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EXISTENCE OF LEAST ENERGY SOLUTIONS TO COUPLED
ELLIPTIC SYSTEMS WITH CRITICAL NONLINEARITIES

GONG-MING WEI, YAN-HUA WANG

Abstract. In this paper we study the existence of nontrivial solutions of el-

liptic systems with critical nonlinearities and subcritical nonlinear coupling
interactions, under Dirichlet or Neumann boundary conditions. These equa-

tions are motivated from solitary waves of nonlinear Schrödinger systems in

physics. Using minimax theorem and by estimates on the least energy, we
prove the existence of nonstandard least energy solutions, i.e. solutions with

least energy and each component is nontrivial.

1. Introduction

In this paper, we consider the existence of least energy solutions to the Dirichlet
problem

−∆u+ λ1u = µ1u
3 + βup−1vp in Ω

−∆v + λ2v = µ2v
3 + βupvp−1 in Ω

u > 0, v > 0 in Ω
u = 0, v = 0 on ∂Ω

(1.1)

and to the Neumann prolem

−∆u+ λ1u = µ1u
3 + βup−1vp in Ω

−∆v + λ2v = µ2v
3 + βupvp−1 in Ω

u > 0, v > 0 in Ω
∂u

∂ν
= 0,

∂v

∂ν
= 0 on ∂Ω

(1.2)

where Ω ⊂ R4 is a smooth bounded domain, λi, µi, β are constants, µi > 0, i = 1, 2,
and 1 < p < 2. Since the dimension of Ω is N = 4, 4 = 2N

N−2 is the critical Sobolev
exponent. Therefore there are critical nonlinearities and coupling interaction terms
in the elliptic systems. In this paper, we are interested in positive solutions. The
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solutions of problems (1.1) and (1.2) are equivalent to positive solutions of

−∆u+ λ1u = µ1|u|2u+ β|u|p−2|v|pu in Ω

−∆v + λ2v = µ2|v|2v + β|u|p|v|p−2v in Ω

By a least energy solution we mean a nontrivial solution with the least energy

E(u, v) =
∫

Ω

1
2
(|∇u|2 + λ1u

2 + |∇v|2 + λ2v
2)− 1

4
(µ1u

4 + µ2v
4)− β

p
|uv|p (1.3)

among all nontrivial solutions of problem (1.1) or (1.2). By nontrivial solution of
system we mean that at least one of its components is nontrivial(nonzero function).
Of course, the least energy solution we are interested in is nonstandard(a definition
in [15]); i.e., each of its components is nontrivial.

Recently, the existence and multiplicity of solutions of classical coupled nonlinear
Schrödinger equations (CNLS)

∆u− λ1u+ µ1u
3 + βuv2 = 0

∆v − λ2v + µ2v
3 + βu2v = 0

(1.4)

has been investigated by several authors in the case of subcritical nonlinearities,
we recall, among many others, Ambrosetti & Cororado [1], Lin & Wei [7, 8], Maia,
Montefusco & Pellacci [9], Sirakov [15], and the author [17]. These CNLS are
motivated by nonlinear optics and Bose-Einstein double condensates and have at-
tracted a considerable attention in the last years. On the other hand, systems of
one-dimensional NLS

iφt + φxx + α1|φ|p1−2φ+ α0|ψ|p0 |φ|p0−2φ = δψxx

iψt + ψxx + α2|ψ|p2−2ψ + α0|φ|p0 |ψ|p0−2ψ = δφxx

where αj ≥ 0(j = 1, 2), α0 ∈ R and |δ| < 1, appear in several branches of physics,
such as in the study of interactions of waves with different polarizations or in the
description of nonlinear modulations of two monochromatic waves. These systems
have been studied in many physical literatures. See [3] for more references. Standing
waves of the form

φ(t, x) = eiλ1tu(x), ψ(t, x) = eiλ2tv(x)

satisfy
−uxx + δvxx + λ1u = α1|u|p1−2u+ α0|v|p0 |u|p0−2u

−vxx + δuxx + λ2v = α2|v|p2−2v + α0|u|p0 |v|p0−2v
. (1.5)

A natural question is to study the multidimensional accompanist of (1.5). There-
fore, the system we consider in this paper can be viewed as a generalization of (1.4)
and a high dimensional case of (1.5).

Single elliptic equations with critical nonlinearities have been extensively stud-
ied by many authors, including the classical results of Brezis-Nirenberg [2], singular
perturbation problem [5, 13, 14, 16] for Neumann problems, multi-peak solutions
[4, 12], concentration phenomena [10, 13], and so on. In [11], the authors con-
structed concentrated solutions for elliptic systems with critical nonlinearities and
weakly coupling interactions. To the author’s knowledge, there are few results on
Schrödinger type systems with critical nonlinearities and strong coupling interac-
tions. This is another motivation of this paper.
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Let λ1(Ω) be the first eigenvalue of −∆ in H1
0 (Ω). The main results of this paper

are as follows.

Theorem 1.1. Assume −λ1(Ω) < λ1, λ2 < 0. Then problem (1.1) has a nonstan-
dard least energy solution for sufficiently large β.

Theorem 1.2. Assume λ1, λ2 are sufficiently large (but independent of β). Then
problem (1.2) has a nonstandard least energy solution for sufficiently large β.

The proof relies on a variational approach based on the well-known Mountain-
Pass Theorem. It can be viewed as adaptation of an an approach which is now
classical for CNLS. The compactness is recovered by imposing that β is sufficiently
large so that the mountain-pass min-max value c satisfies a suitable inequality
involving the best constant S in the Sobolev embedding H1(R4) ↪→ L4(R4). This
ensures that the Palais-Smale condition holds at the level c. To prove that the
least energy is nonstandard, we use the semitrivial solutions (U1, 0) and (0, U2)
as comparison functions, where Ui’s are the positive least energy solutions of the
equation

−∆Ui + λiUi = µiU
3
i in Ω.

In the sequel we use the following notation.

‖u‖2λ1
:=

∫
Ω

|∇u|2 + λ1u
2, ‖v‖2λ2

:=
∫

Ω

|∇v|2 + λ2v
2, |u|qq :=

∫
Ω

|u|q.

2. Dirichlet problem

Let X = H1
0 (Ω)×H1

0 (Ω) and

c = inf
γ∈Γ

max
t∈[0,1]

E(γ(t))

where Γ = {γ ∈ C([0, 1], X)|γ(0) = 0, E(γ(1)) < 0}. Then (e.g. [18]) c > 0 and

c = inf
(u,v)∈X,(u,v) 6=(0,0)

max
t>0

E(tu, tv) = inf
(u,v)∈N

E(u, v) (2.1)

where

N = {(u, v) ∈ X \ {(0, 0)}|‖u‖2λ1
+ ‖v‖2λ2

= µ1|u|44 + µ2|v|44 + 2β|uv|pp}.

Existence of nontrivial solution. Using the mountain pass theorem, we first
prove the existence of nontrivial solution. In this section, we always assume that

−λ1(Ω) < λ1 < 0, −λ1(Ω) < λ2 < 0 (2.2)

where λ1(Ω) is the first eigenvalue of −∆ in H1
0 (Ω).

Theorem 2.1. Assume that condition (2.2) holds, there exists a nontrivial least
energy solution for problem (1.1) for sufficiently large β.

Proof. By the mountain pass lemma (e.g. [18]), there exists a minimizing sequence
(un, vn) ∈ X such that as n→∞

E(un, vn) → c, E′(un, vn) → 0 in X ′. (2.3)
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We assume that (un, vn) is nonnegative; otherwise we consider (|un|, |vn|). It is
routine to prove that ‖un‖2λ1

+ ‖vn‖2λ2
is bounded and

1
2
(1− 1

p
)(‖un‖2λ1

+ ‖vn‖2λ2
) +

1
2
(
1
p
− 1

2
)(µ1|un|44 + µ2|vn|44) = c+ o(1),

1
4
(µ1|un|44 + µ2|vn|44) + (1− 1

p
)β|unvn|pp = c+ o(1).

(2.4)

Going to a subsequence, if necessary, there exists (u, v) ∈ X such that

uj ⇀ u, vj ⇀ v, in H1
0 (Ω),

uj → u, vj → v, in L2(Ω),
uj → u, vj → v, a.e. in Ω,

u3
j ⇀ u3, v3

j ⇀ v3, in L4/3(Ω)

up−1
j vp

j ⇀ up−1vp, up
jv

p−1
j ⇀ upvp−1, in L2/p(Ω).

(2.5)

It is easy to see that (u, v) is a nonnegative solution of equations (1.1) and has
nonnegative energy; i.e.,

E′(u, v) = 0, E(u, v) ≥ 0. (2.6)

Set σn = un − u, τn = vn − v, γn = unvn − uv. By Brézis-Lieb theorem and (2.5),

|un|44 = |u|44 + |σn|44 + o(1),

|vn|44 = |v|44 + |τn|44 + o(1),

|unvn|pp = |uv|pp + o(1).

(2.7)

By a direct computation and (2.3), (2.7),

E(un, vn) = E(u, v) +
1
2
(|∇σn|22 + |∇τn|22)−

1
4
(µ1|σn|44 + µ2|τn|44) + o(1)

= c+ o(1),
(2.8)

with
o(1) = (E′(un, vn), (un, vn))

= (E′(u, v), (u, v)) + |∇σn|22 + |∇τn|22 − (µ1|σn|44 + µ2|τn|44)
= |∇σn|22 + |∇τn|22 − (µ1|σn|44 + µ2|τn|44).

(2.9)

Assuming that |∇σn|22 + |∇τn|22 → b, by (2.9),

µ1|σn|44 + µ2|τn|44 → b. (2.10)

If b = 0, the proof is done. Now we assume that b > 0. By the Sobolev imbedding
theorem,

|∇σn|22 > S|σn|24, |∇τn|22 > S|τn|24.
Hence

(|∇σn|22 + |∇τn|22)2 ≥ S2(|σn|24 + |τn|24)2

≥ S2

max{µ1, µ2}
(µ1|σn|44 + µ2|τn|44)

(2.11)

Let n→∞ on both side of (2.11), we have

b2 >
S2

max{µ1, µ2}
b, i.e. b >

S2

max{µ1, µ2}
. (2.12)
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From (2.6), (2.8) and (2.10), we have

b ≤ 4c. (2.13)

Therefore,

4c >
S2

max{µ1, µ2}
. (2.14)

When β is sufficiently large, this is a contradiction with the following lemma. This
completes the proof. �

Lemma 2.2. As β →∞, c→ 0.

Proof. Fix a nontrivial W ∈ H1
0 (Ω). There exists t0 > 0 such that (t0W, t0W ) ∈ N .

Indeed,

t0 = (
‖W‖2λ1

+ ‖W‖2λ2

t4−2p
0 (µ1 + µ2)|W |44 + 2β|W |2p

2p

)
1

2(p−1) ≤ O(
1

β1/2(p−1)
) (2.15)

as β →∞. Hence

c ≤ E(t0W, t0W )

=
1
2
(1− 1

p
)t20(‖W‖2λ1

+ ‖W‖2λ2
) +

1
2
(
1
p
− 1

2
)t40(µ1 + µ2)|W |44

≤ O(
1

β1/(p−1)
).

(2.16)

�

Nontrivial solution is nonstandard. In this subsection, we will show that the
nontrivial least energy solution in subsection 2.1 is nonstandard.

Theorem 2.3. The solution obtained in Theorem 2.1 is nonstandard.

Proof. From Brézis-Nirenberg’s theorem([2], see also [18, Theorem 1.45]), there
exists nontrivial solution Wi ∈ H1

0 (Ω) for

−∆W + λiW = µiW
3, i = 1, 2. (2.17)

In fact, the Wi’s are mountain pass solutions and hence they are least energy
solutions with respective energies

Ii =
1
4
‖Wi‖2λi

=
µi

4
|Wi|44, i = 1, 2. (2.18)

From the proof of Lemma 2.2, (2.15) and (2.16), for sufficiently large β, we have

c < min{I1, I2}. (2.19)

This implies that, for sufficiently large β, any nontrivial solution with the least
energy must be nonstandard. �

Proof of Theorem 1.1. By the maximum principle, any nonstandard nonnegative
solution of equations (1.1) is positive. Combining this with Theorem 2.1 and The-
orem 2.3, we complete the proof. �
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3. Neumann problem

In this section, we assume that λ1, λ2 are sufficiently large as in [16], but not
independent of β. Using the same procedure as in section 2, we come to prove
existence of nonstandard solution of problem (1.2).

In this section, except we set X = H1(Ω) × H1(Ω) and let Wi be the positive
least energy solution of problem (3.1), we use the same notations and definitions
c,Γ,N as in section 2.

Proof of Theorem 1.2. We follow the same procedure as in section 2 and we only
give a sketch of the proof.
Claim 1. The least energy c→ 0 as β →∞. The proof is the same as Lemma 2.2.
Claim 2. Any least energy solution is nonstandard for sufficiently large β. From
[16, Theorem 3.1], for i = 1, 2, problem

−∆W + λiW = µiW
3 in Ω,

∂W

∂ν
= 0 on ∂Ω (3.1)

possesses a positive solution Wi for λi suitably large. In fact, the nonconstant
solution in [16] is a mountain pass and hence a least energy solution. Assume
Ii, i = 1, 2 are their corresponding least energies. By the proof of Theorem 2.3, we
have c < min{I1, I2}. So nontrivial least energy solutions are nonstandard.
Claim 3. Existence of nontrivial solution. Assume that {(uj , vj}∞j=1 is a nonnegative
minimizing sequence for the mountain pass energy c, i.e.

E(uj , vj) → c, E′(uj , vj) → 0 in X ′. (3.2)

The same procedure as in section 2 (2.4) implies that as j →∞
1
2
(1− 1

p
)(‖uj‖2λ1

+ ‖vj‖2λ2
) +

1
2
(
1
p
− 1

2
)(µ1|uj |44 + µ2|vj |44) = c+ o(1), (3.3)

Hence {‖uj‖λ1} and {‖vj‖λ2} are bounded sequences. Going if necessary to a
subsequence, there exists (u, v) ∈ X such that

uj ⇀ u, vj ⇀ v, in H1(Ω),

uj → u, vj → v, in L2(Ω),
uj → u, vj → v, a.e. in Ω,

u3
j ⇀ u3, v3

j ⇀ v3, in L4/3(Ω)

up−1
j vp

j ⇀ up−1vp, up
jv

p−1
j ⇀ upvp−1, in L2/p(Ω).

Hence (u, v) is nonnegative and satisfies the equations in (1.2).
Claim: (u, v) 6= (0, 0). Otherwise, (uj , vj) ⇀ (0, 0) in H1(Ω) ×H1(Ω), (uj , vj) →
(0, 0) in L2(Ω)× L2(Ω), and ujvj → 0 in Lp(Ω). From [16, Lemma 2.1, page 289],
for any ε > 0, as j →∞

Sε|uj |24 ≤ |∇uj |22 + o(1), (3.4)

Sε|vj |24 ≤ |∇vj |22 + o(1) (3.5)

where Sε = (2−1/2S − ε)(1 + ε)−1, S is the Sobolev constant.
Assume that |∇uj |22 + |∇vj |22 → b. Since (E′(uj , vj), (uj , vj)) → 0 and |ujvj |pp →

0,
|∇uj |22 + |∇vj |22 = µ1|uj |44 + µ2|vj |44 + o(1). (3.6)
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It follows that

E(uj , vj) =
1
4
(|∇uj |22 + |∇vj |22)+o(1) =

1
4
(µ1|uj |44 +µ2|vj |44)+o(1) → c > 0. (3.7)

If b = 0, this is a contradiction with (3.7). If b > 0, by (3.4),(3.5), we have

(|∇uj |22 + |∇vj |22)2 ≥ S2
ε (|uj |24 + |vj |24)2 + o(1) ≥ Cε(µ1|uj |44 + µ2|vj |44) + o(1) (3.8)

where Cε = S2
ε

max{µ1,µ2} . From (3.6),

b2 ≥ Cεb, i.e., b ≥ Cε. (3.9)

This is a contradiction with (3.7) and Claim 1. Hence (u, v) is nontrivial. The same
procedure as in [6, page 9] (also [16]) implies that the solution is positive. This
completes the proof. �

Remarks. (1) The arguments developed in this paper also work in dimension
N > 4 with critical nonlinearities. For simplification in writing, we consider only
the case N = 4.

(2) According to the proof developed in the paper we cannot exclude the pos-
sibility that the solutions of Neumann problem are nonconstant for some suitably
chosen large β.

Acknowledgements. The author would like to thank the anonymous referees for
their useful suggestions and helpful comments, which improve the original manu-
script.
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