)δ2(d) ≤ k2(t)δ2(t), for d ≤ t and k2(d)δ2(d) ≥ 0, k2(t) > 0 for t ∈ I2. Hence,
Θ̂(t) ≥ Θ(t) for all t ∈ (d, b).

Case II Let us suppose that d ∈ (a, c]. Then, Θ̂(d) ≥ Θ(d) implies Θ̂1(d) ≥ Θ1(d),
from the hypothesis of the theorem, we have from relations (3.13) and (3.14)

Θ∆
1 (t) =

1
p(t)

cos2 Θ1(t) + g1(t) sin2 Θ1(t),

Θ̂∆
1 (t) =

1
p̂1(t)

cos2 Θ̂1(t) + g1(t) sin2 Θ̂1(t).

Let δ1 = Θ̂1 − Θ1. Then as proceeding in Case I, we can show that Θ̂(t) ≥ Θ(t),
for all t ∈ (d, c]. In fact, from the proof of Case I, it follows that Θ̂1(c) ≥ Θ1(c).
Now, by continuity of Θ function (see relation (3.10)), we have that Θ̂2(σ(c)) =
Θ̂1(c) ≥ Θ1(c) = Θ2(σ(c)), and hence by Case I we get that Θ̂2(t) ≥ Θ(t) for all
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t ∈ [σ(c), b). Therefore, Θ̂(t) ≥ Θ(t) for all t ∈ (d, c] ∪ [σ(c), b). Hence, the proof is
complete. �

5. Relationship Between Eigenvalues and Zeros of Eigenfunctions

Theorem 5.1. Let u = (u1, u2) and v = (v1, v2) be real valued solutions of (3.5),
(3.6) along with conditions (3.3), (3.4). If u and v are linearly independent, then
between any two consecutive zeros of u, there lies exactly one zero of v.

Proof. Let t1, t2 be two consecutive zeros of u. For u, let Θ(t) = tan−1 u(t)
p(t)u∆(t)

and for v, let Θ̃(t) = tan−1 v(t)
p(t)v∆(t) , where

ui(t) = ρi(t) sinΘi(t), pi(t)u∆
i (t) = ρi(t) cos Θi(t),

vi(t) = ρi(t) sin Θ̃i(t), pi(t)v∆
i (t) = ρi(t) cos Θ̃i(t).

Let Θ and Θ̃, the angel functions defined above, be such that Θ(t1) = 0, 0 ≤ Θ̃(t1) <
π. This may be accomplished by taking −u(−v) instead of u(v), if necessary.
Case I Suppose that t1 ∈ I1. Then, Θ1(t1) = 0 and since u1 and v1 are linearly
independent Θ̃1(t1) 6= 0. Since, ρi(t) 6= 0 and Θ̃1(t1) = 0 violates the definition of
u1 and v1 being linearly independent on I1. Hence, Θ1(t1) = 0 ≤ Θ̃1(t1) < π; i.e.,
Θ(t1) = 0 ≤ Θ̃(t1) < π. Now, from Theorem 4.1, it follows that π = Θ(t2) < Θ̃(t2).
Since, t1 and t2 are two consecutive zeros of u, ρi(t) 6= 0 and ui(t) = ρi(t) sinΘi(t).
Hence (by continuity) Θ̃ must take the value π at some point y1 ∈ (t1, t2). Since
vi(t) = ρi(t) sin Θ̃i(t), v has at least one zero in (t1, t2).
Case II Suppose that t1 ∈ I2. Then, Θ2(t1) = 0, since u2 and v2 are linearly
independent, Θ̃2 6= 0. Hence, Θ2(t1) = 0 ≤ Θ̃2(t1) < π; i.e., Θ(t1) = 0 ≤ Θ̃(t1) < π,
and therefore as in Case I, it follows that v has at least one zero in (t1, t2). Now,
let us suppose that v has two(consecutive) zeros y1, y2 ∈ (t1, t2). Then as shown
above, there exists a point t3 ∈ (y1, y2) such that u(t3) = 0, a contradiction. Hence,
v has exactly one zero in (t1, t2). This completes the proof. �
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